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Semigroups with a universally minimal left ideal 

STEFAN SCHWARZ 

A left ideal L of a semigroup S is called universally minimal if it is contained in 
every left ideal of S. In such a semigroup L is at the same time the kernel of 5 (i.e. 
the minimal two-sided ideal of S) and L itself is a left simple semigroup. We shall 
deal with the case that L is a left group. 

For simplicity we introduce the following notation. A semigroup containing a 
universally minimal left ideal which is a left group will be called a ULG-semigroup. 
If L is a group, such semigroups are called homogroups. Let S be a semigroup and A 
an ideal of S. An endomorphism h of S onto A is called an A-endomorphism if h 
leaves the elements of A fixed. 

In a forthcomming paper [5] I have been led in a quite natural way to the follow-
ing class of semigroups: S is a ULG-semigroup with kernel L and S has an L-endo-
morphism. The main goal of this note is to show that such semigroups have a rather 
simple structure. Though there are several papers dealing with analogous (and even 
more general) questions (see, e.g. [1], [2], [3], [4]), I can find nowhere the results given 
below (at least not in an explicit formulation). 

Throughout the paper we use the following notations. S is a ULG-semigroup, 
L is the kernel of 5 and E= {ev\v£M} is the set of all idempotents of L (i.e. primitive 
idempotents of S). It is well-known that L can be written in the form L= U Gv. 

v£Af 
Hereby each Gv is a group (with identity element ev) and at the same time a minimal 
right ideal of 5. We have eaGv=Ga, GxGv=Ga (for any v, af_M). Moreover each ea 

(aGM) is a right identity of L. 

In the sequel \A\ denotes the cardinality of A. 

1. In order to make this note independent of [5] we give in Lemma 1 a modified 
version of a few results proved in [5]. 
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Lemma 1. Let S be a ULG-semigroup with kernel L and E theset of all idempo-
tents of L. Then the following holds: 

a) Any L-endomorphism of S can be written in the form x*-*xea (x€.S, ea£E). 
b) If for some ea£E the mapping x>-*xex is an L-endomorphism of S, then 

x>-—xev is an L-endomorphism of S for any ev£E. 
c) The mapping x>-»xex is an L-endomorphism of S iff for any S we have 

| xE\=l. 

Proof , a) Let h be an L-endomorphism of 5 and x£S. Since xex£L, we have 
h(xea)=h(x)-h(ea)=xex, i.e. h(x)ea—xex. Since h(x)£L and ex is a right identity 
of L, we have h(x)=xex. 

b) By assumption we have xexyea=xyex for any x,y£S. Putting y=ev we 
have in particular Since exevex=ex and evea=ev, we have xea= 
= xev for any x£S. Hence xevyev=xeayea=xyex=xyev, i.e. x>-~xev is an L-endo-
morphism of S. 

c) If x>--xea is an L-endomorphism, we have [by b)] xex=xev for any v£M, 
hence xex—xE so that \xE\ = \. Suppose conversely that \xE\= 1 for any xdS 
and consider the product xexyex (x, y€ S, ex£E). The element yex is contained in L, 
hence there is a group GyaL such that yex£G.r Therefore (if ey is the identity ele-
ment of Gy) eyyex—yea. By assumption xea=xey, hence xexyex—xeyyex—xyex. 
The mapping x>--xex is an L-endomorphism. This proves the statement c). 

Remark . To understand well the statement a) consider the ULG-semigroup S 
given by the multiplication table 

a b c 
a a b a 
b b a b 
c a b a. 

Here L= {a, b}, E= {a}, hence S is a homogroup. S has an L-endomorphism 
q>i. x>—xa. Also <p2: x>—xc is an endomorphism though here c$E. But (p2 is the 
same endomorphism as (p1. By c) whenever S has an L-endomorphism we can rewrite 
it in the form x>--xE. 

Needless to remark that the mapping x>-+xea need not be an endomorphism of 
S. But if it is an endomorphism, it is automatically an L-endomorphism. Hence the 
result of Lemma 1 can be reformulated as follows 

Theorem 1. Let S be a ULG-semigroup with kernel L. Then S has an L-endo-
morphism i f f for any x w e have |x£| = 1. 

The condition |xE|= 1 is a very simple one. If S is given by a multiplication 
table it can be immediately verified. But this condition does not reflect any structural 
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property of S. The structure of such semigroups is given by Theorem 2. (A part of 
this theorem can be deduced from a result in [1].) 

Theorem 2. Let S be a ULG-semigroup with kernel L. Then S has an L-endo-
morphism i f f S can be written as a union of disjoint right ideals of S each of which is a 
homogroup. The kernels of these homogroups are then isomorphic to one another. 

