Free product of ortholattices

SYLVIA PULMANNOVÁ

The purpose of this paper is to prove a structure theorem for the free product of ortholattices. The method of BRUNS [1] for constructing a free ortholattice is combined with Grätzer's method for constructing the free product of lattices [2].

An ortholattice is a lattice L with a smallest element 0 and a largest element 1 and with an orthocomplementation ' $: L \rightarrow L$ such that
(i) $a^{\prime \prime}=a, a \in L$,
(ii) $a \leqq b$ implies $b^{\prime} \leqq a^{\prime}, a, b \in L$,
(iii) $a \vee a^{\prime}=1, a \wedge a^{\prime}=0, a \in L$.

The free product of ortholattices is defined as follows.
Definition 1. Let $\left(L_{i}, 0_{i}, 1_{i},{ }^{\prime}\right)$, $i \in I$, be a set of ortholattices. An ortholattice ($L, 0,1$,) is a free product of the ortholattices $L_{i}, i \in I$, if
(i) for any $i \in I$, there is an injective homomorphism $u_{i}: L_{i} \rightarrow L$ which preserves the lattice operations and orthocomplementation so that each L_{i} can be considered as a subalgebra of L, and for $i, j \in I, i \neq j, L_{i}-\left\{0_{i}, 1_{i}\right\}$ and $L_{j}-\left\{0_{j}, 1_{j}\right\}$ are disjoint;
(ii) L is generated by $\cup\left\{u_{i}\left(L_{i}\right): i \in I\right\}$;
(iii) for any ortholattice A and for a family of homomorphisms $\varphi_{i}: L_{i} \rightarrow A$, $i \in I$, there exists a homomorphism $\varphi: L \rightarrow A$ such that $\varphi \circ u_{i}$ agrees with φ_{i} for all $i \in I$.

Definition 2. Let X be an arbitrary set. The set $P(X)$ of polynomials over X is the smallest set satisfying (i) and (ii), where
(i) $X \subset P(X)$,
(ii) if $p, q \in P(X)$, then $p \vee q$ and $p \wedge q \in P(X)$.

For a lattice A we define $A^{b}=A \cup\left\{0^{b}, 1^{b}\right\}$, where $0^{b}, 1^{b} \ddagger A$, and we order A^{b} by the rules: $0^{b}<x<1^{b}$ for any $x \in A, x \leqq y$ in A^{b} if $x, y \in A$ and $x \leqq y$ in A. Thus
$A^{b} \neq A$ and we have $a \wedge b=0^{b}$ only if $a=0^{b}$ or $b=0^{b}$, and $a \vee b=1^{b}$ only if $a=1^{b}$ or $b=1^{b}$.

Let $\left\{L_{i}: i \in I\right\}$ be a set of ortholattices. Put $Q=\bigcup\left\{L_{i}: i \in I\right\}$. We suppose that L_{i} and L_{j} are disjoint provided $i \neq j, i, j \in I$.

Definition 3. Let $P(Q)$ be the set of polynomials over Q. The upper i-cover of $p \in P(Q), p^{(i)}$, is an element of $\left(L_{i}\right)^{b}$, defined as follows:
(i) for $a \in Q$ (i.e. $a \in L_{i}$ for exactly one $i \in I$), $a^{(j)}=a$ if $j=i, a^{(j)}=1^{b}$ if $j \neq i$.
(ii) $(p \wedge q)^{(i)}=p^{(i)} \wedge q^{(i)}$ and $(p \vee q)^{(i)}=p^{(i} \vee q^{(i)}$, where \wedge and \vee is taken in $\left(L_{i}\right)^{b}$.

The definition of lower i-cover, $p_{(i)}$, is analogous, with 0^{b} replacing 1^{b} in (i).
It is clear that $p^{(i)} \neq 0_{b}$ and $p_{(i)} \neq 1^{b}$. An upper or lower i-cover is proper if it is not 1^{b} or 0^{b}.

