On non-modular n-distributive lattices I. Lattices of convex sets

A. P. HUHN

1. Introduction. A lattice is called n-distributive if it satisfies the identity

$$
\begin{equation*}
x \wedge \bigvee_{i=0}^{n} y_{i}=\bigvee_{j=0}^{n}\left[x \wedge \bigvee_{\substack{i=0 \\ i \neq j}}^{n} y_{i}\right] . \tag{1}
\end{equation*}
$$

A lattice satisfying the dual of ($\mathbf{1}$) is called dually n-distributive. The class of n-distributive (respectively, dually n-distributive) lattices is denoted by Δ_{n} (respectively, ∇_{n}). n-distributive lattices were introduced to describe dimension like properties of modular lattices. Here we present some examples of non-modular n-distributive lattices. E^{n-1} denotes the ($n-1$)-dimensional Euclidean space and $\mathscr{L}\left(E^{n-1}\right)$ denotes its lattice of convex sets. Our first result describes how $\mathcal{L}\left(E^{n-1}\right)$ is situated in the classes Δ_{m} and ∇_{m}.

Theorem 1.1. $\mathfrak{L}\left(E^{n-1}\right) \in\left(\Delta_{n} \backslash \Delta_{n-1}\right) \cap\left(\nabla_{n} \backslash \nabla_{n-1}\right)$.
The proof of n-distributivity in Section 2 is based on Carathéodory's theorem, while the dual n-distributivity is derived from Helly's theorem.

In Section 3 we strengthen part of this result. Let F denote the class of finite lattices.

Theorem 1.2. $\mathfrak{L}\left(E^{n-1}\right) \in \operatorname{HSP}\left(\Delta_{n} \cap F\right)$.
In other words, $\mathfrak{L}\left(E^{n-1}\right)$ is in the lattice variety (equational class) generated by the finite n-distributive lattices. The intuitive reason for Theorem 1.2 is that, if we restrict the operation of convex closure to a finite subset H of E^{n-1}, then this closure system has an n-distributive lattice of closed sets by Carathéodory's theorem, and this lattice resembles $\mathfrak{L}\left(E^{n-1}\right)$ as H becomes large. We note that $\mathfrak{L}\left(E^{n-1}\right)$ is also in the

Received June 5, 1985.
class $\operatorname{HSP}\left(\nabla_{n} \cap F\right)$. The proof of this theorem involves more geometry and will be published separately together with other Helly-type results.

Notice that the above sketch of the proof of Theorem 1.2 gives rise to a high variety of n-distributive lattices: associated with any finite subset of E^{n-1} there is an n-distributive lattice. The example given by the following theorem is of different character. Let $\overline{\mathcal{L}}\left(E^{n-1}\right)$ denote the lattice of closed convex sets of E^{n-1}. In Section 4 we prove:

Theorem 1.3. $\bar{L}\left(E^{n-1}\right) \in\left(\Delta_{n} \backslash \Delta_{n-1}\right) \cap\left(\nabla_{n} \backslash \nabla_{n-1}\right)$.
Carathéodory's theorem provides also a new aspect to the study of modular n-distributive lattices. In Section 5 we characterize complete, complemented, modular, completely n-distributive lattices among all projective geometries as those satisfying a Carathéodory type condition. (Completely n-distributive lattices are defined in Section 5 in analogy with completely distributive lattices.) An unexpected consequence of our characterization is that this class of lattices (as well as the corresponding class of projective geometries) is self-dual.

Finally, in Section 6 we prove the following fact on modular n-distributive lattices:

Theorem 1.4. Every modular n-distributive lattice is a member of $\operatorname{HSP}\left(\Delta_{n} \cap F\right)$.
It is now natural to ask whether there are any further examples of non-modular n-distributive lattices in other branches of mathematics. It is not hard to show that the partition lattice of an $(n+1)$-element set is in $\left(\Delta_{n} \backslash \Delta_{n-1}\right) \cap\left(\nabla_{n} \backslash \nabla_{n-1}\right)$. This example will be developed further in Part II of this paper, where graphs with an n distributive (respectively, dually n-distributive) contraction lattice are characterized. Partition lattices occur as special cases, as they are the contraction lattices of complete graphs.

In an independent paper [3] Horst Gerstmann also considers nonmodular n-distributive lattices, defines complete and infinite n-distributive laws and characterizes the different sorts of n-distributivity of the closed sets of a closure space in terms of properties of the closure operator. Gerstmann's generalized distributive laws cover, beside the n-distributive laws, the concepts of (von Neumann) \wedge-continuity and of Scott-continuity.
2. The lattice of convex sets. We first quote the two classical theorems that are in the centre of this paper.