Proof , a) Suppose that S has an 1,-endomorphism. We use the notations intro-
duced above. By Lemma 1 this endomorphism can be written in the form J O — X E 

(x€S) . For any OL£M denote Rx= {x | x€S, xE£Gx}. Clearly (J Rv and 
vgM 

if a ¿¿p. Further GxaRx (since GxE=Ga). 
We show that RxR„<zRx. Let x£Rx, i.e., xE£Ga, yE^Gfi. Then 

e$yE=yE and xyE=xepyE=xE- yE<zGxGp—Gx. Hence xy£Rx, i.e. RxRfi<zRx. 
In particular each Rx is a right ideal of 5, since Rx S= Rx • [ U i?v] cRx. v£M 

Finally we show that each Ra is a homogroup with kernel Gx. We have 
GxcLC\Rx, and since GpCiRx=0 for /Ma, this implies Gx=Lf]Rx. The inter-
section LC\RX is a two-sided ideal of Rx. Since it is a group, it is moreover the mini-
mal two-sided ideal of Rx. Hence Gx is the kernel of Rx. This proves the first part of 
Theorem 2. Moreover it follows from the proof that the kernels of all Rx are isomor-
phic groups. 

b) Suppose conversely that S is a ULG-semigroup with kernel L and S can be 
written as a union of disjoint right ideals of S in the form S= 1J R'„. Here we sup-

ViN 
pose that each R' is a homogroup, hence the kernel of R'̂  is a group K . 

Write again L~ (J Gv. Since R'^LczR^ClL, this latter intersection is not 
vgAf 

empty and it is a right ideal of S contained in L. Hence LClR'^ is a union of some 
groups from the family {G,}viM. If a group Gx, is contained in R'^, it is a 
minimal right ideal of R ' . Since a homogroup contains a unique minimal right ideal, 
we conclude G ^ K ^ . Hence LClR'̂  contains exactly one group from the family 
{Gv}veM and we have K^—LDR^. Otherwise expressed: To any R'̂  there exists 
an a£M such that Lf\R'=K=Gx. f* t* u 

Conversely: Any e ^ E is contained in some R'̂ , hence Gp is contained in R'^. 
Since Gp is a right ideal of S, it is also a right ideal of R'^ and (since Gp is a group) it 
is a minimal right ideal of R ' . Since R'̂  is a homogroup, Gp is the kernel of R'̂ . 

We conclude |M| = |AT| and we may write S = U R'v. Also the kernels of all v£M 
R'v are isomorphic groups. 

If x€S, then there is a unique R'v such that x£R'v. We denote this homogroup 
R'v by R(x). The kernel of Rix) will be denoted by G(x) and the identity element of G(x> 

by e(x). Note that R M e w = e
M R M = G i x \ 

To prove that S has an L-endomorphism it is sufficient, by Theorem 1, to show 
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that x-ex=x-eM for any x£S, ex£E. Now x• R(x)• L c R ( x ) f ) L = G(x). Tak-
ing into account that ex is a right unit in L and eM is the unit element of the group 
G(JC) (the kernel of R(x)), we have 

(1) xex = eix)x • ex = ew • x = e(x) • xe(x) = xe(x). 

This proves our statement. 

Example 1. Suppose that S is a ULG-semigroup with kernel L, S has an L-
endomorphism and S is defined by its multiplication table. To find the right ideals 
Rx mentioned in Theorem 1 we may proceed as follows. We collect all "rows" of 
the multiplication table containing a fixed chosen ex£E (i.e. all sets {u, «5} contain-
ing ex). Then Rt— [J {«, uS}. Clearly Rx is a right ideal of S, it contains ex, and it 

u 
follows from the proof that it cannot contain any other idempotent of L. 

Consider, e.g., the semigroup S given by the following multiplication table: 

a b c d f 
a a a c c a 
b b b d d b 
c c c a a c 
d d d b b d 
f a a c c a 

Here L=E={a, b}. S has an L-endomorphism since |x-{a, fc}|=l for any x£S. 
The idempotent a is contained in {a, aS}, {c, cS}, { f , fS}. Hence R(a)= {a, c,f}. 
Analogously Rw={b,bS}U{d,dS}={b,d}. Finally 5-i? ( a )U/? ( 6 ) . 

We shall return to this procedure in Section 3. 

2. In Theorem 2 the right ideals Rv have the property that their kernels are iso-
morphic groups. The question arises whether there are some other limitations concern-
ing the ideals Rv. The answer is no. To any family of homogroups {Qv} with isomor-
phic kernels we can construct at least one ULG-semigroup which has an L-endo-
morphism. We give a special construction and we do not attempt to find all such 
semigroups. 

