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Group theoretic results in Clifford semigroups 

J. D. P. MELDRUM 

Clifford semigroups or strong semilattices of groups are a class of inverse semi-
groups which are obviously very closely related to groups. This paper attempts to 
exploit this close relationship. Petrich's characterization of congruences on inverse 
semigroups is analyzed in this special case to obtain a description of homomorphisms 
and their images in terms of the groups involved. Next, the idea of classes and closure 
operations due to P. HALL, which has proved very useful in group theory, is extended. 
Some results are obtained, but there are many interesting open problems left. This is 
applied to nilpotency of groups and a number of interesting results are extended, in 
particular Fitting's Theorem, the Hirsch-Plotkin Theorem and the characterization 
of nilpotent groups in terms of subnormal subgroups. Finally some remarks on 
solubility are made. The techniques demonstrated here should lead to a very large 
number of results being transferred. 

This paper describes a technique for applying group theoretic ideas and results 
to Clifford semigroups mainly by giving some examples of it in action. 

I would like to thank Drs. KOWOL and MITSCH for a preprint of their paper [4] 
and for stimulating conversation and, later, correspondence. 

I would also like to thank Dr. O'CARROLL for much help. 
We refer to Howie's book [3] for background on the subject. In this paper we 

are exclusively concerned with Clifford semigroups and we give a definition now to 
establish notation. 

Def in i t i on . A semigroup S is a Clifford semigroup or strong semilattice of 
groups if S is the disjoint union of a set of groups {Sa: a€£}, where E is a meet semi-
lattice and for all a, /? in E such that oi=/?, there exists a homomorphism ^Pa,p' 
S a ^ S p satisfying 

<Pa,f><P0,7 = <Pa,y f o r all in E. 
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The homomorphisms {<parp', in E) are called the linking homomorphisms. For 
all a in E, (pa<rt is the identity map on Sx. For slt s2 in S, the product is defined by 

where s2£Sfi, xfi is the join in E and the product on the right is the product 
in the group Sap. 

We denote the identity of Sx by ea. Then {ea: a£E} is a semilattice of idempotents 
isomorphic to E, and we will often denote it by E(S) or even simply E. This will not 
cause any confusion. Note that e2 is central in S for all aZE. 

It can be shown from HOWIE [3], and it is in any case well known, that Clifford 
semigroups form a variety of algebras, a subvariety of the variety of inverse semi-
groups. PETRICH [7] has defined a concept of congruence pairs for inverse semi-
groups and related them to congruences. This enables a link to be made between con-
gruences and a substructure which strongly resembles normal subgroups. This cor-
respondence is analysed closely in the context of Clifford semigroups in section 1. In 
section 2, some applications are made of the concept of closure operations. In section 
3, we deal with extensions of the idea of nilpotency from groups to Clifford semi-
groups, and finally we deal with solubility in the final section. 

1. Congruences on Clifford semigroups 

This material is a slight extension of the results of Petrich [7] as applied to Clif-
ford semigroups. From now on, unless explicitly stated otherwise, all semigroups 
are assumed to be Clifford semigroups. Let S be a semigroup, with constituent 
groups {Sa: a£is}, linking homomorphisms {<pa>/!: a^/?, a, fidE) and semilattice 
of idempotents {ea: otdE}. 

Def in i t i on 1.1. An inverse subsemigroup T of S is called normal if a~1TaQT 
for all and full if EQT. 

This definition departs from standard practice, as usually normal subsemigroups 
are necessarily full. We do not require this. 

Def in i t i on 1.2. A pair (q, N) is called a congruence pair if TV is a normal full 
subsemigroup and ae£N, eqa~la implies a£N, where a£S, e£E. 

If we define 

ax(g,N)b if and only if a^agb^b, ab^ZN 

then Petrich [7] shows.that X(Q, N) is a congruence on S and every congruence a on S 
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is of this form, where 

q = t r c (the restriction of a to EXE), 

N = ker a := {sae: e£E}. 

Our version is simpler than his because we take advantage of the fact that 5 is a Clif-
ford semigroup. We now present some fairly straightforward results concerning the 
concepts that we have just defined. But first a useful notational device. If T is an inverse 
subsemigroup of S we write Tx for TDSa. Then T= |J Ta. In general some of 

the Tx may be empty. But Tis full if and only if Tx^0 for all <x£E. 

Lemma 1.3. 
(i) If N is a normal inverse subsemigroup of S then Nx is a normal subgroup of Sx 

for all OL£E such that Nx^0. 
(ii) Let N be an inverse subsemigroup of S. Then NEQN if and only if 

for all a, fcE, 
(iii) Let N be an inverse subsemigroup of S such that NEQN. Then N is normal 

in S if and only if Nx is a normal subgroup of Sxfor all a £E such that Nx?±0. 
(iv) Let N be a full inverse subsemigroup of S. Then N is normal in S if and only 

if Nx is normal in Sxfor all <x.£E. 
(v) The condition in Definition 1.2 is equivalent to: for all a, fi£E such that 

exeep we have Nxp(p-1
xfi^Nlx. 