Helly's theorem. Let \mathscr{C} be a finite family of convex subsets of E^{n-1}. If any n elements of \mathscr{C} have a non-empty intersection, then the intersection of the whole family \mathscr{C} is not empty.

Carathéodory's theorem. Let H be a subset of E^{n-1} and let p be a point in E^{n-1}. If p is in the convex closure of H, then it is in the convex closure of an n element subset of H.

We first prove that $\mathcal{L}\left(E^{n-1}\right)$ is n-distributive. Let $X, Y_{0}, Y_{1}, \ldots, Y_{n} \in \mathscr{L}\left(E^{n-1}\right)$. Let p be a point of E^{n-1} and assume that

$$
p \in X \wedge \bigvee_{i=0}^{n} Y_{i}
$$

(where the \wedge and \vee are the operations of $\mathfrak{L}\left(E^{n-1}\right)$). Then, by Carathéodory's theorem there are n elements of the set union $\bigcup_{i=0}^{n} Y_{i}$, say $p_{0}, p_{1}, \ldots, p_{n-1}$, such that p is an element of their convex closure. If $p_{j} \in Y_{i j}, j=0,1, \ldots, n-1$, then p is also in $\bigvee_{j=0}^{n-1} Y_{i j}$. Of course, $p \in X$, hence

$$
p \in \bigvee_{j=0}^{n}\left[X \wedge \bigvee_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}\right]
$$

that is,

$$
X \wedge \bigvee_{i=0}^{n} Y_{i} \subseteq \bigvee_{j=0}^{n}\left[X \wedge \bigvee_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}\right]
$$

The reverse inclusion is obvious.
Now we prove that the dual n-distributive law holds in $\mathscr{L}\left(E^{n-1}\right)$. Let $X, Y_{0}, Y_{1}, \ldots, Y_{n} \in \mathcal{L}\left(E^{n-1}\right)$. Let

$$
p \in \bigwedge_{j=0}^{n}\left[X \vee \bigwedge_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}\right] .
$$

Then there exist points $x_{0}, x_{1}, \ldots, x_{n}$ and $y_{0}, y_{1}, \ldots, y_{n}$ such that

$$
x_{j} \in X, \quad y_{j} \in \bigwedge_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}, \quad j=0,1, \ldots, n
$$

and p is a convex linear combination of each pair x_{j}, y_{j}. Now a trivial induction over k yields that, whenever y is a convex linear combination of $y_{0}, y_{1}, \ldots, y_{k}(k \leqq n)$ then there is a convex linear combination x of $x_{0}, x_{1}, \ldots, x_{k}$ such that p is a convex linear combination of x and y.

We are ready to apply Helly's theorem. Let Y_{i}^{\prime} be the convex closure of $\left\{y_{0}, \ldots\right.$ $\left.\ldots, y_{i-1}, y_{i+1}, \ldots, y_{n}\right\}$. Then

$$
y_{j} \in \bigwedge_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}^{\prime}, \quad j=0,1, \ldots, n .
$$

By Helly's theorem, the intersection of the Y_{i}^{\prime} is not empty. Let

$$
y \in \bigwedge_{i=0}^{n} Y_{i}^{\prime}
$$

y is a convex linear combination of, say, $y_{0}, y_{1}, \ldots, y_{n-1}$. Applying our last observation, there is an x in the convex closure of $x_{0}, x_{1}, \ldots, x_{n-1}$ (hence also in X) such that p is in the convex closure of x and y :

$$
p \in X \vee \bigwedge_{i=0}^{n} Y_{i}^{\prime} \subseteq X \vee \bigwedge_{i=0}^{n} Y_{i}
$$

as claimed.
Finally, $\mathscr{L}\left(E^{n-1}\right)$ is not ($n-1$)-distributive, as the following counterexample shows: Let S be a simplex, let $x \in S$ such that x is not contained in any ($n-2$)dimensional face of S, and let $y_{0}, y_{1}, \ldots, y_{n-1}$ be the extremal points of S. Then

$$
\{x\} \wedge \bigvee_{i=0}^{n-1}\left\{y_{i}\right\}=\{x\} \neq \emptyset=\bigvee_{j=0}^{n-1}\left[\{x\} \wedge \bigvee_{\substack{i=0 \\ i \neq j}}^{n-1}\left\{y_{i}\right\}\right]
$$

$\mathcal{L}\left(E^{n-1}\right)$ is not dually ($n-1$)-distributive either: Let X be a closed halfspace disjoint from S (S is also closed) and let $Y_{0}, Y_{1}, \ldots, Y_{n \sim 1}$ be the ($n-2$)-dimensional faces of S. Then

$$
X \vee \wedge_{i=0}^{n-1} Y_{i}=X \vee \emptyset=X
$$

which is a proper part of

$$
\bigwedge_{j=0}^{n-1}\left[X \vee \bigwedge_{\substack{i=0 \\ i \neq j}}^{n-1} Y_{i}\right]=\bigwedge_{j=0}^{n-1}\left[X \vee\left\{y_{j}\right\}\right]
$$

3. On the variety generated by all finite n-distributive lattices. In this section we prove Theorem 1.2 via the following three lemmas.

