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On non-modular «-distributive lattices 
I. Lattices of convex sets 

A. P. HUHN 

1. Introduction. A lattice is called «-distributive if it satisfies the identity 

(1) *A v y, = V [*A V yil 
1=0 j=0 i=0 

>V7 
A lattice satisfying the dual of (1) is called dually «-distributive. The class of «-distri-
butive (respectively, dually «-distributive) lattices is denoted by An (respectively, 
Vn). «-distributive lattices were introduced to describe dimension like properties of 
modular lattices. Here we present some examples of non-modular «-distributive lat-
tices. E d e n o t e s the («— l)-dimensional Euclidean space and fi(£"-1) denotes its 
lattice of convex sets. Our first result describes how fi(En_1) is situated in the classes 

and Vm. 

Theorem 1.1. fi^-^e^.V.-jnCV.XV.-O. 

The proof of «-distributivity in Section 2 is based on Carathéodory's theorem, 
while the dual «-distributivity is derived from Helly's theorem. 

In Section 3 we strengthen part of this result. Let F denote the class of finite 
lattices. 

Theorem 1.2. fl^-^HSP^nF). 

In other words, £(E"~1) is in the lattice variety (equational class) generated by 
the finite «-distributive lattices. The intuitive reason for Theorem 1.2 is that, if we 
restrict the operation of convex closure to a finite subset H of E"~x, then this closure 
system has an «-distributive lattice of closed sets by Carathéodory's theorem, and this 
lattice resembles fi(£,n-1) as H becomes large. We note that fi(£n_1) is also in the 
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class HSP(V„DF). The proof of this theorem involves more geometry and will be 
published separately together with other Helly-type results. 

Notice that the above sketch of the proof of Theorem 1.2 gives rise to a high 
variety of «-distributive lattices: associated with any finite subset of £ n _ 1 there is an 
«-distributive lattice. The example given by the following theorem is of different 
character. Let 2 (£" _ 1 ) denote the lattice of closed convex sets of E"~l. In Section 4 
we prove: 

Theo rem 1.3. S ^ - ^ A ^ - j r K V A V , ^ ) . 

Carathéodory's theorem provides also a new aspect to the study of modular 
«-distributive lattices. In Section 5 we characterize complete, complemented, modu-
lar, completely «-distributive lattices among all projective geometries as those satis-
fying a Carathéodory type condition. (Completely «-distributive lattices are defined 
in Section 5 in analogy with completely distributive lattices.) An unexpected conse-
quence of our characterization is that this class of lattices (as well as the correspond-
ing class of projective geometries) is self-dual. 

Finally, in Section 6 we prove the following fact on modular «-distributive 
lattices: 

Theo rem 1.4. Every modular n-distributive lattice is a member o/HSP(¿ln f~l F). 

It is now natural to ask whether there are any further examples of non-modular 
«-distributive lattices in other branches of mathematics. It is not hard to show that 
the partition lattice of an («+l)-element set is in (^„\^„-i)n(V„\V„_1) . This 
example will be developed further in Part II of this paper, where graphs with an «-
distributive (respectively, dually «-distributive) contraction lattice are characterized. 
Partition lattices occur as special cases, as they are the contraction lattices of complete 
graphs. 

In an independent paper [3] HORST GERSTMANN also considers nonmodular 
«-distributive lattices, defines complete and infinite «-distributive laws and character-
izes the different sorts of «-distributivity of the closed sets of a closure space in 
terms of properties of the closure operator. Gerstmann's generalized distributive laws 
cover, beside the «-distributive laws, the concepts of (von Neumann) A-continuity 
and of Scott-continuity. 

2. The lattice of convex sets. We first quote the two classical theorems that are 
in the centre of this paper. 

Hel ly ' s theorem. Let 'tí be a finite family of convex subsets of E"~l. If any 
n elements of <6 have a non-empty intersection, then the intersection of the whole fam-
ily (6 is not empty. 
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C a r a t h é o d o r y ' s theorem. Let H be a subset of En_1 and let p be a point in 
En~l. I f p is in the convex closure of H, then it is in the convex closure of an n element 
subset of H. 