(vi) If NEQN and Nx^0, then ker (pa,pQNx for all a, P£E. 
(vii) Let Q be a congruence onE, N a normal full subsemigroup of S. Then (Q, N) 

is a congruence pair if and only if for all a, fifE such that <?a qep then Nxp(p~1
xfiQNx. 

These results can all be checked very easily and so no details of proof will be 
given. We now look at the minimum group congruence a on S. Then a is a congru-
ence on S such that S(a is a group and all group images of S can be factored through 
SI a. See Howie [3] p. 139. 

Lemma 1.4. Let S be a Clifford semigroup with semilattice of idempotents E. 
Let XQE be a chain with the property that for all a££ there exists such that 
/?Sa. Then S/er is the direct limit of the chain of groups 

{Sx,<px,p: a,p£X}. 

Note that such a chain always exists. If E has a minimal element <5, then we can 
take X— {¿>} and then A special case will be used later. 

Coro l l a ry 1.5. Using the notation of Lemma 1.4, assume that cpXtP is a mono-
morphism for all a, fi£X. Then without loss of generality we may assume SXQSP 

for all a a n d S/a= \J Sa. 
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These results do not need proving as they seem well-known, and can in any case 
be checked quickly. To finish this section we consider homomorphic images of 
Clifford semigroups. We use e to denote the identity congruence, i.e., aeb if and only 
if a—b. It is obvious from the definition that (e, N) is a congruence-pair for all full 
normal subsemigroups N of S. 

Lemma 1.6. Let g be a congruence on E. Then the least full normal subsemi-
group N(Q) such that (Q, N(Q)) is a congruence pair is defined by 

N(Q)*= 77KER 

In particular if q>aiXp are monomorphisms for all a, FI^E such that aqP, then (G, E) 
is a congruence pair. 

Again this result is easy to prove, especially if we use Lemma 1.3. 

Lemma 1.7. Let N be a full normal inverse subsemigroup of S. Let x=x(e, N), 
and let T=S/x. Then TX=SJNX and dXif: Tx^Tfi where aSj! is defined by 
tda,p=Nps(paiP, where t=Nxs, i.e., 6x fi is induced naturally by 

This follows easily from the definitions. We finally consider a general congruence 
pair. 

Lemma 1.8. Let {Q, N) be a congruence pair on S. Let x—x(g, N), T=S/x. 
Let k=x(g,E) defined on T. Then 

T/X = S/x(g, N). 

If {Ay: yiC} are the congruence classes of g on E, then Tj). is obtained from T by 
replacing (J Tx by its maximal group homomorphic image Ty, and for y, <5€C, 

mi Ay 
y=§, \¡/yii is defined as the natural extension of the 9XiP for 

Proof . We first note that, using the notation of Lemma 1.7, the homomorphism 
Qx>fi: Tx—Tp is a monomorphism. Hence (g, E) is a congruence pair on T by Lemma 
1.6. Hence Ty can be written as a union of a tower of groups as described in Lemma 
1.4. This makes the definition of i¡/y>s easy to verify. All the rest is very easy to check. 

2. Closure operations on classes 

We use the ideas of classes of groups and closure operations as developed by 
P . H A L L and apply them to Clifford semigroups. A good presentation of these can be 
found in Robinson [8] chapter 1, section 1. They have also been used in many other 
settings by many other people. In particular C O H N [1] uses them in the context of 
universal algebras. 
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The only condition imposed on a class X of groups is that {e}££ and if GdX 
and H^G then H£X. A closure operation on classes of groups is a map A from 
classes of groups to classes of groups A : X—AX satisfying AX 23E, 3EQ9) implies 
AX^Aty and AAX=AX. A class X is /i-closed if AX—X. Any intersection of A-
closed classes is ^-closed. Hence to define A we only need to specify the .¿-closed 
classes. For then AX= D {?): ^43) = s3)}- The concept of classes and closure 
operations can be transferred to any other algebraic structure, and, in particular, to 
Clifford semigroups. 

De f in i t i on 2.1. For a class X of groups, we define Xs to be the class of Clif-
ford semigroups given by 

SeXs if and only if Sx£X for all a£E(S). 

This gives the natural extension of the definition of a class of groups to a class of 
Clifford semigroups. We will see later that this extension of the definition is not 
always the most useful one. There is immediately a family of questions which can be 
posed. 

P rob lem 2.2. Given a class X of groups and a closure operation A on classes, 
determine whether AXS=(AX)S. Alternatively if AX=X, is AXS—XS? 