Corollary 4. [2] For any $p \in \dot{P}(Q)$ and $i \in I$ we have that $p_{(i)} \leqq p^{(i)}$, and if $p_{(i)}$ and $p^{(j)}$ are proper and $p_{(i)} \leqq p^{(j)}$, then $i=j$.

Definition 5. For $p, q \in P(Q)$, we put $p \cong q$ if one of the following cases (i)-(vi) below occurs:
(i) $p=q$,
(ii) for some $i \in I, \quad p^{(i)} \leqq q_{(i)}$,
(iii) $p=p_{0} \wedge p_{1}$ where $p_{0} \sqsubseteq q$ or $p_{1} \sqsubseteq q$,
(iv) $p=p_{0} \vee p_{1}$ where $p_{0} \subseteq q$ and $p_{1} \subseteq q$,
(v) $q=q_{0} \wedge q_{1}$ where $p \sqsubseteq q_{0}$ and $p \sqsubseteq q_{1}$,
(vi) $q=q_{0} \vee q_{1}$ where $p \sqsubseteq q_{0}$ or $p \sqsubseteq q_{1}$.

The rank $r(p)$ of a $p \in P(Q)$ is defined as follows: for $p \in Q, r(p)=1$ and $r(p)=$ $=r\left(p_{1}\right)+r\left(p_{2}\right)$ if $p=p_{1} \wedge p_{2}$ or $p=p_{1} \vee p_{2}$.

Lemma 6. [2] Let $p, q, r \in P(Q)$ and $i \in I$. Then
(i) $p \leqq q$ implies $p_{(i)} \leqq q_{(i)}$ and $p^{(i)} \leqq q^{(i)}$.
(ii) $p \cong q$ and $q \cong r$ imply $p \cong r$.

Since by 5 (i), $p \subseteq p$ for any $p \in P(Q)$, the relation \subseteq is a quasiordering, and so we can define $p \equiv q$ iff $p \subseteq q$ and $q \subseteq p, p, q \in P(Q)$. We put

$$
\begin{gathered}
R(p)=\{q: q \in P(Q) \text { and } p \equiv q\}, \quad R(Q)=\{R(p): p \in P(Q)\}, \\
R(p) \leqq R(q) \text { if } p \leqq q .
\end{gathered}
$$

Lemma 7. [2] $R(Q)$ is a lattice, and we have

$$
R(p) \wedge R(q)=R(p \wedge q), \quad R(p) \vee R(q)=R(p \vee q)
$$

Furthermore, if $a, b, c, d \in L_{i}, i \in I$, and if $a \wedge b=c, a \vee b=d$ in L_{i}, then $R(a) \wedge R(b)=$. $=R(c)$ and $R(a) \vee R(b)=R(d)$.

As a consequence of Lemma 7 we get that $p \mapsto R(p), p \in L_{i}$, is an embedding of L_{i} into $R(Q)$. Therefore, identifying $p \in L_{i}$ with $R(p)$ we get each L_{i} as a sublattice of $R(Q)$, and hence $Q \subset R(Q)$. It is also obvoius that the partial ordering induced by $R(Q)$ on Q agrees with the original partial ordering.

Let us add the set $\{0,1\}$ to $P(Q)$ and let us define $0 \subseteq p \subseteq 1$ for any $p \in P(Q)$, $p \vee 0=p, p \wedge 0=0, p \vee 1=1, p \wedge 1=p$. Let us further define the map' on $P(Q) \cup\{0,1\}$ as follows: if $x \in L_{i}$ for some $i \in I$, put $x^{\prime}=x^{\prime \prime} ; 1^{\prime}=0,0^{\prime}=1$, and recursively, $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime},(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$.

We note that the elements 0,1 are different from the auxiliary elements 0^{b} and 1^{b} used in the definition of the lower and upper covers. In the following lemma we put $\left(0^{b}\right)^{\prime}=1^{b},\left(1^{b}\right)^{\prime}=0^{b}$.