Lemma 3.1. $\mathcal{L}\left(E^{n-1}\right) \in \operatorname{HSP}\left(\mathfrak{I}_{\mathrm{fin}}\left(E^{n-1}\right)\right)$. where $\mathcal{E}_{\mathrm{fin}}\left(E^{n-1}\right)$ denotes the set of all those convex sets of E^{n-1} that are the convex closures of a finite set of points.

Proof. Every element of $\mathcal{L}\left(E^{n-1}\right)$ is a join of atoms and every atom of $\mathcal{L}\left(E^{n-1}\right)$ is compact by Carathéodory's theorem. Thus $\mathcal{Q}\left(E^{n-1}\right)$ is algebraic. Furthermore, its compact elements are exactly the elements of $\mathscr{L}_{\text {fin }}\left(E^{n-1}\right)$. Hence $\mathfrak{L}\left(E^{n-1}\right)$ is isomorphic to the ideal lattice of $\mathscr{L}_{\mathrm{fin}}\left(E^{n-1}\right)$, whence it is in the variety generated by $\mathcal{L}_{\mathrm{fin}}\left(E^{n-1}\right)$.

In the above proof we implicitely made use of the fact that $\mathscr{L}_{\mathrm{fin}}\left(E^{n-1}\right)$ is a sublattice of $\mathscr{L}\left(E^{n-1}\right)$, that is, the intersection of two convex polytopes is a convex polytope, otherwise we could not have spoken of the lattice $\mathscr{L}_{\mathrm{fin}}\left(E^{n-1}\right)$.

Now let H be any finite subset of E^{n-1}, and let $\mathcal{L}(H)$ denote the set of all those subsets X of H which are of the form $X=C \cap H$ with $C \subseteq E^{n-1}$ convex. Clearly

$$
\mathcal{L}(H)=\{X(\cong H) \mid X=(\operatorname{conv} X) \cap H\}
$$

where "conv" denotes the operator associating with any set its convex hull. Now it is clear that $\mathscr{L}(H)$ is a lattice relative to the inclusion and its operations V^{H} and \wedge^{H} are as follows.

$$
\begin{gathered}
X \vee^{H} Y=(\operatorname{conv} X \vee \operatorname{conv} Y) \cap H \\
X \wedge^{H} Y=(\operatorname{conv} X \wedge \operatorname{conv} Y) \cap H=X \cap Y
\end{gathered}
$$

where \vee and \wedge are the operations in $\mathscr{L}\left(E^{n-1}\right)$.
Lemma 3.2. $\mathfrak{L}(H)$ is n-distributive.
Proof. Assume that $X, Y_{0}, Y_{1}, \ldots, Y_{n} \in \mathfrak{L}(H), p \in H$, and

$$
p \in X \wedge^{H} \bigvee_{i}^{B} Y_{i}
$$

As in the proof of Theorem 1.1, Carathéodory's theorem and the descriptions of V^{H} and \wedge^{H} before the Lemma yield that there is a $j \in\{0,1, \ldots, n\}$ such that

$$
p \in \underset{\substack{i \\ i \neq j}}{V_{i}^{H}} Y_{i}
$$

that is,

$$
p \in \bigvee_{j}^{H}\left[X \wedge^{H} \bigvee_{\substack{i \\ i \neq j}}^{\bigvee_{i}^{H}} X_{i}\right]
$$

proving the lemma.
The following lemma finishes the proof of Theorem 1.2.
Lemma 3.3. $\mathcal{L}_{\mathrm{fin}}\left(E^{n-1}\right) \in \operatorname{HSP}\left(\mathcal{L}(H)\left|H \subseteq E^{n-1},|H|<\aleph_{0}\right)\right.$.
Proof. Let $\mathscr{H}=\left\{H\left|H \subseteq E^{n-1},|H|<\aleph_{0}\right\}\right.$. Let

