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On non-modular n-distributive lattices
1. Lattices of convex sets

I A. P. HUBN i

1. Introduction. A lattice is called n-distributive if it satisfies the identity

1) xAV yi=V [xAV y]

i=0 j=0 i=0

ix]

A lattice satisfying the dual of (1) is called dually n-distributive. The class of n-distri-
butive (respectively, dually n-distributive) lattices is denoted by 4, (respectively,
V,). n-distributive lattices were introduced to describe dimension like properties of
modular lattices. Here we present some examples of non-modular n-distributive lat-
tices. E"~! denotes the (n— 1)-dimensional Euclidean space and £(E"-1) denotes its
lattice of convex sets. Our first result describes how {(E* 1) is situated in the classes
4,and V,,.

Theorem 1.1. LE" V)4, N4, )NV \V,-1).

The proof of n-distributivity in Section 2 is based on Carathéodory’s theorem,
while the dual n-distributivity is derived from Helly’s theorem.

In Section 3 we strengthen part of this result. Let F denote the class of finite
lattices.

Theorem 1.2. @(E")cHSP(4,NF).

In other words, 8(E"™) is in the lattice variety (equational class) generated by
the finite n-distributive lattices. The intuitive reason for Theorem 1.2 is that, if we
restrict the operation of convex closure to a finite subset H of E*~1, then this closure
system has an n-distributive lattice of closed sets by Carathéodory’s theorem, and this
lattice resembles 8(E"~*) as H becomes large. We note that S(E"?) is also in the
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class HSP(V,N F). The proof of this theorem involves more geometry and will be
published separately together with other Helly-type results.

Notice that the above sketch of the proof of Theorem 1.2 gives rise to a high
variety of n-distributive lattices: associated with any finite subset of E”~! there is an
n-distributive lattice. The example given by the following theorem is of different
character. Let €(E"~1) denote the lattice of closed convex sets of E"~L. In Section 4
we prove:

Theorem 1.3. S(E* Y4, \4,_)N(V,\V,_y).

Carathéodory’s theorem provides also a new aspect to the study of modular
n-distributive lattices. In Section 5 we characterize complete, complemented, modu-
lar, completely n-distributive lattices among all projective geometries as those satis-
fying a Carathéodory type condition. (Completely n-distributive lattices are defined
in Section 5 in analogy with completely distributive lattices.) An unexpected conse-
quence of our characterization is that this class of lattices (as well as the correspond-
ing class of projective geometries) is self-dual.

Finally, in Section 6 we prove the following fact on modular n-dlstrlbutlve
lattices:

Theorem 1.4. Every modular n-distributive lattice is a member of HSP(4,NF).

It is now natural to ask whether there are any further examples of non-modular
n-distributive lattices in other branches of mathematics. It is not hard to show that
the partition lattice of an (n+1)-element set is in (4,\4,_1)(V,\V,-1). This
example will be developed further in Part II of this paper, where graphs with an n-
distributive (respectively, dually n-distributive) contraction lattice are characterized.
Partition lattices occur as special cases, as they are the contraction lattlces of complete
graphs. :
In an independent paper [3] HorsT GERSTMANN also considers nonmodular
n-distributive lattices, defines complete and infinite n-distributive laws and character-
izes the different sorts of n-distributivity of the closed sets of a closure space in
terms of properties of the closure operator. Gerstmann’s generalized distributive laws
cover, beside the n-distributive laws, the concepts of (von Neumann) /\-contmunty
and of Scott-continuity. :

2. The lattice of convex sets. We first quote the two classical theorems that are
in the centre of this paper.

Helly s theorem. Let € be a finite family of convex subsets of E"71. ]f any
n elements of € have a non-empty intersection, then the intersection of the whole fam-
ily € is not empty.
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Carathéodory’s theorem. Let H be a subset of E"™' and let p be a point in
E"~Y If p is in the convex closure of H, then it is in the convex closure of an n element
subset of H.