We will deal with a few cases of this problem, but there is a great deal more that 
can be done in this area. We first define the closure operations which we will be using, 
to cover both groups and Clifford semigroups. 

The class X is S closed if every substructure of an X structure is itself an X-
structure. 

The class X is Q closed (sometimes the symbol H is used) if every epimorphic 
image of an X structure is itself an X structure. 

The class X is R closed if given a structure Y such that a family of homomor-
phisms {0¡: /£/} exists with Y9£X for all /€/ and H ker 0¡ is trivial, then 

iil 
YdX. We say X is residually closed. 

The class X is L closed if given a structure Y such that every finite subset 
{^u •••> y„} of Y is contained in an X substructure of Y, then Y£X. 

The class X is N(N0) closed if every structure Y which can be expressed as a prod-
uct of a (finite) number of normal substructures is again in X. 

Lemma 2.3. Let SX=X. Then SXs=Xs. 

Proof . Let T£SXs. Then there exists U£XS such that T is a Clifford subsemi-
group of U. Hence for all a£E(U), Tx is a subgroup of Ux or is empty. But Ux£X= 
— SX. Hence Tx£X or is empty. Thus T£Xs. Thus Xs=SXs. 
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Example 2.4. Let X be the class of finite p-groups for some prime p. Let the 
semilattice E be the set of negative integers with the natural order inducing the semi-
lattice structure. So (—n)-(—m)=min {—n, — m). Let S_„ be the cyclic group of 
order p", (p _m for « S m be the natural embedding. Then S, the Clifford semi-
group so defined has as maximal group homomorphic image the group Cp~, the 
Priifer group of type p°°, which is certainly not a finite /?-group. So in this case 
X=QX but QXS^XS. 

The problem with Q closure occurs because group homomorphic images of 
Clifford semigroups include direct limits. This leads to the following result. 

Lemma 2.5. Let X be a class of groups closed under the operation of taking 
direct limits. Then Xs is Q closed. 

Proof . Let S£QXs. Then S is the homomorphic image of a semigroup T£XS. 
From Lemma 1.8, we see that the component groups of S are obtained from those of 
T by taking homomorphic images and direct limits. Since the component groups of T 
lie in X and X is closed under direct limits, and hence Q closed, it follows that S£Xs. 
This finishes the proof. 

We next look at L closure. First we prove a result used later. 

Lemma 2.6. Let ..., sn} be a finite subset of a Clifford semigroup S. Then 
the inverse subsemigroup of S generated by {.vl5 ..., is contained in the union of a 

finite number of finitely generated groups forming a semigroup. 

Proof . Let E=E(S), and let X be the finite subset of E defined by OL^X if 
and only if s£Sx for some /, Isi^n. Then X generates a finite subsemilattice Y 
of E. For all /?€ Y, we define 

Zfi = {s,<patf: l S i ' S / i . t i S f t x£Y, Si£Sx}. 

Then Zfi is a finite subset of Sp and so generates a finitely generated subgroup Gp of 
Sp. It is routine to check that the inverse subsemigroup of S generated by {.sl5 ..., J,,} 
is contained in |J GB, and this is a semigroup, which is all we wished to show. 

Par 
Lemma 2.7. Let X=LX. Then LXS=Xs. 

Proof . Let S£LXs. We need to show that Sxe£ for all a £ E = E ( S ) . Let 
{jj, ..., j„} be a finite subset of Sx. Then {¿i, ..., s„}QT£Xs, Tan inverse subsemi-
group of S. In particular Ta 3 { , ..., j„} and lies in Thus Sx£LX=X. Hence 
the result is true. 

Lemma 2.8. Let X=QX=SX=LX. Then Xs =QX,S= SXs=LXS. 

Proof . Following Lemma 2.3 and Lemma 2.7, we only need to show that 
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XS=QXS. Let SdQXS, S a homomorphic image of T£Xs. From Lemma 1.8, 
each S„ is obtained from {Tp: fi£E(T)} by taking homomorphic images and unions 
of towers. Let {<Gy: yCA'} be a tower of groups in X, G= (J G... Then any finite 

Vtx 
subset of G is contained in Gv for some y, and G^X. Hence G^LX—X. Thus each 
S^X and S£Xs. 

For any class X we denote by VX the least variety containing X. It is a standard 
result from universal algebra that VX=X if and only if X—SX=QX=RX. (Cohn 
[1] IV. 3). We now state 

Lemma 2.9. Let X be a class of groups. Then Xs is a variety if and only ifX is a 
variety. 

This is an easy consequence of known results (Petrich [6]) or can be proved 
directly without much trouble. 

Coro l la ry 2.10. X is Q, R, S closed if and only i f X s is Q, R, S closed. 