$$
L=\prod_{H \in \mathscr{R}} \mathcal{L}(H)
$$

and let M consist of all $a \in L$ for which there is a $P \in \mathscr{I}_{\mathrm{fin}}\left(E^{n-1}\right)$ with the property that for some $H_{0} \in \mathscr{H}$ and for all $H \in \mathscr{H}$ containing H_{0}, we have $a(H)=H \cap P$. If $a \in M$ and P has the above property, then P is called a support of a. The support of a is uniquely determined. Indeed, if $P \neq P^{\prime} \in \mathfrak{L}_{\text {fin }}\left(E^{n-1}\right), H_{0}, H_{0}^{\prime} \in \mathscr{H}, a(H)=P \cap H$ for all $H_{0} \subseteq H \in \dot{\mathscr{H}}$ and $a(H)=P^{\prime} \cap H$ for all $H_{0}^{\prime} \subseteq H \in \mathscr{H}$ then extend $H_{0} \cup H_{0}^{\prime}$ to an $H \in \mathscr{H}$ that contains an element from the symmetric difference $P \triangle P^{\prime}$. For this H we have $a(H)=P \cap H \neq P^{\prime} \cap H=a(H)$, a contradiction.

We first prove that M is a sublattice of L. Let $a, b \in M$, let P_{a} and P_{b} be the supports of a and b, respectively, and choose H_{a} and H_{b} such that
and

$$
\begin{array}{lll}
a(H)=H \cap P_{a} & \text { if } & H_{a} \subseteq H \in \mathscr{H} \\
b(H)=H \cap P_{b} & \text { if } & H_{b} \subseteq H \in \mathscr{H}
\end{array}
$$

Let $H_{0} \in \mathscr{H}$ contain the sets H_{a} and H_{b} and the sets of extremal points of P_{a} and of P_{b}. Then we have

$$
\operatorname{conv}\left(H \cap P_{a}\right)=P_{a}, \quad \operatorname{conv}\left(H \cap P_{b}\right)=P_{b}
$$

whenever $H_{0} \subseteq H \in \mathscr{H}$. Compute the values of $a \vee b$ and $a \wedge b$ at H (H as above).

$$
\begin{aligned}
& (a \vee b)(H)=a(H) \vee^{H} b(H)=\left(H \cap P_{a}\right) \vee^{H}\left(H \cap P_{b}\right)= \\
& =\left(\operatorname{conv}\left(H \cap P_{a}\right) \vee \operatorname{conv}\left(H \cap P_{b}\right)\right) \cap H=\left(P_{a} \vee P_{b}\right) \cap H
\end{aligned}
$$

Clearly $P_{a} \vee P_{b} \in \mathscr{E}_{\mathrm{rin}}\left(E^{n-1}\right)$, whence $a \vee b \in M$,

$$
(a \wedge b)(H)=a(H) \wedge^{H} b(H)=\left(H \cap P_{a}\right) \cap\left(H \cap P_{b}\right)=H \cap\left(P_{a} \wedge P_{b}\right)
$$

Applying that $P_{a} \wedge P_{b} \in \mathscr{L}_{\text {fin }}\left(E^{n-1}\right)$, we obtain that $a \wedge b \in M$.
We have also obtained that the map $M \rightarrow \mathfrak{I}_{\mathrm{fin}}\left(E^{n-1}\right), a \mapsto P_{a}$ is a lattice homomorphism. For any $P \in \mathfrak{I}_{\mathrm{fin}}\left(E^{n-1}\right), P$ is the support of the choice function a defined by $a(H)=P \cap H$. Hence $\mathscr{I}_{\text {fin }}\left(E^{n-1}\right)$ is a homomorphic image of M, which completes the proof.
4. The lattice of closed convex sets. In this section we prove Theorem 1.3. The operations of $\overline{\mathcal{L}}\left(E^{n-1}\right)$ will be denoted as sum and product. Obviously, $X Y=X \wedge Y$ and $X+Y$ is the topological closure of $X \vee Y$ if $X, Y \in \overline{\mathcal{L}}\left(E^{n-1}\right)$. Choose a point

$$
p \in X \sum_{i=0}^{n} Y_{i}
$$

where $X, Y_{0}, Y_{1}, \ldots, Y_{n} \in \bar{L}\left(E^{n-1}\right)$. Then $p \in X$ and $p=\lim _{m \rightarrow \infty} p_{m}$ for some $\left\{p_{m}\right\}_{m \in \mathrm{~N}} \subseteq \bigvee_{i=0}^{n} Y_{i}$. By Carathéodory's theorem, for every $m \in N$ there is a $j(m) \in$ $\in\{0,1, \ldots, n\}$ such that $p_{m} \in \bigvee_{\substack{i=0 \\ i \neq j(m)}}^{n} Y_{i}$. For at least one $k \in\{0,1, \ldots, n\}, k=j(m)$ for infinitely many $m \in N$. Therefore, the subsequence $\left\{p_{m}\right\}_{j(m)=k}$ of $\left\{p_{m}\right\}_{m \in \mathbf{N}}$ is infinite and converges to p. Besides $p_{m} \in \underset{\substack{i=0 \\ i \neq k}}{n} Y_{i}$. Hence