We first prove that £(Z¿"-1) is «-distributive. Let X, Y0, Yx, ..., Y^SliE"'1). 
Let p be a point of En~x and assume that 

p€XA V Y¡ 
¡=o 

(where the A and V are the operations of Then, by Carathéodory's theo-
n 

rem there are n elements of the set union |J Y¡, say p0, plt ...,p„-1, such that p 
¡ = 0 

is an element of their convex closure. If Pj€Y¡ , j= 0, 1, ..., n— 1, then p is also in 
n - i 1 

V Y i Of course, p£X, hence 
o > 

p£ V V 
j=o ¡=0 

Mj 
that is, 

ZA V Y¡ g V V y t]. 
(=0 J = 0 i=0 

The reverse inclusion is obvious. 
Now we prove that the dual »-distributive law holds in 2{En~Y). Let 

X, Y0, y l 5 ..., y„£2(2s"_1). Let 

p£ A A F j . 
j=0 ¡=0 

•Vj 

Then there exist points x0, x1, ..., xn and y0, y1, ..., y„ such that 

n 
Xj£X, y j £ A Y ¡ , ; = 0 , 1 , . . . , « 

i = 0 
IF* J 

and p is a convex linear combination of each pair Xj, yj. Now a trivial induction over 
k yields that, whenever y is a convex linear combination of y0,yi, t ( k s n ) 
then there is a convex linear combination x of x0, x1 ; ..., xk such that p is a convex 
linear combination of x and y. 

We are ready to apply Helly's theorem. Let Y¡ be the convex closure of {v0, ... 
^¡-1,^+1, •• •,:)>„}• Then 

Y J Z A Y I ' , 7 = 0 , 1 , . . . , « . 
i=0 
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By Helly's theorem, the intersection of the Y\ is not empty. Let 

A Y{. 
1=0 

y is a convex linear combination of, say, y0,yx, ..., yn~i- Applying our last obser-
vation, there is an JC in the convex closure of x0, ..., x„-l (hence also in X) such 
that p is in the convex closure of x and y: 

pZXV A Y{ Q XV A Y„ 
¡=o ¡=o 

as claimed. 
Finally, 2(E"~1) is not («— l)-distributive, as the following counterexample 

shows: Let S be a simplex, let x£S such that x is not contained in any (n—2)-
dimensional face of S, and let y0,yx, . . . , b e the extremal points of S. Then 

W A V ^ , } = {*} ^ 0 = V [ { * } A ' V W ] . 
¡=0 7=0 i=0 

2(E"~l) is not dually (n— l)-distributive either: Let X be a closed halfspace disjoint 
from S (S is also closed) and let F0 , YY, ..., 7„_1 be the (n— 2)-dimensional faces of 
S. Then 

XV A1Y i = XV 0 = X, 
i=0 

which is a proper part of 

" a [ * V A V j = 
j=0 ¡=0 j=0 

3. On the variety generated by all finite «-distributive lattices. In this section we 
prove Theorem 1.2 via the following three lemmas. 

Lemma 3.1. fi(£n-1)6HSP(£fin(£''-1)). where £fin(£n-1) denotes the set of 
all those convex sets of E"~x that are the convex closures of a finite set of points. 

Proof . Every element of fi(£"-1) is a join of atoms and every atom of £ ( £ n _ 1 ) 
is compact by Caratheodory's theorem. Thus ii(E"~1) is algebraic. Furthermore, its 
compact elements are exactly the elements of £ f in(£'n~1). Hence fi(£"_1) is isomorphic 
to the ideal lattice of £ f i n (£" - 1 ) , whence it is in the variety generated by 2.lin{E"~1). 

In the above proof we implicitely made use of the fact that fifin(£"_1) is a sub-
lattice of fi(£n_1), that is, the intersection of two convex polytopes is a convex poly-
tope, otherwise we could not have spoken of the lattice fif¡„(E"'1). 
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Now let H be any finite subset of E"'1, and let 2(H) denote the set of all those 
subsets X of H which are of the form X=CC\H with CQE"-1 convex. Clearly 

2(H) = { Z ( i i 7 ) | Z = (conv*)n#}, 
where "conv" denotes the operator associating with any set its convex hull. Now it is 
clear that 2(H) is a lattice relative to the inclusion and its operations VH and AH 

are as follows. 
X V H 7 = (conv XV conv y) 0 Hy 

Xh BY = (conv ZAconv Y)C\H = XC\Y, 

where V and A are the operations in 

Lemma 3.2. 2(H) is n-distributive. 