3. Nilpotency and its generalizations 

Let 5R be the class of nilpotent groups, and let 9tc be the class of nilpotent groups 
of nilpotency class at most c. Then is a variety and S.R= (J 9tc. The most ob-

csl 
vious generalization of 5R to Clifford semigroups is 9is, but this leads to problems as 
we now see. 

Example 3.1. Let Gn be a nilpotent group of nilpotency class exactly n, in 
particular let Gn be the group of ( n + l ) X ( n + l ) unitriangular matrices over some 
field F. Then we can embed Gn in Gn+1 by mapping (aiJ)£Gn~+(bu)£Gn+where for 

aij=bij+1, bii+1=0. Let S be the Clifford semigroup whose^ semilattice of 
idempotents is isomorphic to the negative integers with the natural order. Compare 
Example 2.4. For each —n£E, let S_„=G„ and (p_„,_,„ be the embedding obtain-
ed from the embeddings outlined above. Then 9ls, but S has as a homomorphic 
image G= IJ G„, the maximal group homomorphic image of S. And G is not nil-

ngl 
potent, since it contains subgroups of arbitrarily high nilpotency class. 

Because of this example, we make the following definition. 

Def in i t ion 3.2. The class of nilpotent Clifford semigroups is defined to be 

« = U W s -
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Hence if and only if S^SR,. for all a £ E = E ( S ) , and some c=c(S). 
This coincides with LALLEMENT'S definition [5]. As KOWOL and MITSCH dealt with 
finite semigroups, either definition would have served. In the infinite case this defi-
nition leads to a more satisfactory theory. Denote (9lc)s by 9lc. 

Lemma 3.3. 5ft is S and Q closed. 

Proof . Let T£S$l. Then there exists U£9l and T is a subsemigroup of U. 
So Uemc and S9lc=9lc . By Lemma 2.3 S9lc=mc, hence The case 
of Q closure follows the same pattern, using Corollary 2.10 since 9tc is a variety. 

We now introduce upper and lower central series for Clifford semigroups which 
extend the corresponding ideas for groups, as was done in Kowol and Mitsch [4]. 

De f in i t i on 3.4. Let S be a Clifford semigroup, Nt full normal subsemigroups 
of S for 0 S i S r . 

(i) Z(S), the centre of S is defined by Z ( S ) = { x £ S : xs=sx for all 
(ii) Let H, K be inverse subsemigroups of S. Define [H, K] to be the inverse 

subsemigroup of S generated by 

{[h, k] = h~1k~1hk: h£H,k£K}. 
(iii) A sequence 

E(S) = N0 Q Nx i ... g Nr = S 

is called a central series of S if 

Nt g Z(S!x(e, N ^ d A 

for l ^ i ' ^ r , where is the natural homomorphism associated with X(E, N^^. 
(iv) The upper central series of S is defined inductively by 

Z0(S) = E(S), 

Z , + 1 ( 5 ) 0 ; = Z(S/x(e, Z F ( 5 ) ) ) , 

for i s 0 , where 0f is the natural homomorphism associated with x(e, Z ;(S)) and 
Zi+1(S) is maximal such. 

(v) The lower central series of S is defined inductively by 

Vi (JS) = S, 

y . + i ( S ) = [ 5 , ^ ( 5 ) ] , 
for z s l . 

We now list some easy consequences of this composite definition. 

Lemma 3.5. Let S be a Clifford semigroup. 
(i) ZJ(S) is a normal full subsemigroup of S for all /SO. 

(ii) 7j(iS) is a normal full subsemigroup of S for all i^l. 
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(iii) Sjx{s, N) is commutative if and only if N^y2(S), where N is a normal full 
subsemigroup of S. 

(iv) [¿i, S2]£E(S) if and only if s1s2=s2s1. 

Proof . This is all easy to prove or can be deduced easily from Section 3 of 
Kowol and Mitsch [4]. 

Lemma 3.6. Let S be a Clifford semigroup. Then 

ViiS) = u viW. 

Proof . Obviously yi(Sx)Qyi(S) for all a£E. Conversely we prove by induc-
tion o n / t h a t ftCSOiilJ fiiSa)- This is true trivially for z= 1. So assume that this 

is true for i. Let s£S, t^y^S). Then [s, t]=s~1t~1st=(s(pXiXp)~1(t(pPtXfi)~1 • 
• (s(px>xp)(t(ppixp), where s£Sx, tZSp. So [j, t]e[Sxp, ^ (5^ ) ] using the induction 

hypothesis. This suffices to prove the result since now the generators of y i + 1(S) lie 
in 1J yi+1(Sx) and this is easily checked to be a normal full subsemigroup. 

Lemma 3.7. The upper and lower central series of a Clifford semigroup are 
central series. 

Proof . This is immediate from Definition 3.4 and Lemma 3.5. 