$$
p \in X \sum_{\substack{i=0 \\ i \neq k}}^{n} Y_{i} .
$$

Thus

$$
X \sum_{i=0}^{n} Y_{i} \subseteq \sum_{k=0}^{n}\left[X \sum_{\substack{i=0 \\ i \neq k}}^{n} Y_{i}\right]
$$

To prove the dual n-distributivity, we need a lemma.
Lemma 4.1. Let $p, q, r \in E^{n-1}$. Then, for any $u \in \operatorname{conv}\{p, r\}, v \in \operatorname{conv}\{q, s\}$, and $x \in \operatorname{conv}\{p, q\}$, there exist $y \in \operatorname{conv}\{r, s\}$ and $z \in \operatorname{conv}\{u, v\}$ such that $z \in \operatorname{conv}\{x, y\}$.

Proof. We may assume that $u \notin\{p, r\}$ and $v \notin\{q, s\}$ as otherwise the statement is trivial. The conditions of the lemma show that there exist real numbers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ such that

$$
\begin{array}{lll}
q=\alpha_{1} s+\alpha_{2} v, & \alpha_{1}+\alpha_{2}=1, & \alpha_{1} \leqq 0 \\
p=\beta_{1} r+\beta_{2} u, & \beta_{1}+\beta_{2}=1, & \beta_{1} \leqq 0 \\
x=\gamma_{1} q+\gamma_{2} p, & \gamma_{1}+\gamma_{2}=1, & \gamma_{1}, \gamma_{2} \geqq 0 .
\end{array}
$$

Hence

$$
\begin{gathered}
x=\gamma_{1} \alpha_{1} s+\gamma_{1} \alpha_{2} v+\gamma_{2} \beta_{1} r+\gamma_{2} \beta_{2} u= \\
=\left(\gamma_{1} \alpha_{1}+\gamma_{2} \beta_{1}\right)\left(\frac{\gamma_{1} \alpha_{1}}{\gamma_{1} \alpha_{1}+\gamma_{2} \beta_{1}} s+\frac{\gamma_{2} \beta_{1}}{\gamma_{1} \alpha_{1}+\gamma_{2} \beta_{1}} r\right)+ \\
+\left(\gamma_{1} \alpha_{2}+\gamma_{2} \beta_{2}\right)\left(\frac{\gamma_{1} \alpha_{2}}{\gamma_{1} \alpha_{2}+\gamma_{2} \beta_{2}} v+\frac{\gamma_{2} \beta_{2}}{\gamma_{1} \alpha_{2}+\gamma_{2} \beta_{2}} u\right)=\delta_{1} y+\delta_{2} z,
\end{gathered}
$$

where

$$
\begin{aligned}
\delta_{1} & =\gamma_{1} \alpha_{1}+\gamma_{2} \beta_{1}, \quad \delta_{2}=\gamma_{1} \alpha_{2}+\gamma_{2} \beta_{2} \\
y & =\frac{\gamma_{1} \alpha_{1}}{\gamma_{1} \alpha_{1}+\gamma_{2} \beta_{1}} s+\frac{\gamma_{2} \beta_{1}}{\gamma_{1} \alpha_{1}+\gamma_{2} \beta_{1}} r \\
z & =\frac{\gamma_{1} \alpha_{2}}{\gamma_{1} \alpha_{2}+\gamma_{2} \beta_{2}} v+\frac{\gamma_{2} \beta_{2}}{\gamma_{1} \alpha_{2}+\gamma_{2} \beta_{2}} u
\end{aligned}
$$

This representation shows that $y \in \operatorname{conv}\{s, r\}, z \in \operatorname{conv}\{u, v\}$ (the coefficients are non-negative and sum up to 1). Finally, $\delta_{1}+\delta_{2}=1, \delta_{1} \leqq 0$ yield that $z \in \operatorname{conv}\{x, y\}$.