We first prove that £(E"™?) is n-distributive. Let X, Yy, Y5, ..., Y,€Q(E"D).
Let p be a point of E*~! and assume that

PEXA v Y;
i=0

(where the A and V are the operations of Q(E "-1)). Then, by Carathéodory’s theo-
rem there are n elements of the set union U Y;, say pg, P1» ---s Pu_1, Such that p

is an element of their convex closure. If P JGY , j=0,1, —1, then p is also in
n—1
\V Yi‘.'Of course, p€X, hence
j=0
eV [XAV 1],
) i=0 i=0 - "~ -
ij
that is,
XAV Y, S V [XAV Y]
i=0 j=0 i=0
i#j
The reverse inclusion is obvious.
Now we prove that the dual n-distributive law holds in L2(E"-1). Let
X, Yy, Yy, ..., Y,€R(E"Y). Let

pe A [XV A 1.
=

Then there exist points x,, X3, ..., X, and yg, ¥y, ..., ¥, such that

n
x€X, yeANY, j=01,..,n
o

and p is a convex linear combination of each pair x;, y;. Now a trivial induction over
k yields that, whenever y is a convex linear combination of y,, ¥, ..., ¥, (k=n)
then there is a convex linear combmatlon x of x4, X3, ..., X, such that p is a convex
linear combination of x and y.

We are ready to apply Helly’s theorem. Let Y be the convex closure of {y,, ...
ves Yic1s Yis1s -» Va) Then

iji/\ K’, j = O, 1, [ (}
=0

i]
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By Helly’s theorem, the intersection of the Y] is not empty. Let

y is a convex linear combination of, say, y,, ¥y, ..., V,—1- Applying our last obser-
vation, there is an x in the convex closure of x, x,, ..., x,-, (hence also in X) such
that p is in the convex closure of x and y:

PEXV A Y, S XVA Y,
i=0 i=0

as claimed.

Finally, 2(E""1) is not (n— 1)-distributive, as the following counterexample
shows: Let § be a simplex, let x€S such that x is not contained in any (n—2)-
dimensional face of S, and let y,, y;, ..., ¥,—1 be the extremal points of S. Then

-1

WAV = ) =0 =V [9A Y ]

#J

L(E"Y is not dually (n— 1)-distributive either: Let X be a closed halfspace disjoint
from S (S is also closed) and let Y, Y3, ..., Y, _; be the (n—2)-dimensional faces of
S. Then
n—1
XVAY=XV6=X,
i=0
which is a proper part of

A XVA X = A [XVE]

3. On the variety generated by all finite #-distributive lattices. In this section we
prove Theorem 1.2 via the following three lemmas.

Lemma 3.1. @(E""Y)eHSP(&;,(E"™Y)). where £,(E"Y) denotes the set of
all those convex sets of E"~ that are the convex closures of a finite set of points.

Proof. Every element of £(E"~1) is a join of atoms and every atom of L(£"1)
is compact by Carathéodory’s theorem. Thus £(£”77) is algebraic. Furthermore, its
compact elements are exactly the elements of £, (E"~1). Hence L(E" 1) is isomorphic
to the ideal lattice of 2 (E"~1), whence it is in the variety generated by £, (E"~%).

In the above proof we implicitely made use of the fact that 2, (E"~?) is a sub-
lattice of £(E"1), that is, the intersection of two convex polytopes is a convex poly-
tope, otherwise we could not have spoken of the lattice L, (E"~Y).
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Now let H be any finite subset of E"~1, and let 2(H) denote the set of all those

subsets X of H which are of the form X=CNH with CSE"! convex. Clearly
2(H) = {X(SH)|X = (convX)N H},

where “conv” denotes the operator associating with any set its convex hull. Now it is
clear that 8(H) is a lattice relative to the inclusion and its operations v# and A ¥
are as follows.

XVEY = (convXVconvY)N H,

XABY = (conv XAconvY)NH = XNY,

where V and A are the operations in 2(E"~1).

Lemma 3.2. &(H) is n-distributive.