More precisely we have: 

Theorem 3. Let L0 be a left group. Write L0=G0XE0, where G0 is a group 
and E0 a left zero semigroup. Let {Qv | v£M) be a family of disjoint homogroups 
whereby each Qv has a kernel isomorphic to G0 and \En\ = \M\. Then there exists a 
ULG-semigroup S having the following properties: 

1) U Qv vgM 
2) Each Qv is a right ideal of S. 
3) The kernel L of S is isomorphic to L0 and S has an L-endomorphism. 
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Proof . Denote the kernel of Qr by Hv and denote the identity element of H, by 
ev. Suppose that 1 £M. For every v£M let <pv be a fixed chosen isomorphism of H1 

onto Hv. Define the mapping (pxp: Hx^Hp by (pap=(Pa1(Pfi- Then <pxp is an iso-
morphism and q>xx is the identity mapping of Hx onto Ha. For any Hx we have 

(a<P»p)<Pto = {a<Pz1(Pii)<l>el(Pi = aq>~1(py = a<pxy. 

In this way we get a set of mappings {<pfIV} where <pxp(ppy—<pxy for any a, /?, y£M. 
Note finally: Since cpxp is an isomorphism, we have (ea)(pxp=ep. 
1) We now use the set of these mappings to define on S = (J Qv a multipli-

v£M 
cation (denoted by *). For a^p and y€Qp, we define 

x*y = (eax) • (epy)(ppx, 

while inside of each Qx the multiplication remains unaltered. 
The definition implies x*y£Hx • HX=HX, hence for a^P, Qx*QpczHx. 

Since HxczQx, (Hp)<ppx=Hx, we have Hx*Hp=Hx and therefore for cc^P, 

(2) Qx* Qp = QX*HP = HX*HP = HX*QP = Ha. 

In order to show that 5 is a semigroup we have to check associativity. 
a) Suppose first a^P, j M y and x£Qx, y£Qp, z£Qy. 

In the following we use: x*y£Hx implies ex(x*y)=x*y and u*v£Hp implies 
ep(u*v)=u*v. We have: 

x*(y*z) = x*[epy • (eyz)<pyP] = exx• [epy • (eyz)<pyp]<ppx = 

= exx-(epy)(ppx-(eyz)(pyx = (x*y)-(eyz)cpyx = ex(x*y)-(eyz)(pyx = (x*y)*z. 

b) Suppose next. <x?±p,p=y, and x£Qx, y£Qp, z£Qp. 
In the following we use epy£Hp, hence epy=epyep. We have: 

x*(y*z) = x * (yz) = exx-(epyz)<ppx = (exx)(epyepz)<ppx = 

= (e*x)-(epy)<ppx-(epz)(ppx = (x*y) • (epz)cppx = ex{x*y)-(epz)q>px = {x*y)*z. 

c) Suppose finally a = p , p^y, and x£Qx, y€Qx, z£Qy. 

x*(y*z) = x# [(exy) • (ey z) (pyx~] = x • (exy) • (ey z) <pyx. 

Now since exx£Hx we have exx—exxex and exxy=exxexy. Also since xexy£H„ 
we have e„xexy—xexy. Hence exxy—xexy. We may write therefore: 

x*(y*z) = exxy • (eyz)<pyx — (xy)*z = (x*y)*z. 

This proves that S is a semigroup. 



26 S. Schwarz 

2) The relation (2) implies Qx*Qp=HxczQx for a^fi and Q2
xcQx (for any 

OL^M). Next 
QX*S= Ö«*[U ö j c ö , , 

v(.M 

so that each Qx is a right ideal of S. Denote L= | J H , then by (2) 
JifM 

s*l = [ u e»]*[ u = u hv = l , 
v£M fi£M v€M 

L * S = [ U # „ ] * [ U Öv] = U H„ = L. 
piM v£M ii£M 

Hence L is a two-sided ideal of S. 
To prove that L is a left group it is sufficient to show that for any y£ S we have 

L*y=L. Now y£S implies y€Qf f ° r some ftdM. Denote (e f iy)(pp v=y v£H v . 
We have 

L*y = [ U #v]*J> - U [í^v*^] = U tH 9-(e fy)q>,l = 
v£M v€M vgM 

= U [ # v J \ ] = U HV = L. v£M v£M 

This proves that 5 is a ULG-semigroup with kernel L and clearly L is isomorphic 
to L0. 