The following extension of this lemma is now proved by an easy induction over k.
Corollary. Let $p_{0}, p_{1}, \ldots, p_{k}, q_{0}, q_{1}, \ldots, q_{k}, r_{0}, r_{1}, \ldots, r_{k} \in E^{n-1}$. Assume $r_{i} \in \operatorname{conv}\left\{p_{i}, q_{i}\right\}, \quad i=0,1, \ldots, k$. Let $p \in \operatorname{conv}\left\{p_{0}, p_{1}, \ldots, p_{k}\right\}$. Then there exist $q \in \operatorname{conv}\left\{q_{0}, q_{1}, \ldots, q_{k}\right\}$ and $r \in \operatorname{conv}\left\{r_{0}, r_{1}, \ldots, r_{k}\right\}$ such that $r \in \operatorname{conv}\{p, q\}$.

Now we pass on to prove the dual n-distributivity of $\overline{\mathcal{L}}\left(E^{n-1}\right)$. Let

$$
p \in \prod_{j=0}^{n}\left[X+\prod_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}\right]
$$

where $X, Y_{0}, Y_{1}, \ldots, Y_{n} \in \bar{L}\left(E^{n-1}\right)$. Then there exist sequences $\left\{p_{j m}\right\}_{m \in N}, j=0,1, \ldots$ \ldots, n, each converging to p, such that

$$
p_{j m} \in X \vee \prod_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}, \quad m \in N, \quad j=0,1, \ldots, n .
$$

Now choose, for all $m \in N$ and $j=0,1, \ldots, n$,

$$
x_{j m} \in X, \quad y_{j m} \in \prod_{\substack{i=0 \\ i \neq j}}^{n} Y_{i}
$$

such that $p_{j m}$ is a convex linear combination of $x_{j m}$ and $y_{j m}$. By Helly's theorem there exists an

$$
y_{m} \in \prod_{i=0}^{n} Y_{i}
$$

for all $m \in N$, and y_{m} can be chosen to be an element of conv $\left\{y_{0 m}, y_{1 m}, \ldots, y_{n m}\right\}$. Thus, by the Corollary, there exist points $x_{m} \in \operatorname{conv}\left\{x_{0 m}, x_{1 m}, \ldots, x_{n m}\right\}$ and $p_{m} \in$ \in conv $\left\{p_{0 m}, p_{1 m}, \ldots, p_{n m}\right\}$ with $p_{m} \in \operatorname{conv}\left\{x_{m}, y_{m}\right\}$ for all $m \in N$. Obviously, $p_{m} \rightarrow p$ as $m \rightarrow \infty$, thus p is in the topological closure of $\left\{p_{m}\right\}_{m \in N}$ and each p_{m} is a member of $X \vee \prod_{i=0}^{n} Y_{i}$. Hence

$$
p \in X+\prod_{i=0}^{n} Y_{i}
$$

The counterexamples at the end of Section 2 also show that $\overline{\mathcal{L}}\left(E^{n-1}\right) \nsubseteq \Delta_{n-1}$, ∇_{n-1}.
5. Complemented modular lattices revisited. n-distributivity of complemented modular lattices was studied in [4]. Here we add a result describing those projective geometries in which "Carathéodory's theorem holds". As it is well-known by Frink [2] there is a one-to-one correspondence between projective geometries and their subspace lattices, which are exactly the complete, complemented, modular, atomic lattices such that every atom is compact. It will be convenient to call these lattices projective geometries. We say that a projective geometry M satisfies the property $\left(C_{n}\right)$ iff, for any atoms $p, p_{1}, \ldots, p_{m}, m \geqq n+1$ of M with $p \leqq V_{i=1}^{m} p_{i}$, there exist $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2, \ldots, m\}$ such that $p \leqq \bigvee_{j=1}^{n} p_{i_{j}}$.

A lattice is called infinitely n－distributive iff it satisfies the identity

$$
x \wedge \bigvee_{i \in I} Y_{i}=\underset{\substack{K \subseteq I \\|K|=n}}{\bigvee}\left[x \wedge \bigvee_{i \in K} Y_{i}\right]
$$

for arbitrary index set I ．It is called completely n－distributive iff the identity

$$
\bigwedge_{i \in I} \bigvee_{j \in J_{i}} x_{i j}=\bigvee_{\varphi} \bigwedge_{i \in I} \bigvee_{j \in \varphi(i)} x_{i j}
$$

holds in it for arbitrary I and $J_{i}, i \in I$ and $\left|J_{i}\right| \geqq n$ ，where the V_{φ} at the right hand side is to be formed for all choice functions $\varphi: I \rightarrow \bigcup_{i \in I} P_{n}\left(J_{i}\right)$（with $\varphi(i) \in P_{n}\left(J_{i}\right)$ ）， where $P_{n}\left(J_{i}\right)$ denotes the set of n element subsets of $J_{i}, i \in I$ ．Now we are ready to state the main result of this section．