Proof. Assume that X, Y,,Y;, ..., Y,€Q(H), pcH, and

PEXNTVERY,.
As in the proof of Theorem 1.1, Carathéodory’s theorem and the descriptions of
V# and Af before the Lemma yield that there is a j€{0, 1, ..., n} such that
pEVIY,

ij

peVI AT VHX],

i#zj

that is,

proving the lemma.
The following lemma finishes the proof of Theorem 1.2.

Lemma 3.3. €, (E")e¢HSP(QH)HSE™ ™, |H|<8,).
Proof. Let #={H|HSZE", |H|<R,}. Let

L= ]] £(H),
HEx
and let M consist of all a€L for which there is a P2, (E"~Y) with the property
that for some Hy,€s# and for all HE# containing Hy, we have a(H)=HNP, If
a¢M and P has the above property, then P is called a support of a. The support of a
is uniquely determined. Indeed, if P P€ 8 (E"™Y), H,, Hi¢#, a(H)=PNH
for all HySHe# and a(H)=P'NH for all H,CHEH then extend H,UH,
to an Hc s that contains an element from the symmetric difference P A P’. For
this H we have a(H)=PNH=P'"NH=a(H), a contradiction.
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We first prove that M is a sublattice of L. Let a, b€ M, let P, and P, be the
supports of a and b, respectively, and choose H, and H, such that

a(H)=HNOP, if H,C H¢cH
and
b(H)= HNP, if H,< HeH.

Let Hy€s# contain the sets H, and H, and the sets of extremal points of P, and of
P,. Then we have

conv(HNP)=P, conv(HNPR)=P,
whenever HyC HEH . Compute the values of avb and aAb at H (H as above).
(aVb)(H) = a(H)VEb(H) = (HNP)VE(HNP,) =
= (conv(HNP)Vconv (HNP)NH = (FV P,)NH.
Clearly P, VP, €8, (E"™Y), whence aVbeM,
(aAb)(H) = a(H)A¥b(H) = (HNP)N(HNP,) = HN(PAP,).

Applying that P,AP,cL; (E"1), we obtain that aAbcM.

We have also obtained that the map M — £, (E"~), a—P, is a lattice homo-
morphism. For any P€8; (E"™Y), P is the support of the choice function a defined
by a(H)=PNH. Hence £;,(E""") is a homomorphic image of M, which completes
the proof.

4. The lattice of closed convex sets. In this section we prove Theorem 1.3.
The operations of L(E"!) will be denoted as sum and product. Obviously,
XY=XAY and X+7 is the topological closure of XY if X, Y¢2(E"™1). Choose
a point

pEX 'Y,
i=0

where X,Y,,Y,,.., Y, €Q(E"Y). Then pcX and p="1lirn P for some
{PmtmenS \7 Y;. By Carathéodory’s theorem, for every m€N there is a j(m)€
i=0

€{0,1, ..., n} such that p, ¢ \7 Y,. For at least one k€{0,1,...,n}, k=j(m)
i=0
i j(m)
for infinitely many mé€N. Therefore, the subsequence {p,}im=r Of {Pm}men 1S
infinite and converges to p. Besides p,,€ \'} Y;. Hence
. i=0

izk

pEXiZ Y;.
=0

ixk
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Thus

fin

i
i#=k
To prove the dual n-distributivity, we need a lemma.

Lemma 4.1. Let p,q,r€E""'. Then, for any u€conv {p,r}, v€conv {g, s},
and xeconv {p, q}, there exist y€conv {r,s} and z€conv {u,v} such that
z€conv {x, y}. \

Proof. We may assume that u¢{p,r} and v¢{g, s} as otherwise the state-
ment is trivial. The conditions of the lemma show that there exist real numbers
., 2, B1s Bes 715 72 such that

qg=0o5+0v, at+a=1 o =0,
p=pr+pBu, Bt+h=1 B =0,

X=y1qg+y:p, N1+y2=1 91,7 =0

Hence
X = P05+ 91000+ + 7. fou =
= (y10+ 7280 ( ha s+ L ") +
Y101+ 725 Y10 + 281
V1% 72 B
+(yro2+ ( v uJ =0,y+06,2,
010 +7252) P10+ 72 Be P10z + 72 Be vy 2
where

0y = 110+ 721, 02 = P10+ 72 Pe,

_ Y1%1 Y281
— R) N
P10 + Y2 B4 719 + Y251

— Vil v+ 72 B2
P10+ 72 B2 Y102+ 72 P

This representation shows that y€conv {s,r}, z€conv {u, v} (the coefficients are
non-negative and sum up to 1). Finally, 6,+J,=1, ;=0 yield that zcconv {x, y}.
The following extension of this lemma is now proved by an easy induction over k.

