Principal tolerance trivial commutative semigroups

BEDŘICH PONDĚLÍČEK

Following I. CHAJDA [1] an algebra A is said to be (principal) tolerance trivial if every (principal) tolerance on A is a congruence. In [2] B. ZELINKA has shown that a commutative semigroup S is tolerance trivial if and only if either S is a group or card S=2.

In this paper we shall describe all commutative semigroups which are principal tolerance trivial. Non-defined terminology and notation may be found in [3] and [4].

Recall that a tolerance T on a commutative semigroup S is a reflexive and symmetric subsemigroup of the direct product $S \times S$. For $a, b \in S$ we denote by T(a, b) the least tolerance on S containing (a, b), i.e. T(a, b) is the principal tolerance on S generated by (a, b). We shall use the following notation: $(a, b)^m z = (a^m z, b^m z)$ for all $a, b, z \in S$ and for every positive integer m. The set of all idempotents of a commutative semigroup S is denoted by E(S) and is partially ordered by: $e \leq f$ if and only if ef = e. We write e < f for $e \leq f$ and $e \neq f$. We denote by G_e the maximal subgroup of S containing an idempotent e. The notation S^1 stands for S if S has an identity, otherwise it stands for S with an identity adjoined.

The following lemma is clear:

Lemma 1. Let S be a commutative semigroup and $a, b \in S, a \neq b$. For $x, y \in S$, $x \neq y$, we have $(x, y) \in T(a, b)$ if and only if there exist $z \in S^1$ and a positive integer m such that either $(x, y)=(a, b)^m z$ or $(x, y)=(b, a)^m z$.

Note 1. Let S be a zero semigroup, i.e. card $S^2=1$. Using Lemma 1 it is easy to show that S is principal tolerance trivial.

Note 2. Now, we give another example of a principal tolerance trivial commutative semigroup. Let G be a commutative periodic group and let A be a non-empty set. Suppose that $G \cap A = \emptyset$ and put $S = G \cup A$. Let a multiplication on S be defined as follows:

Received October 8, 1984.

B. Pondělíček

a) If $e, f \in A$, then ef = e for e = f and ef = h for $e \neq f$, where h denotes the identity of G.

b) If $e \in A$ and $g \in G$, then eg = g = ge.

c) If $g_1, g_2 \in G$, then the product g_1g_2 is the same as in G.

It is easy to show that S is a commutative semigroup which is a semilattice of groups. Clearly $E(S)=A\cup\{h\}$, $G_e=\{e\}$ for all $e\in A$ and $G_h=G$.

Now, we shall prove that S is a principal tolerance trivial semigroup. Let $a, b \in S$, $a \neq b$. It suffices to show that the relation T(a, b) is transitive.

Case 1. Suppose that $a, b \in A$. It follows from Lemma 1 that $T(a, b) = R \cup R^{-1} \cup id_s$, where $R = \{(a, b), (b, h), (h, a)\}$. Clearly T(a, b) is transitive.

Case 2. Suppose that $a \in A$ and $b \in G$. Evidently T(a, b) = T(b, a). Let (x, y), $(y, z) \in T(a, b)$ and $x \neq y$, $y \neq z$. It follows from Lemma 1 that $(x, y) = (a, b)^m u$ or $(x, y) = (b, a)^m u$ for some $u \in S^1$ and some positive integer *m*. Analogously we have $(y, z) = (a, b)^n v$ or $(y, z) = (b, a)^n v$ for some $v \in S^1$ and some positive integer *n*. Subcase 2a. Assume that x = au, $y = b^m u = av$ and $z = b^n v$. Then $z = b^n v = b^n v$.

 $=b^n av = b^{m+n}u$ and so, by Lemma 1, we have $(x, z) = (a, b)^{m+n}u \in T(a, b)$.

Subcase 2b. Assume that x=au, $y=b^{m}u=b^{n}v$ and z=av. If u=v, then x=zand so $(x, z)\in T(a, b)$. We can suppose that $u\neq v$. If $u, v\in G$, then $b^{m}u=b^{n}v$ and so $uv^{-1}=b^{n-m}=b^{r}$ for some positive integer r, because the group G is periodic. By Lemma 1, we have $(x, z)=(u, v)=(b, a)^{r}v\in T(a, b)$. If $u\in G$ and $v\in S^{1}\setminus G$, then $b^{m}u=b^{n}$ and so $u=b^{n-m}=b^{r}$ for some positive integer r. Hence we have (x, z)= $=(u, a)=(b, a)^{r}$ for $v\in\{1, a\}$ and $(x, z)=(u, h)=(b, a)^{r}v$ for $v\notin\{1, a\}$. This gives in both cases $(x, z)\in T(a, b)$. Analogously we can prove that $u\in S^{1}\setminus G$ and $v\in G$ imply $(x, z)\in T(a, b)$. Let $u, v\in S^{1}\setminus G$. Then it is easy to show that $(x, z)\in\{a, h\}\times$ $\times\{a, h\}$. Since G is periodic, there exists a positive integer k such that $b^{k}=h$ and so $(a, h)=(a, b)^{k}$. Therefore we have $(x, z)\in T(a, b)$.