Lemma 8. For any $p \in P(Q),\left(p^{\prime}\right)^{(i)}=\left(p_{(i)}\right)^{\prime}$ and $\left(p^{\prime}\right)_{(i)}=p^{(i)^{\prime}}$.
Proof. We shall proceed by induction on $r(p)$. If $r(p)=1$, then $p \in L_{i}$ for some $i \in I$, and $p^{(i)}=p_{(i)}=p, p^{(j)}=1^{b}, p_{(j)}=0^{b}$ for $j \neq i$. Therefore, $p^{(j) \prime}=\left(1^{b}\right)^{\prime}=$ $=0^{b}=p_{(j)}$ for $j \neq i$, and as $p^{\prime}=p^{i}$ is the orthocomplement of p in L_{i}, we have $\left(p^{\prime}\right)^{(j)}=1^{b}, \quad\left(p^{\prime}\right)_{(j)}=0^{b}$ for $j \neq i$. From this we obtain that $\left(p^{(j)}\right)^{\prime}=0^{b}=\left(p^{\prime}\right)_{(j)}$, $\left(p_{(j)}\right)^{\prime}=1^{b}=\left(p^{\prime}\right)^{(j)}$ for $j \neq i$. Further, $\left(p^{\prime}\right)^{(i)}=p^{\prime}=\left(p_{(i)}\right)^{\prime},\left(p^{\prime}\right)_{(i)}=p^{\prime}=\left(p^{(i)}\right)^{\prime}$. Now let $p=q \vee r$, then $p^{\prime}=q^{\prime} \wedge r^{\prime}$, and $\left(p^{\prime}\right)^{(i)}=\left(q^{\prime}\right)^{(i)} \wedge\left(r^{\prime}\right)^{(i)}=\left(q_{(i)}\right)^{\prime} \wedge\left(r_{(i)}\right)^{\prime}$ by the induction hypothesis, so that $\left(p^{\prime}\right)^{(i)}=\left(q_{(i)} \vee r_{(i)}\right)^{\prime}=\left(p_{(i)}\right)^{\prime}$, and dually for $p=q \wedge r$. The proof of $\left(p^{\prime}\right)_{(i)}=\left(p^{(i)}\right)^{\prime}$ is similar.

Lemma 9. $a^{\prime \prime}=a$ for any $a \in P(Q) \cup\{0,1\}$, and $a \subseteq b$ implies $b^{\prime} \subseteq a^{\prime}$ for any $a, b \in P(Q) \cup\{0,1\}$.

Proof. By the definition, $0^{\prime \prime}=1^{\prime}=0,1^{\prime \prime}=0^{\prime}=1$. If $a \in L_{i}$ for some $i \in I$, then obviously $a^{\prime \prime}=a$. Let $a=b \wedge c$. Then $a^{\prime}=b^{\prime} \vee c^{\prime}$, and $a^{\prime \prime}=b^{\prime \prime} \wedge c^{\prime \prime}$. By induction we obtain that $a^{\prime \prime}=a$. For $a=b \vee c$ the situation is dual.