Corollary. Let py, Prs eoes Pis 9o Qs --+s s Fos F15 oo EE""L Assume
ricconv {p;, q;}, i=0,1,..,k. Let pé€conv {py,p1,....,px}. Then there exist
geconv {go, ¢15 ..., gu} and reconv {ry, 1, ..., ry} such that réconv {p, q}.



42 A. P. Hubn

Now we pass on to prove the dual n-distributivity of $(E"~1). Let

pe Il [Xx+ I v}
i P
i)

where X, Y,,Y,, ..., Y,€2(E""). Then there exist sequences {p;n}men> j=0, 1, ...
..., n, each converging to p, such that

Pim€XV [[Y,, mEN, j=0,1,..,n
i=0
i)

Now choose, for all meéN and j=0,1,...,n,

n
xjm€ Xs yjme I](; Yl
i=
i j
such that p;, is a convex linear combination of x;, and y;,. By Helly’s theorem there
exists an

Ym€ I Y;
i=0

for all meN, and y, can be chosen to be an element of conv {¥Voms Vims ---> Vam}-
Thus, by the Corollary, there exist points x,€conv {Xom, Xims s Xymy and p,€
€conV {Poms Pims --+s Pam} With p,€conv {x,, .} for all meN. Obviously, p,—p
as m~ oo, thus p is in the topological closure of {p,,}.c~ and each p,, is a member of

Xvﬁ' Y;. Hence
i=0
pEX+ [[Y:.
i=0

The counterexamples at the end of Section 2 also show that S(E"-1)¢4,_,,
Vll—l'

5. Complemented modular lattices revisited. rn-distributivity of comple-
mented modular lattices was studied in [4]. Here we add a result describing those
projective geometries in which “‘Carathéodory’s theorem holds™. As it is well-known
by FRINK [2] there is a one-to-one correspondence between projective geometries and
their subspace lattices, which are exactly the complete, complemented, modular,
atomic lattices such that every atom is compact. It will be convenient to call these
lattices projective geometries. We say that a projective geometry M satisfies the prop-

erty (C,) iff, for any atoms p, p;, ..., p,, m=n+1 of M with p= (l/ p;, there
i=1

exist iy, &y, ..., ,€{1, 2, ..., m} such that p=YV i,
j=1
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A lattice is called infinitely n-distributive iff it satisfies the identity

XAV Y= V [xAV ¥]
icl llélg:" ieK

for arbitrary index set I. It is called completely n-distributive iff the identity
AVx;=VA V x;
i€l jeJ, ¢ il jeol)
holds in it for arbitrary I and J;, i€] and |J;|=n, where the V, at the right hand
side is to be formed for all choice functions ¢: I-(J P,(J) (with @@)EP,(J)),
iel

where P,(J;) denotes the set of n element subsets of J;, i€l. Now we are ready to
state the main result of this section.

Theorem 5.1. Let L be a complete complemented modular lattice. Then the
following conditions are equivalent:
(i) L is a projective geometry satisfying (C,);
(ii) L is atomic and infinitely n-distributive;
(iii) L is completely n-distributive,
(iv) L is isomorphic to a direct product of irreducible projective geometries of
length =n. ‘

Corollary. The dual of a projective geometry satisfying (C,) also satisfies (C,).
The dual of a completely n-distributive complemented modular lattice is also completely
n-distributive.