T h e o r e m 3.8. Let S be a Clifford semigroup with a central series 

(3.9.) E(S) = N0 g N! c ... QNr = S. 

Then Zr(S)=S, yr+1(S)=S and for alii, O^i^r, tygZ^S) and Nr_t ^y1+i(S). 

Proof . We only need to prove the two inequalities which we do by induction on i. 
Both are true trivially for /=0. Assume that both are true for i. Let x£Ni+1, 
Then Ni+19tQZ(Slx(e, AQ), where is the natural homomorphism associated 
with x(e, Nt). Let s£S. Then (xs)9i=x9is9i—s9ix9i since (3.9) is central, and so 
xsxfaNJsx. Since Zi(S)^Nii it follows that xsx(e, Z^Stysx for all s£S. Thus 
x(pi^Z(S/x(e, Zi(S)))=Zi+1(S)(pi, where q>{ is the natural homomorphism associat-
ed with x(e, Z-XS)). Hence x£Z i + 1 (S) . Thus Ni+1QZi+1(S). 

Let x£Nr_t, s£S now. Then xsx(e, N^^sx as before. So x~1s~1xs£Nr_i_1. 
Thus [Nr.„ SjQNr-t.i. Hence y2 + i(S)=[y1 + i(S), S]g[2Vr_„ S ^ N ^ using 
the induction hypothesis. This finishes the induction step for both inequalities and 
hence the proof of the theorem. 

C o r o l l a r y 3.9. A Clifford semigroup S is in fft if and only if there exist c and 
d such that ZC(S)—S, yd+1(S)=E(S) and the least such c and d satisfy c=d. 
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This is the nilpotency class of S and is the least c such that 
This result follows directly from Lemmas 3.6, 3.7 and Theorem 3.8. Notice the 

close connection with the work of Kowol and Mitsch [4], Section 4. We now prove a 
selection of theorems about nilpotency and its generalizations in Clifford semigroups 
by transferring the results from group theory. As source book for the group theoretic 
results any standard text book will serve. We mention particularly Hall [2], an excel-
lent account of the particular areas under consideration here, but not widely avail-
able, and also Robinson [8] and Scott [10]. 

Theo rem 3.10. Let S be a nilpotent Clifford semigroup. Then elements of co-
prime order commute. 

Proof . The order of s£S is its order in S a , where s£Sx, i.e., the least integer 
n > 0 such that s"£E(S). Let s1,s2£S. If Ji£Sa , s2^Sp, then SiS2= 
=-Si <Pa, aD s2 <Pp,a^ sz <Pp, si <PX, ap > using the group theoretic result in Sxp. Since the 
order of s(pytt divides the order of s, the result follows. 

Theo rem 3.11. In a torsion nilpotent Clifford semigroup, the elements of order 
a power of p, a prime, form an inverse subsemigroup. 

Theorem 3.12. In a nilpotent Clifford semigroup, the elements of finite order 
form an inverse subsemigroup, the torsion subsemigroup. 

These both follow immediately from Theorem 3.10, and the corresponding 
results from group theory. Most of the results from Section 4 of Kowol and Mitsch 
[4] can be obtained by transferring from group theory, and we will not repeat them 
here. The exception to this is Theorem 4.3 on the representation of an element of a 
nilpotent Clifford semigroup as a product of elements of prime power order. 

Theo rem 3.13. Let S be a torsion nilpotent Clifford semigroup, and let {PL: 
/£/} be the Sylow subsemigroups of S, i.e., Pi— {s£S: order of s is a power of /?;}, 
where /6/} are a set of distinct primes. If s£S, then s=a1...a„ is a uniquely 
defined representation of s, where ai£Sxr\Pi, a is defined by s£Sx, l^i^n, a 
finite subset of I. 

This follows directly from the group theoretic result. This seems to be the only 
uniqueness result of this kind, applicable in general. But under very special circum-
stances, there is a maximal version of the theorem. 

Theo rem 3.14. Let S be a torsion nilpotent Clifford semigroup such that 
E=E(S) is a lattice with the maximal condition, and such that all linking homomor-
phisms are monomorphisms. Let {Pt : /£/} be the Sylow subsemigroups of S, where 
{pt: i£l} are a set of distinct primes. If s£S, then s—b1...bn is a uniquely defined 
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representation of s, where and fl(i) is defined by fi(i) is maximal in E 
such that bi(pf(i)ja=ai, using the notation of Theorem 3.13. 

Proof . Since £ is a lattice with the maximum condition, /?(/) is unique. Since 
' s a monomorphism b{ is uniquely defined, since a t is unique given Theorem 

3.13.' 
From the proof of Theorem 3.14, it is obvious how examples could be constructed 

to show that /?(/) has to be uniquely defined, and that <Ppw,x has to be a monomor-
phism, to obtain a unique "maximal" representation. 