Theorem 5．1．Let L be a complete complemented modular lattice．Then the following conditions are equivalent：
（i）L is a projective geometry satisfying $\left(C_{n}\right)$ ；
（ii）L is atomic and infinitely n－distributive；
（iii）L is completely n－distributive，
（iv）L is isomorphic to a direct product of irreducible projective geometries of length $\leqq n$ ．

Corollary．The dual of a projective geometry satisfying $\left(C_{n}\right)$ also satisfies $\left(C_{n}\right)$ ． The dual of a completely n－distributive complemented modular lattice is also completely n－distributive．

Proof．（i）\Rightarrow（iv）．If（i）holds，then，by Frink［2］，Theorem 7，Corollary，L is a direct product of irreducible projective geometries $L_{\gamma}, \gamma \in \Gamma$ ．We show that L_{γ} must be of length $\leqq n$ for all $\gamma \in L$ ．Indeed，in the contrary case L_{γ} contains an independ－ ent set of $n+1$ atoms：$p_{0}, p_{1}, \ldots, p_{n}$ ．By irreducibility，$p_{0} \vee p_{1} \geqq p_{01}$ for some atom $p_{01} \neq p_{0}, p_{1}$ ．We have also $p_{0} \vee p_{1} \vee p_{2} \geqq p_{01} \vee p_{2} \geqq p_{012}$ for some atom $p_{012} \neq p_{01}, p_{2}$ ． Clearly，$p_{012} ⿻ ⿱ ⿱ 一 口 ⺕ 亅 八 ~ p_{0} \vee p_{1}$（otherwise $p_{0} \vee p_{1} \geqq p_{012} \vee p_{01} \geqq p_{2}$ ，a contradiction）．Similarly， for $\{i, j\}=\{0,1\}, \quad p_{012} ⿻ p_{i} \vee p_{2} \quad$ as otherwise $\quad p_{i} \vee p_{2}=p_{i} \vee p_{012} \vee p_{2}=p_{i} \vee p_{01} \vee p_{2}=$ $=p_{j} \vee p_{01} \vee p_{2} \geqq p_{j}$ ．By induction，we find an atom $p_{01 \ldots n} \leqq p_{0} \vee p_{1} \vee \ldots \vee p_{n}$ such that $p_{01 \ldots n}$ 事 $p_{0} \vee \ldots \vee p_{i-1} \vee p_{i+1} \vee \ldots \vee p_{n}, i=0,1, \ldots, n$ ．This contradicts $\left(C_{n}\right)$ ．
（iv）\Rightarrow（iii）．Irreducible projective geometries of length $\leqq n$ are completely n－ distributive（in fact，any meet of joins equals one of the meets of n element subjoins）， hence so are their direct products．
（iii）\Rightarrow（ii）．It is easily seen that complete n－distributivity implies infinite n－distri－ butivity．So we only have to show that L is atomic．It suffices to show that every ele－ ment of L is a join of elements of height $\leqq n$ ．Let $x \in L$ be of height greater than n ． Consider all independent sets $\left\{x_{\gamma 0}, x_{\gamma 1}, \ldots, x_{\gamma n}\right\}, \gamma \in \Gamma$ such that $\bigvee_{i=0}^{n} x_{\gamma i}=x$ ．As
usual, H_{n}^{Γ} denotes the set of all mappings of the set Γ to $H_{n}=\{0,1, \ldots, n\}$. By the complete n-distributive law,

$$
x=\bigwedge_{\gamma \in \Gamma} \bigvee_{i=0}^{n} x_{\gamma i}=\bigvee_{m_{2} \in H_{n}^{r}} \ldots \bigvee_{m_{n} \in H_{n}^{r}} \bigwedge_{\gamma \in \Gamma}\left(x_{\gamma m_{1}(\gamma)} \vee \ldots \vee x_{\gamma m_{n}(\gamma)}\right)
$$

We show that the elements

$$
z_{m_{1} \ldots m_{n}}=\bigwedge_{\gamma \in \Gamma i=1} \bigvee_{V}^{n} x_{y m_{i}(\gamma)}
$$

are of height $\leqq n$. Indeed, in the contrary case, some of the intervals [$0, z_{m_{1} \ldots m_{n}}$] contains a chain of $n+1$ elements. Thus there is an independent set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $x_{0}^{\prime}:=\bigvee_{i=1}^{n} x_{i}<z_{m_{1} \ldots m_{n}}$ and $\bigwedge_{i=1}^{n} x_{i}=0$. Let x_{0} be a complement of x_{0}^{\prime} in [0, x]. Then $\bigvee_{i=0}^{n} x_{i}=x$. Therefore, some of the joins $\bigvee_{i=0, i \neq j}^{n} x_{i}$ occurs in the \wedge-representation of $z_{m_{1} \ldots m_{n}}$. For $j=0$, this yields $x_{0}^{\prime} \geqq z_{m_{1} \ldots m_{n}}$, a contradiction. If $j \neq 0$, then