Proof. (i)=(v). If (i) holds, then, by FrRINK [2], Theorem 7, Corollary, L is a
direct product of irreducible projective geometries L,, y€I'. We show that L, must
be of length =n for all y¢ L. Indeed, in the contrary case L, contains an independ-
ent set of n+1 atoms: pg, py, ..., p,- By irreducibility, p,Vp,=p, for some atom
Pa#Po, 1. We have also poVpVp.ZpnVps=pes for some atom pys#py, ps-
Clearly, po2EpoVp: (otherwise poVp,=poiVpa=p., a contradiction). Similarly,
for {i,j}={0,1}, PpueEpVp: as otherwise pVps=pNVPoaVp2=pVPVP>=
=pNPaVp:=p;. By induction, we find an atom py, ,=p,Vp,V...Vp, such that
Por..nEDV .- NVD; NP V.. VP, i=0, 1, ..., n. This contradicts (C,).

(iv)=(iii). Irreducible projective geometries of length =n are completely n-
distributive (in fact, any meet of joins equals one of the meets of 7 element subjoins),
hence so are their direct products.

(iii)=>(ii). It is easily seen that complete n-distributivity implies infinite n-distri-
butivity. So we only have to show that L is atomic. It suffices to show that every ele-
ment of L is a join of elements of height =n. Let x€L be of height greater than ».

Consider all independent sets {x,g, X,15 ..., X;,}, Y€ such that \7 Xp=x. As
i=0
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usual, HT denotes the set of all mappings of the set I' to H,={0, 1, ..., n}. By the
complete n-distributive law,

= /\ \"/ xy, = V vee V Ar (x,,,,l(y)V...men(y)).

yEr i=0 myeHY mnEH,';Yﬁ
We show that the elements

n
Zmy...m, = /\ V Xymi(y
1 n yeri=1 i(?)

are of height =n. Indeed, in the contrary case, some of the intervals [0, z,,,r“,,,n]
contains a chain of n+1 elements. Thus there is an independent set {x;, X3, ..., X,}

such that xj:= V Xi<Zp .m and /\ x,;=0. Let x, be a complement of x{ in
" i=1

[0, x]. Then V x;=x. Therefore, some of the joins V x; occurs in the
i=0 i=0,i¥j

A-representation of z,, , . For j=0, this yiclds XoZZy .. > @ contradiction. If
j#0, then
n n
Xo = XoN\zp, .. m, =x0/\Vx =V xx<Vx=x
1#1 x;=0?j =t
This contradiction yields (ii).
The implication (ii)=>(i) being very easy, the proof is complete.

6. Modular lattices. In this section we prove Theorem 1.4. By a result of
FAIGLE [1], every modular lattice M can be embedded into a modular lattice A”
such that every element of M’ is a join of compact completely join-irreducible ele-
ments. If we prove that M’ is in HSP(4,NF), then the theorem follows. Let &
be the set of all completely join-irreducible elements of M (these elements are all
compact) and let # be the set of all finite subsets of 2. For any HE#; let My
denote the set of all finite joins (in M”) of elements of H. My is clearly a lattice relative
to the ordering of M’. Let A and V¥ denote the operations in M (note that V¥
is the same as V). For any element x€M’, and, for any He#, let Xg=sup {y|y<

=x,yEM H} Then '
xAy = V (xgNyg)’
Hcx

and
xVy = V (VHV Yn)-

Indeed, observe that x=V,xy and HEGEH implies xy=xg. If p=xAy for
some pE®? then xy=yy=p holds for H={p}, whence p=pAp=xyAtyy.
This proves the first equality. Now let p=xVyy. Then p=vyy, K(xHVyK)—
=Vu(xgVy)=Va(xzVEyg), proving the second equality.



On non-modular n-distributive lattices I. Lattices of convex sets 45

Assume that p=gq is an m-ary lattice identity holding in all finite n-distributive
lattices. Then p=gq holds in all the lattices M},. Let x;, X,, ..., X,€M’, and let p¥
and g¥ be the realizations of p and ¢ in M. Then

P(X15 Xay ooy Xp) = Hy#pﬂ((xl)Hs (X2ps -ee» (xm)H) =

= \/ qH((xl)H’ ('xZ)Hs (R (xm)H) = q(xla Xay eens xm)'
HeH#
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