The next results we will prove are the Clifford semigroup theoretic versions of 
famous group theoretic results on nilpotency. The first is Fitting's Theorem, the 
one about normal nilpotent subgroups. 

Lemma 3.15. Let S be a Clifford semigroup. Let N be a normal inverse subsemi-
group of S, T an inverse subsemigroup of S. Then NT—TN is an inverse subsemi-
group of S. Also (NT)X=NXTX, if TE=T, for all a£E. If Tis normal, then so is NT. 

Proof . Let n1t1, n2t2£NT, where n^N, t^T, i— 1,2. Then «1f1H2i2= 
=n1t1t~1t1n2t2=n1t1n2t^1t1t2=n1n3t1t2^NT. So NT is a subsemigroup. Let tn£TN. 
Then tn=tt"1tn=tnt~1t=n'teNT. Hence TNQNT. Similarly NTQTN. Thus 
NT=TN is an inverse subsemigroup as (nt)~i= t ~1n~1£TN= NT. We now show 
that (NT)X=NXTX. Certainly NXTXQ(NT\. Let nt£(NT)x. Then there exist 

y ^ a such that Py=cc, n£Np, t£Ty and nt=nq>^xt(pyix. But n(pp>x^Nx, 
t<Py,«£Tx. Hence (NT)XQNXTX. Thus NXTX=(NT)X. Finally let T be also normal 
and let nt£NT, s£S. Then s-1nts-s-1ntss-1s=s~1nss~1tseNT, for all s£S. 
Hence the whole lemma is proved. 

This result extends directly Lemma 2.4 of Kowol and Mitsch [4]. We now come 
to Fitting's Theorem. 

Theo rem 3.16. Let S be a Clifford semigroup. The product of two normal nil-
potent subsemigroups of S is normal and nilpotent. 

Proof . Let N, M be normal and nilpotent subsemigroups of S. Then NM is a 
normal subsemigroup by Lemma 3.15. Also (NM\=NaMx for all a£E. Suppose 
Ne^tc, then Nxf9lc, Ma£SSld and by standard group theory, NxMx£'ilc+J. 
Hence (NM)xfMc+d for all atE, and NM£9lc+d. 

Coro l l a ry 3.17. Let N£9lc, Af£9td be normal nilpotent subsemigroups of S. 
Then NM£9lc+d. 

Coro l l a ry 3.18. Let S be a Clifford semigroup which satisfies the maximal con-
dition on normal subsemigroups. Then S contains a unique maximal normal nilpotent 
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subsemigroup containing all normal nilpotent subsemigroups, called the Fitting subsemU 
group. 

The next result which we extend is the Hirsch—Plotkin Theorem. 

Theo rem 3.19. Let S be a Clifford semigroup. Then the product of two normal 
locally nilpotent subsemigroups is a normal locally nilpotent subsemigroup. There is a 
unique maximal normal locally nilpotent subsemigroup, containing all normal locally 
nilpotent subsemigroups, the Hirsch—Plotkin radical of S. 

Proof . Because of Lemma 3.15 we only need to show, for the first part, that if 
N, MeL<Jl are normal, then NM£L$l- Since N£L9l, it follows that Nx, Mx are 
locally nilpotent groups which are normal in Sx. Let {MJmx, ..., nrmr\ nt£N, m^M} 
be a finite subset of NM. Let Z={n1 ? ..., n,, m1, ...,mr). By Lemma 2.6, T, the 
inverse subsemigroup generated by Z, is generated by a finite set of elements of the 
form mj(pytg. Tx is generated as a group by a finite set of the form {«;<pPix, 
inj<Py,a}> which is a finite subset of NXMX, the product of two locally nilpotent nor-
mal subgroups of Sx. Hence NXMX is locally nilpotent by the Hirsch—Plotkin Theo-
rem and thus Tx is nilpotent. Tis the union of a finite number of groups of the form 
Tx. Hence we can find c such that Tx£9lc for all Tx, and so T£9lc. Since , ... 
...,nrmr}QT, we have shown that NM^Lil. 

The last part follows as in the group case. The product of any finite set of normal 
locally nilpotent subsemigroups is locally nilpotent by the first part. Consider the 
product H of all the normal locally nilpotent subsemigroups of S. It is normal and 
any finite subset of H is contained in the product of a finite number of normal locally 
nilpotent subsemigroups which is locally nilpotent, hence is contained in a nilpotent 
subsemigroup. Thus H is locally nilpotent. This finishes the proof. 

The next result which we extend is a well-known one concerning minimal normal 
subgroups of locally nilpotent groups. 