$$
x_{0}^{\prime}=x_{0}^{\prime} \wedge z_{m_{1} \ldots m_{n}} \leqq x_{0}^{\prime} \wedge \bigvee_{\substack{i=0 \\ i \neq j}}^{n} x_{i}=\bigvee_{\substack{i \neq 0 \\ i \neq 0, j}}^{n} x_{i}<\bigvee_{i=1}^{n} x_{i}=x_{0}^{\prime}
$$

This contradiction yields (ii).
The implication (ii) \Rightarrow (i) being very easy, the proof is complete.
6. Modular lattices. In this section we prove Theorem 1.4. By a result of Faigle [1], every modular lattice M can be embedded into a modular lattice M^{\prime} such that every element of M^{\prime} is a join of compact completely join-irreducible elements. If we prove that M^{\prime} is in $\operatorname{HSP}\left(\Delta_{n} \cap F\right)$, then the theorem follows. Let \mathscr{P} be the set of all completely join-irreducible elements of M (these elements are all compact) and let \mathscr{H} be the set of all finite subsets of \mathscr{P}. For any $H \in \mathscr{H} ;$ let M_{H} denote the set of all finite joins (in M^{\prime}) of elements of $H . M_{H}$ is clearly a lattice relative to the ordering of M^{\prime}. Let \wedge^{H} and \vee^{H} denote the operations in M_{H} (note that \vee^{H} is the same as \vee). For any element $x \in M^{\prime}$, and, for any $H \in \mathscr{H}$, let $x_{H}=\sup \{y \mid y \leqq$ $\left.\leqq x, y \in M_{H}\right\}$. Then

$$
x \wedge y=\bigvee_{H \in \mathscr{H}}\left(x_{H} \wedge^{H} y_{H}\right)
$$

and

$$
x \vee y=\underset{H \in \mathscr{H}}{\bigvee}\left(x_{H} \vee^{H} y_{H}\right)
$$

Indeed, observe that $x=\vee_{H} x_{X}$ and $H \cong G \in \mathscr{H}$ implies $x_{H} \leqq x_{G}$. If $p \leqq x \wedge y$ for some $p \in \mathscr{P}$ then $x_{H}=y_{H}=p$ holds for $H=\{p\}$, whence $p \leqq p \wedge p=x_{H} \wedge^{H} y_{H}$. This proves the first equality. Now let $p \leqq x \vee y$. Then $p \leqq \vee_{H, K}\left(x_{H} \vee y_{K}\right)=$ $=\vee_{H}\left(x_{H} \vee y_{H}\right)=\vee_{H}\left(x_{H} \vee^{H} y_{H}\right)$, proving the second equality.

Assume that $p=q$ is an m-ary lattice identity holding in all finite n-distributive lattices. Then $p=q$ holds in all the lattices M_{H}. Let $x_{1}, x_{2}, \ldots, x_{m} \in M^{\prime}$, and let p^{H} and q^{H} be the realizations of p and q in M. Then

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\bigvee_{H \in \mathscr{H}} p^{H}\left(\left(x_{1}\right)_{H},\left(x_{2}\right)_{H}, \ldots,\left(x_{m}\right)_{H}\right)= \\
& =\bigvee_{H \in \mathscr{H}} q^{H}\left(\left(x_{1}\right)_{H},\left(x_{2}\right)_{H}, \ldots,\left(x_{m}\right)_{H}\right)=q\left(x_{1}, x_{2}, \ldots, x_{m}\right) .
\end{aligned}
$$

References

[1] U. Faigle, Frink's theorem for modular lattices, Preprint.
[2] O. Frink, Complemented modular lattices and projective spaces of infinite dimension, Trans. Anter. Math. Soc., 60 (1946), 452-467.
[3] H. Gerstmann, n-Distributivgeserze, Acta Sci. Math., 46 (1983), 99-113.
[4] A. Huhn, Two notes on n-distributive lattices, Colloq. Math. Soc. János Bolyai, 14 Lattice Theory, North-Holland (Amsterdam, 1976), 137-147.
[5] V. L. Klee [editor], Convexity, Proc. Sympos. Pure Math., Vol. 7, Amer. Math. Soc. (Providence, R. I., 1963).