Proof . Assume that X, Y0, Yt, ..., Y„£2(H), p£H, and 

p£XAH VH Yt. i 

As in the proof of Theorem 1.1, Caratheodory's theorem and the descriptions of 
V H and A H before the Lemma yield that there is a 0,1, ..., n} such that 

yHYt, i 
that is, 

J • 

proving the lemma. 

The following lemma finishes the proof of Theorem 1.2. 

Lemma 3.3. ^ „ ( ^ " - ^ e H S P i f l ^ l f f g j E " - 1 , 

Proof . Let je={H\HQEn~1, |#|<K0}- Let 
L= ff2(H), 

H err-
and let M consist of all a£L for which there is a P€2[in(En~1) with the property 
that for some and for all H^tf containing H0, we have a(H)=HC\P. If 
a£M and P has the above property, then P is called a support of a. The support of a 
is uniquely determined. Indeed, if P*P'£2fln(E—1), H0, a(H)=PC)H 
for all and a(H)=P'f)H for all H'0QH£3#> then extend H0UH'o 

to an H£3tP that contains an element from the symmetric difference P A P ' . For 
this H we have a(H)=Pf)H^P'C]H=a(H), a contradiction. 
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We first prove that M is a sublattice of L. Let a, b£_M, let Pa and Pb be the 
supports of a and b, respectively, and choose Ha and Hb such that 

a(H) = HC\Pa if HaQH£3f 
and 

b(H) = HC)Pb if HbQH 

Let contain the sets Ha and Hb and the sets of extremal points of Pa and of 
Pb. Then we have 

conv (H n Pa) = Pa, conv (H PI P„) = Pb 

whenever H0QH£J#'. Compute the values of a\Jb and aAb at H {H as above). 

(aVfe)(H) = a(H)\!H b(H) = (H (1 Pfl)VH (H fl Pb) = 

= (conv (H fl Pa) V conv (H fl Pb)) fl H = (PaVPb)f)H. 

Clearly PaV^efifinCE"-1), whence a\JbiM, 

(.ahb)(H) = a(H)t\Hb(H) = (Hf)Pa)C](HnPb) = HC](PaAPb). 

Applying that P0APj,€fif in(£"_1), we obtain that aAbtM. 
We have also obtained that the map M—£ f i n(£"_ 1), a*-*Pa is a lattice homo-

morphism. For any P£fi f i n(£"_ 1), P is the support of the choice function a defined 
by a(H)—PC\H. Hence fifin(£"-1) is a homomorphic image of M, which completes 
the proof. 

4. The lattice of closed convex sets. In this section we prove Theorem 1.3. 
The operations of ^(E""1) will be denoted as sum and product. Obviously, 
XY=X!\Y and X+Y is the topological closure of X\JY if X, Y^iE"'1). Choose 
a point 

p€X ¿r„ 
i = 0 

where X, Y0, Ylt ..., y^SCE" - 1 ) . Then p£X and p= lim pm for some m-*-oo n 
{Pm)m6N§ V Yt. By Caratheodory's theorem, for every m£N there is a j(m)€ 

i = 0 

e{0, 1, ..., n} such that pm€ V Yi- For at least one 1, ...,«}, k-j{m) 
i = 0 

for infinitely many m£N. Therefore, the subsequence {/?,„}j(m)=f. of {/7m}m6N is 
n 

infinite and converges to p. Besides V Yi- Hence 
i=0 

PZXZY,. 
¡=o 
Mft 
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Thus 

x jbr,g ¿ [ r i y , ] . 
¡ = 0 k=0 >=0 

ivfc 

To prove the dual «-distributivity, we need a lemma. 

L e m m a 4.1. Let p, q, rdE"'1. Then, for any u£conv {p, r}, i>£conv {q, i1}, 
and x£conv {p, q}, there exist y£ conv {r, J} and z£ conv {w, u} such that 
z£conv {x, j}. 