Theorem 3.20. Let S be a locally nilpotent Clifford semigroup, N a minimal 
normal subsemigroup of S. Then there exists a unique such that Nx^> {ex} and 
NXQZ(SX), and for all P^OL, we have ker 

Proof . By Lemma 1.3, it is easy to see that if there are two elements a, /? oiE 
such that Nxz>{ex}, {ep}, then Wis not minimal. If S is locally nilpotent, then 
so is Sx. So Nx is a normal subgroup of Sx such that for all fi^a, Nx Qker <pXtP. 
It follows that Nx can be replaced by any normal subgroup of Sx contained in it, and 
we would still have a minimal normal subsemigroup. Then minimality of N forces Nx 

to be a minimal normal subgroup of Sx, hence by group theory NXQZ(SX). 
The last results about nilpotency which we will present concern normalizers. 
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Def in i t i on 3.21. Let T be an inverse subsemigroup of a Clifford semigroup S. 
The normalizer NS(T) of T in S is the unique largest inverse subsemigroup of S in 
which T is normal. 

A priori NS(T) may not always exist. We will show that it does. 

Lemma 3.22. Let T be an inverse subsemigroup of a Clifford semigroup S. 
Then NS(T) always exists and is defined by 

NS(T) = {x£S: x~rTx g T}. 

Proof . If U defined to be {x: x^TxQT) is an inverse subsemigroup, then it 
mustbeiVsCO-Now J7 is obviously closed under products. Let x£ U. Then xTx^1 ^ 
¡2xx- 1 Txx~ 1 =Txx~ 1 . But x^TxQT. So if t£Tp and x£Sa then x~1tx= 
= x~1(pX:apt(pp_rxpx(pXta/)£T. Hence Tap^(p. So txx~1=t(pl)iXpexp=texl!^T, since 
e ^ T ^ T . 

Def in i t i on 3.23. An inverse subsemigroup T of a Clifford semigroup S is 
called subnormal if there exists a sequence of inverse subsemigroups 

T = T0 i7i g ... £ T„ = S 

such that T; is normal in Ti+1 for O^i^n— 1. The least length n of such a series is 
called the index of subnormality. 

Theorem 3.24. Let S be a nilpotent Clifford subsemigroup, T an inverse subsemi-
group such that TEQT. Then T is subnormal of index at most c where c is the nilpo-
tency class of S. 

Proof . We show that if {Z;: OS i ^ c } is the upper central series of S, then 7Z< 
is normal in TZi+1, replacing TZC by S. Note that Z0=E, so T=TE=TZ0. By 
Lemma 3.15 TZ, is an inverse subsemigroup of 5. Let x£Zi+1, y^TZt. Then 
x~1yx=x~~1yy~1yx=yy~1x~1yx=y[y, x]£TZi since y£TZt and [y, x]£Z ; since 
x£Zi+1. Thus Zi+1QNs(TZi). This is enough to prove the result. If i=c— 1, then 
Ze=SgNs(TZe-0, EQNS(TZC_1) so S=SEQNs(TZc_1). 

We could have used the group theoretic results and transferred them. But the 
details of the links to the group theory would be longer than the direct proof, which 
parallels very closely the group theory proof. 

Theorem 3.25. Let S be a Clifford semigroup with the property that all its full 
inverse subsemigroups are subnormal of index at most c. Then S£ where d is a 
function of c. 

Proof . Let a£E and consider U a subgroup of Sx. Let J1 be a full inverse sub-
semigroup of S such that TX=U, e.g. T„={ep} if fS^a, Tp=U(pXiP if 
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Then T=T0QT1^...QTC-S is a sequence such that Tt is normal in Ti+1 for 
O^j'^c— 1. In particular Ti x is a normal subgroup of Ti+ha. Hence T0 a=U is 
subnormal of index at most c in Sa. This is true for all subgroups of Sx. By Roseblade 
[9], Sx is nilpotent of class at most f(c)=d say. Hence 

Coro l l a ry 3.26. Let S be a finite Clifford semigroup such that all its full inverse 
subsemigroups are subnormal. Then S is nilpotent. 

The result that gives as a sufficient condition for a finite group to be nilpotent that 
all its maximal subgroups are normal does not carry over in the most obvious way. 

Example 3.27. Let E consist of three elements a, /J and <xfi=y. With S a = C 2 s 
= SP a cyclic group of order 2, Sy the symmetric group on three symbols. Then 
<paiy: Sa^{ey,( 12)}, <pft7: Sf^{eJt{ 13)} defines S ^ U S ^ U S , as a Clifford 
semigroup. It is easy to check that the only maximal inverse subsemigroups are 
E{JSyUSx and E\JSyliSfi, both normal. But S is not nilpotent. 

We leave the reader to find some possible generalizations of this result. 

4. Solubility 

Let <5 be the class of soluble groups, and <3d the class of soluble groups of solu-
bility class at most d. Then <3d is a variety and S = | J Example 3.1 shows that 

dSl 
S s again leads to problems. The semigroup S of Example 3.1 is in <5S, but its maximal 
group homomorphic image G is not soluble, although it is a homomorphic image of S. 