Subcase 2c. Assume that $x=b^{m}u$, y=au=av and $z=b^{n}v$. Since b is a periodic element of G, there exists a positive integer r such that $b^{n-m}=b^{r}$. Thus we have $(x, z)=(b^{m}u, b^{n}v)=(a, b)^{r}b^{m}au\in T(a, b)$.

Subcase 2d. Assume that $x=b^m u$, $y=au=b^n v$ and z=av. Using the same method as in Subcase 2a we obtain that $(x, z) \in T(a, b)$.

Case 3. Suppose that $a, b \in G$. Let (x, y), $(y, z) \in T(a, b)$ and $x \neq y, y \neq z$. It follows from Lemma 1 that $x, y, z \in G$ and so $(x, z) = (x, y)(y^{-1}, y^{-1})(y, z) \in T(a, b)$.

Theorem. A commutative semigroup S is principal tolerance trivial if and only if S satisfies one of the following conditions:

- (i) S is group;
- (ii) S is a zero semigroup;
- (iii) S is of type defined in Note 2.

31

Proof. Let S be a commutative semigroup. If S satisfies one of the conditions (i), (ii) or (iii), then S is principal tolerance trivial (see Notes 1 and 2).

Now, we shall prove the following lemmas, in which we shall suppose that the commutative semigroup S is principal tolerance trivial, card $S^2 \ge 2$ and S is not a group.

Lemma 2. If $a \in S \setminus a^2 S$, then a^2 is a zero in S.

Proof. Let $a \in S \setminus a^2 S$. Then $a \neq a^2$ and, by Lemma 1, we obtain (a, a^2) , $(a^2, a^3) \in T(a, a^2)$. Since $T(a, a^2)$ is transitive, we have $(a, a^3) \in T(a, a^2)$. According to Lemma 1, there exists a $u \in S^1$ such that $(a, a^3) = (a, a^2)u$ and so $a^3 = a^2u = a^2$. Put $h = a^2$. Clearly $h^2 = h = ah$. Now, we shall show that hx = h for all $x \in S$. Assume that $hb \neq h$ for some $b \in S$. If hb = a, then $a \in a^2 S$, which is a contradiction. We have $hb \neq a$. It is clear that (hb, h) = (hb, a)a. According to Lemma 1, we have (a, hb), $(hb, h) \in T(a, hb)$ and so $(a, h) \in T(a, hb) = T(a, a^2b)$. It follows from Lemma 1 that (a, h) = (a, hb)u for some $u \in S^1$. Hence we have h = ah = ahbu = ahb = hb, a contradiction. Therefore h is a zero in S.

Lemma 3. Let S have a zero 0 and let $a, b \in S$. If $a^2=0=b^2$ and $a \neq 0 \neq b$, then ab=0.

Proof. Assume that $ab \neq 0$. If a=ab, then $a=ab^2=0$, a contradiction. We have $a \neq ab$. By Lemma 1, we obtain (a, ab), $(ab, 0) \in T(a, ab)$, because (ab, 0) = =(a, ab)b. Hence we have $(a, 0) \in T(a, ab)$. If a=abu for some $u \in S^1$, then ab=0, a contradiction. Lemma 1 implies that (a, 0)=(a, ab)u for some $u \in S^1$. Then ab=aub=0, a contradiction.

Lemma 4. Let S have a zero 0 and let a, $e \in S$. If $a^2=0$, $e^2=e$ and $a \neq 0 \neq e$, then ae=0.

Proof. Assume that $ae \neq 0$. We have $(e, 0), (0, ae) \in T(e, 0)$ and so $(e, ae) \in \in T(e, 0)$. If e=ae, then $e=a^2e=0$, a contradiction. Hence we have $e \neq ae$ and so, by Lemma 1, e=0 or ae=0, which is a contradiction.

Lemma 5. S is regular.

Proof. Suppose that S is not regular. From Lemma 2 it follows that S has a zero 0. Since card $S^2 \ge 2$ by hypothesis, therefore there exist $a, b \in S$ such that $ab \ne 0$. According to Lemmas 2 and 3, a or b is a regular element of S. This implies that there exists an idempotent $e \ne 0$ in S. Evidently, S has an element $c \ne 0$, which is not regular. It follows from Lemma 2 that $c^2=0$ and Lemma 4 implies that ce=0. Clearly $c \ne e$, and according to Lemma 1, we have (c, e), $(e, 0) \in T(e, c)$, because (e, 0) = (e, c)e. Thus $(c, 0) \in T(e, c)$. If c = eu for some $u \in S^1$, then 0 = ce = c, a contradiction. Hence, by Lemma 1, we obtain (c, 0) = (c, e)u for

some $u \in S^1$. Then $c = cu = cu^2$ and so $u^2 \neq 0$. Lemma 2 implies that u is regular, which means that $u = u^2v$ for some $v \in S$. Hence we obtain $uv \neq 0$ and $(uv)^2 = uv$. According to Lemma 4, we have cuv = 0 and so c = cu = (cuv)u = 0, a contradiction.