P roo f . We may assume that u${p, r} and {q, as otherwise the state-
ment is trivial. The conditions of the lemma show that there exist real numbers 
a1, a2, Pi, p2, Vi, y2 such that 

q = a x i - f tx2v, ofj + a, = 1, oîj ï"! 0, 

P = Pir + P2u, P1 + P2=l, ftsO, 

x = y iq + y2P, yi + ys=h 

X = yi<XiS + y1cc2v + y2pir + y2p2u — 
Hence 

where 
<5x = yi<Xi + y2Pi, 52 = y1a2 + y2p2, 

y = Ml J + 1111 r 
yiXi + yzPi yi^ + yiPi ' 

z yi«2 v , y2P2 u 

yiVz + yzPz ^ yia2 + y2p2 

This representation shows that y£conv {s, r}, zgconv {«, u} (the coefficients are 
non-negative and sum up to 1). Finally, <5i=0 yield that zfconv {x, 

The following extension of this lemma is now proved by an easy induction over k. 

Coro l l a ry . Let p0,plt ...,pk, q0, qx, ..., qk, r0, r l5 ..., rk€E"~'i. Assume 
/•¡€conv {p^ qi}, i=0, 1, ..., k. Let />£conv {p0>,Pi> - ^Pk}- Then there exist 
qdconv {q0,qx, ...,qk} and r£conv {r0, rlt ..., rk} such that r6conv {p, q}. 
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Now we pass on to prove the dual w-distributivity of S(.E" -1). Let 

j=0 i=0 

where X, Y0, Yt, ..., Yn^'2.(En~1). Then there exist sequences {pJm}miN, j= 0 ,1 , ... 
. . . ,«, each converging to p, such that 

PjmZXV flYi, mSN, J = 0,1, ...,». 
i=0 

Now choose, for all m£N and j= 0, 1, ...,n, 

XjmZX, yjmi A Y> 
i=o 

such that pJm is a convex linear combination of xJm and yJm. By Helly's theorem there 
exists an 

y^IiYi 
i = 0 

for all m£N, and ym can be chosen to be an element of conv {y0m, ylm, ..., ynm}. 
Thus, by the Corollary, there exist points xm£conv {x0m, xlm, ..., xnm} and />m€ 
€conv {p0m,plm, ...,pnm} with pm<iconv {xm,ym} for all tn^N. Obviously, pm^p 
as m—oo, thus p is in the topological closure of {pm}m£N and each pm is a member of 

X\J ¿ Y t . Hence 
¡=o 

p i X + j j Y . 
¡=0 

The counterexamples at the end of Section 2 also show that 
V . - i . 

5. Complemented modular lattices revisited, n-distributivity of comple-
mented modular lattices was studied in [4]. Here we add a result describing those 
projective geometries in which "Caratheodory's theorem holds". As it is well-known 
by FRINK [2] there is a one-to-one correspondence between projective geometries and 
their subspace lattices, which are exactly the complete, complemented, modular, 
atomic lattices such that every atom is compact. It will be convenient to call these 
lattices projective geometries. We say that a projective geometry M satisfies the prop-

in 
erty (C„) iff, for any atoms p,p1,...,pm, m l K + 1 of M with /»S V Pi, there 

i = l n 
exist i j , i2, ..., /„€{1, 2, ..., m} such that pS V Pi • 

i J 
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A lattice is called infinitely «-distributive iff it satisfies the identity 

xA V Y, = V [*A V Fil 

iil K5I /£K 

for arbitrary index set I. It is called completely «-distributive iff the identity 

A V x>j = V A V x u • a JiJ, V iil j€<p(0 holds in it for arbitrary I and /¡ , id I and where the at the right hand 
side is to be formed for all choice functions cp: /— (J Pn(Jt) (with cp(i)dPn(Ji)), 

iei 
where P„(Jt) denotes the set of n element subsets of / ¡ , id I. Now we are ready to 
state the main result of this section. 

T h e o r e m 5.1. Let L be a complete complemented modular lattice. Then the 
following conditions are equivalent: 

(i) L is a projective geometry satisfying (C„); 
(ii) L is atomic and infinitely n-distributive; 

(iii) L is completely n-distributive, 
(iv) L is isomorphic to a direct product of irreducible projective geometries of 

length s«. 

Coro l la ry . The dual of a projective geometry satisfying (C„) also satisfies (C„). 
The dual of a completely n-distributive complemented modular lattice is also completely 
n-distributive. 