Defin i t ion 4.1. The class of soluble Clifford semigroups is defined to be 

® = U (Sd)s. 
i s l 

Hence S£<3 if and only if Sx£<5d for all a£E and some d=d(S). Denote 
(Sd)s by Lemma 3.3 extends very easily. 

Lemma 4.2. S is S and Q closed. 

Def in i t i on 4.3. Let S be a Clifford semigroup. The derived series of S is defined 
to be 

A sequence 
E(S) = N r g ...QN0 = S 

is called an abelian series of 5 if Nf is normal in yVj_, and N^Jy^c, Nt) is commu-
tative for r ^ / S 1. 
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L e m m a 4.4. Let S be a Clifford semigroup. Then 8 ¡(S) is a full normal subsemi-
group of S for all z'^1. 

Lemma 4.5. Let S be a Clifford semigroup. Then 

Si(S) = U 
• ct££ 

L e m m a 4.6. The derived series of S is an abelian series. 

These results all follow in much the same way as the corresponding results at 
the beginning of Section 3. 

T h e o r e m 4.7. Let S be a Clifford semigroup with an abelian series 

E(S) = Nr^ N r c ... g No = S. 

Then N,^St(S) for all im0 and 8r(S)=E(S). 

Proof . We prove the result by induction. Obviously S=N0^80(S)—S' 
Assume that N^S^S). Then NJx(s, Ni+1) is commutative and so •s,

2]€AT(+1 

for all s1,s2£Nl. Hence by Lemma 3.5 (iv) [J1s s^Ni+x for all st, s2£8i(S)QNi. 
Then This gives the result by induction. 

C o r o l l a r y 4.8. A Clifford semigroup S is in S if and only if there exists d such 
that 8d(S)=E(S). 

The least such d satisfying this is called the solubility class of S. It is the least d 
such that 

L e m m a 4.9. Let S be a Clifford semigroup. Let N be a normal full subsemi-
group. Then S/x(e, N)£ Qd if and only if 8d{S)^N. 

Proof . It is immediate that if 0 is a homomorphism, then ¿ ' J s 2 0 ] . 
Hence 8¡(Slx(s, N))=8i(S)x(S, N')/x(s, N) by a simple induction argument. Then 
S/x(e,N)£GD by Corollary 4.8 if and only if 8D(S/x(e, N))=E(S/X(E, NJ), i.e. 
8d(S)x(s,N)=E(Slx(e,N)). This is just 8d(S)QN. 

T h e o r e m 4.10. Let S be a Clifford semigroup. Let N be a normal full subsemi-
group such that N(I<Zd and S/X(E, N)£8c. Then S£<Sd+e. 

Proof . By Lemma 4.9, S/x(e,N) is in <5e implies 8e(S)QN. By a simple 
induction argument 8t(N)^8e+i(S). But N£Sd implies 8d(N)-E(N) as N is 
full. So 8e+d(S) = E(S) and S e S i + , . 

T h e o r e m 4.11. Let be normal soluble subsemigroups of S, 
a Clifford semigroup. Then NMd <3c+d. 

2 
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Proof . The proof follows closely that of Theorem 3.16. It would be instructive 
to develop a proof involving a more general version of Theorem 4.10 and paralleling 
the group theoretic proof. 

Theorem 4.12. Let S be a Clifford semigroup which satisfies the maximal con-
dition on normal subsemigroups. Then S contains a unique maximal normal soluble 
subsemigroup containing all normal soluble subsemigroups. 

We present the locally soluble version of Theorem 3.17. 

Theorem 4.13. Let S be a locally soluble Clifford semigroup, N a minimal 
normal subsemigroup of S. Then there exists a unique ct(iE such that {ea}, N is 
commutative and for all P=a, we have ker 

Proof . A minimal normal subgroup of a locally soluble group is abelian by a 
standard result from group theory. The same technique as in the proof of Theorem 
3.20 now proves the result. 

We will leave the extension of results from group theory here. There is obviously 
an almost inexhaustible supply of results which could be transferred, and there are 
also some traps for the unwary. Before finishing a few comments might be in order. 
Finite soluble group theory has a beautiful set of results in the formation theory of 
GASCHUTZ. The right extension of this to finite Clifford semigroups should be an 
interesting exercise with pleasing results. The other point concerns nilpotent versus 
soluble groups. The laws of can be defined without reference to inverses. Using 
this LALLEMENT [5] showed that regular nilpotent semigroups were Clifford semi-
groups in 5RC. This might be expected because idempotents should be central in a 
nilpotent semigroup. The same could be done for solubility. There the natural ex-
pectation is for idempotents to commute. So it should be a theory naturally based in 
general inverse semigroups. This is what we hope to attempt soon. 
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