3) It remains to show that S has an L-endomorphism. Denote by E the set 
of all idempotents contained in L. It is sufficient to show that for x€ S we have 
I X Ü Í L I ^ I . If x£S we have x£Qx for some ct£M. Let ey£E. Then 

x*ey - (exx)-(ey)q>yx = exxea. 

The right-hand side is independent of ey, hence \x*E\ = \. This proves Theorem 3. 

3. The procedure described in Example 1 can be carried out in any ULG-semi-
group (even if S has not an L-endomorphism). To any minimal right ideal Gv of a 
ULG-semigroup S there is a largest right ideal R* of S (containing Gv) such that 
R* is a homogroup. This right ideal consists of all "rows" {w, uS} containing ev 

but no other idempotent of E. If ex^ef, then R*C\Rt=0. The union S*= IJ R* 
V£M V 

is a right ideal of S. If S does not have an L-endomorphism, then S* is a proper sub-
set of S. 

Lemma 2. The set S* consists exactly of those elements x£S for which \xE\~ 1. 

Proof , a) Let x€S*, hence x£R* with suitably chosen a£M. We have 
xE<zRxL<^R*OL=Gx. Note that in the homogroup R* we have xea=eax (for 
any x£R*a). 
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Let now ey be any element of E. Then xey£Gx implies (xey)ea=ex(xey). This 
implies xey=ex(xey)=(exx)ey=(xex)ey=x(exey)=xex. Hence xey = xex; therefore 
xE=xex, i.e., IJCJE"! = 1 for any x£S*. 

b) Suppose conversely that x£S—S*. We have to show that | xE | ^2 . The 
right ideal {x, xS} contains at least two idempotents of E, say ex,efi (e^e^). 
(Note that any right ideal of a ULG-semigroup contains at least one minimal right 
ideal hence some of the groups {Gy}.) Write {x, xS}= {ex, ep, S J , where Si is a 
subset of S. (We do not exclude that contains some further elements of E.) Mul-
tiplying by E we have 

{xE, xSE) = {exE, e^E, S1E}. 

Since SE=L, exE=ex, efiE—ep, we have 

{xE,xL} = {e^e^Ia}, 

where is a subset of L. Finally since xE<zxL we get • 

xL = {ex, e f , Li}. 

Hence there are two elements g£ L, g^ L, such that 

(3) xg = ex, 

(4) xgi = efi. 

Since L= (J Gy, there are two indices y, <5€M such that g£G , gi£Gd. Denote 
v£M 

by g ' 1 the element of Gy for which gg~1=ey and by g f 1 the element of Gs for which 
gigr1=es- T h e n ( 3 ) a n d ( 4 ) imply 

xgg-1 = exg~\ xgjgf1 = ejgi1, 
hence 

xey = exg-xdexL = Gx, xed = epg^defiL = Gp. 

Since GxC\Gfi=0, the elements xey, xes are different elements (contained in L). 
Hence xE contains at least two different elements (namely xey, xes) so that \xE\^2. 
This proves Lemma 2. 

The semigroup S* (being a union of right ideals of S) is a right ideal of S. But 
we easily show that S* is also a left ideal of S (hence a two-sided ideal of S). Suppose 
that x£S*, i.e. \xE\ = \. Then for any s£S (sx)E=s(xE) and since xEis a unique 
element (contained in L), we conclude |(JX).E| = 1, i.e. sx£S*, hence SS*cS*. 

We have proved: 

T h e o r e m 4. Let S be a ULG-semigroup with kernel L. Denote by E the set of 
all idempotents of L. Then there exists a unique largest subsemigroup S* of S containing 
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L such that S* has an L-endomorphism. The semigroup S* is a two-sided ideal of S and 
it can be characterised by the following two equivalent conditions: 

a) S* is the set of all x£S such that |x£"| = l. 
b) S* is the union of (disjoint) largest right ideals of S each of which is a homo-

group. 

Remark . The emphasis in the second characterization is on the fact that the 
right ideals in S*= (J R* are right ideals of S (and not merely of S*). 

OT£AF 
Example 2. Consider the ULG-semigroup S given by the multiplication table 

a b c d 
a a a a a 
b b b b b 
c a b c d 
d a a a d. 

Here L=E— {a, b). The semigroup 5 has no Z-endomorphism. The largest right 
ideal R* containing the idempotent a which is a homogroup is R*= {a, d). Next 
Rl is {5} itself. We have S*— {a, c?}U {£>}. The element c cannot be contained in a 
right ideal which is a homogroup, since {c, cS1} contains both idempotents a and b. 

It is worth noting that R* = {a, <f} is a homogroup, but not the largest homo-
group containing a. The largest homogroup containing a is the subsemigroup {a, d, c}. 
(Of course this semigroup is not a right ideal of S.) 
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