Lemma 6. If $e \leq f < g$ for $e, f, g \in E(S)$, then e = f.

Proof. Assume that e < f. Then e < g and (f, e) = (g, e)f. It follows from Lemma 1 that $(f, e), (e, g) \in T(e, g)$ and so $(f, g) \in T(e, g)$. By Lemma 1, we have either f = ez or g = ez for some $z \in S^1$. If f = ez, then e = ef = f, a contradiction. If g = ez, then analogously e = eg = g, a contradiction.

Lemma 7. E(S) is of the type defined in Note 2.

Proof. It follows from Lemma 5 that $E(S) \neq \emptyset$. If card E(S)=1, then S is a group, which is a contradiction. Hence we have card $E(S) \ge 2$. Our statement follows from Lemma 6.

Lemma 8. S is periodic.

Proof. It follows from Lemma 5 that S is a semilattice of maximal subgroups $G_e(e \in E(S))$. Suppose that there exists a $c \in S$ which is not periodic. Then $c \in G_e$ for some $e \in E(S)$. Clearly $c \neq e$. It follows from Lemma 7 that there exists an $f \in E(S)$ such that either f < e or e < f.

Case 1. f < e. According to Lemma 1, we have (c, f), $(f, c^2) \in T(f, c)$ and so $(c, c^2) \in T(f, c)$. It follows from Lemma 1 that either c=fu or $c^2=fu$ for some $u \in S^1$. Then either $e=fuc^{-1}$ or $e=fu(c^{-1})^2$ $(c^{-1}$ denotes the inverse element of c in G_e). This gives in both cases e=ef=f, a contradiction.

Case 2. e < f. Then we have (c, e) = (c, f)e and so, by Lemma 1, we obtain $(f, c), (c, e) \in T(f, c)$. By hypothesis we have $(f, e) \in T(f, c)$. Lemma 1 implies that either $(f, e) = (f, c)^m u$ or $(f, e) = (c, f)^m u$ for some $u \in S^1$ and some positive integer m. If f = fu and $e = c^m u$, then $e = ef = c^m u f = c^m f = (c^m e) f = c^m$ and so c is periodic, a contradiction. If $f = c^m u$, then $e = ef = ec^m u = c^m u = f$, a contradiction.

Lemma 9. If $h < e, e, h \in E(S)$, then card $G_e = 1$.

Proof. Assume that there exists a $c \in G_e$ such that $c \neq e$. It follows from Lemma 8 that $c^k = e$ for some positive integer k. By Lemma 1, we have (c, h), $(h, e) \in T(h, c)$ and so $(c, e) \in T(h, c)$. It follows from Lemma 1 that either c = hu or e = hu for some $u \in S^1$. If c = hu, then $e = c^k = hu^k$ and so h = he = e, a contradiction. If e = hu, then analogously we have h = e, a contradiction.

The proof of Theorem follows from Lemmas 5, 6, 7, 8 and 9.

Corollary 1. A semilattice is principal tolerance trivial if and only if its length is not greater than two.

It is known (see [5] and [6]) that the set $\mathcal{L}(S)$ of all tolerances on a semigroup S forms a complete algebraic lattice with respect to set inclusion.

Corollary 2. Let S be a tolerance trivial commutative semigroup. Then the lattice $\mathcal{L}(S)$ is modular.

Proof. If S is a commutative group, then $\mathscr{L}(S)$ is the lattice of all congruences on S and so $\mathscr{L}(S)$ is modular. If S is a zero semigroup, then $\mathscr{L}(S)$ is the lattice of all reflexive and symmetric relations on S and so $\mathscr{L}(S)$ is distributive. If S is of the type defined in Note 2, then it follows from Theorem 1 of [7] that $\mathscr{L}(S)$ is modular.

References

- [1] I. CHAJDA, Tolerance trivial algebras and varieties, Acta Sci. Math., 46 (1983), 35-40.
- [2] B. ZELINKA, Tolerance in algebraic structures. II, Czechoslovak Math. J., 25 (1975), 175-178.
- [3] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroup's, Vol. I, Amer. Math. Soc. (Providence, R. I., 1961).
- [4] M. PETRICH, Introduction to semigroups, Merrill Publishing Company (Columbus, 1973).
- [5] I. CHAJDA, Lattices of compatible relations, Arch. Math. (Brno), 13 (1977), 89-96.
- [6] I. CHAJDA and B. ZELINKA, Lattices of tolerances, Časopis Pěst. Mat., 102 (1977), 10-24.
- [7] B. PONDĚLÍČEK, Modularity and distributivity of tolerance lattices of commutative separative semigroups, Czechoslovak Math. J., 35 (1985), 333-337.

FEL ČVUT SUCHBÁTAROVA 2 166 27 PRAHA, CZECHOSLOVAKIA