Proof . (i)=>(iv). If (i) holds, then, by FRINK [2], Theorem 7, Corollary, L is a 
direct product of irreducible projective geometries Ly, ydT. We show that Ly must 
be of length S « for all ydL. Indeed, in the contrary case Ly contains an independ-
ent set of n + 1 atoms: p0,ply ...,pn. By irreducibility, PoVPi=Poi for some atom 
Poi^PoiPi- W e have also />0VPiVp2^p0 1 \Jp2^p0 i2 for some atom p0i2^p01, p2. 
Clearly, Pon^PoWPi (otherwise p0VPi=/W/Aii=/>2 > a contradiction). Similarly, 
for {¡J} = {0, 1}, p012$PiVP2 as otherwise piVp2=PiVPouVp2=PiVPoiVP2= 
=PjVPoiVp2^Pj- By induction, we find an atom A>i...n=/>oV/>iV---V/>„ such that 
Poi...»^Po\/---VPi-iVPi+iV---VPn> i = 0 , l , ...,«. This contradicts (C„). 

(iv)=»(iii). Irreducible projective geometries of length are completely «-
distributive (in fact, any meet of joins equals one of the meets of « element subjoins), 
hence so are their direct products. 

(iii)^-(ii). It is easily seen that complete n-distributivity implies infinite n-distri-
butivity. So we only have to show that L is atomic. It suffices to show that every ele-
ment of L is a join of elements of height Let xdL be of height greater than «. 

' n 
Consider all independent sets {x^, x^ , ..., xyn}, ydT such that V xyi=x. As 

¡=0 
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usual, UT
n denotes the set of all mappings of the set T to Hn— {0, 1, ..., «}. By the 

complete «-distributive law, 

n 

* = A V xyl= V ••• V A ( ^ l ( , ) V . . . V x № ( J ) ) . 

We show that the elements 
n zm1...m„ = A V xymi(y) yin=i 

are of height S«. Indeed, in the contrary case, some of the intervals [0, zm^ mJ 
contains a chain of n-t-1 elements. Thus there is an independent set x2, ..., xn} 

n n • 
such that x'0:= V and A Let x0 be a complement of x0 in 

i=l 1 " B ¡ = 1 » • n 

[0, x]. Then V Xi=x. Therefore, some of the joins V occurs in the 
¡ = 0 i = 0,i±j 

A-representation of zm m . For j= 0, this yields x'0^zmi a contradiction. If 
yVO, then 

n n n 
x'0 = x'0Azmi...mn XqA V -v.- = V *i < V xt = x'0. i=0 ¡=0 i=l 

iV0,y 
This contradiction yields (ii). 

The implication (ii)=>-(i) being very easy, the proof is complete. 

6. Modular lattices. In this section we prove Theorem 1.4. By a result of 
FAIGLE [1], every modular lattice M can be embedded into a modular lattice M' 
such that every element of M' is a join of compact completely join-irreducible ele-
ments. If we prove that M' is in HSP(^nf lF), then the theorem follows. Let & 
be the set of all completely join-irreducible elements of M (these elements are all 
compact) and let be the set of all finite subsets of 3P. For any H^Jif, let M„ 
denote the set of all finite joins (in M') of elements of H. MH is clearly a lattice relative 
to the ordering of M'. Let AH and VH denote the operations in MH (note that VH 

is the same as V)- For any element x£M', and, for any let xH=sup {y\yS 
^x,y£MH}. Then 

xAy = V (xHAHyH ) 
HiJC 

and 
xVy = V (xH^Hyn)-

¡Hie 

Indeed, observe that x=\JHxx and implies xH^xG. If p^xAy for 
some pit? then xH=yH—p holds for H={p}, whence p^pAp=xHAHyn-
This proves the first equality. Now let p^.x\/y. Then p^VHlK(xH\/yK)= 
= \/H(xH\/yH)=VH(xH\/HyB), proving the second equality. 
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Assume that p—q is an m-ary lattice identity holding in all finite «-distributive 
lattices. Then p=q holds in all the lattices MH. Let x, , x2, ..., xm£M', and let pH 

and qH be the realizations of p and q in M. Then 

p(xi, x.,, ..., xm) = V P"((xi)n> (x2)n, • ••, (x,,,)„) = 
He*? 

= V qa((.xl )h> (X2)h> •••! (xm)n) — q(x 1, Xn, ..., Xm). 
Hijse 
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