Now we shall prove the second statement. If $a=0$ or $b=1$, it is obvious. We shall suppose that $a, b \notin\{0,1\}$ and proceed by induction on $r(a)+r(b)$. If $r(a)+r(b)=2$, then $a \subseteq b$ holds by 5 (i) or 5 (ii), so that $a, b \in L_{i}$ for some $i \in I$, and $a^{\prime}=a^{\prime i}, \quad b^{\prime}=b^{\prime i}$, which implies that $b^{\prime} \subseteq a^{\prime}$. Now let $r(a)+r(b)=r$, and let the statement hold for all $r(a)+r(b)<r$. If $a \subseteq b$ holds by 5 (i), then $a^{\prime}=b^{\prime}$. If $a \subseteq b$ holds by 5 (ii), then $a^{(i)} \leqq b_{(i)}$ for some $i \in I$. By Lemma 8 , $\left(a^{(i)}\right)^{\prime}=\left(a^{\prime}\right)_{(i)}$ and $\left(b_{(i)}\right)^{\prime}=\left(b^{\prime}\right)^{(i)}$. Therefore $a^{(i)} \leqq b_{(i)}$ implies $\left(b^{\prime}\right)^{(i)} \leqq\left(a^{\prime}\right)_{(i)}$, which in turn implies that $b^{\prime} \subseteq a^{\prime}$ by 5 (ii). If $a \subseteq b$ by 5 (iii) with $a=a_{0} \wedge a_{1}$, then $a_{0} \subseteq b$ or $a_{1} \subseteq b$, which implies by the induction hypothesis that $b^{\prime} \subseteq a_{0}^{\prime}$ or $b^{\prime} \subseteq a_{1}^{\prime}$. As $a^{\prime}=a_{0}^{\prime} \vee a_{1}^{\prime}$, we get that $b^{\prime} \subseteq a^{\prime}$ by 5 (vi). If $a \subseteq b$ by 5 (iv) and $a=a_{0} \vee a_{1}$, where $a_{0} \subseteq b$ and $\dot{a}_{1} \subseteq b$,
then $b^{\prime} \subseteq a_{0}^{\prime}$ and $b^{\prime} \subseteq a_{1}^{\prime}$ and this implies that $b^{\prime} \subseteq a_{0}^{\prime} \wedge a_{1}^{\prime}=a^{\prime}$ by 5 (v). If $a \subseteq b$ by 5 (v), then $b=b_{0} \wedge b_{1}$ and $a \subseteq b_{0}$ and $a \subseteq b_{1}$. This implies that $b_{0}^{\prime} \cong a^{\prime}$ and $b_{1}^{\prime} \subseteq a^{\prime}$, which implies that $b^{\prime}=b_{0}^{\prime} \vee b_{1}^{\prime} \subseteq a^{\prime}$ by 5 (iv). If $a \subseteq b$ by 5 (vi), where $b=b_{0} \vee b_{1}$ with $a \subseteq b_{0}$ or $a \subseteq b_{1}$, then $b_{0}^{\prime} \subseteq a^{\prime}$ or $b_{1}^{\prime} \subseteq a^{\prime}$, and therefore $b_{0}^{\prime} \wedge b_{1}^{\prime} \subseteq a^{\prime}$ by 5 (iii).

Following Bruns [1], we shall define the subset S of reduced elements in $P(Q) \cup\{0,1\}$.

Definition 10. Define a subset S of $P(Q) \cup\{0,1\}$ recursively as follows: a is in S if
(i) $a \in\{0,1\}$ or $a \in \cup\left\{L_{i}-\left\{0_{i}, 1_{i}\right\}: i \in I\right\}$,
(ii) $a=b \vee c$ with $b, c \in S$ and $b^{\prime} \Phi a, c^{\prime} \Phi \subseteq$,
(iii) $a=b \wedge c$ with $b, c \in S$ and $a \Phi b^{\prime}, a \Phi c^{\prime}$.

Lemma 11. The set S is closed under '.
Proof. If $a \in\{0,1\}$, then obviously $a^{\prime} \in\{0,1\}$. If $a \in L_{i}-\left\{0_{i}, 1_{i}\right\}$ for some $i \in I$, then $a^{\prime} \in L_{i}-\left\{0_{i}, 1_{i}\right\}$ so that $a^{\prime} \in S$. If $a=b \vee c, b, c \in S$ and $b^{\prime} \varsubsetneqq a, c^{\prime} \varsubsetneqq a$, then $a^{\prime}=b^{\prime} \wedge c^{\prime}$ and $a^{\prime} \Phi b, a^{\prime} \Phi c$. By induction, $b^{\prime}, c^{\prime} \in S$, and $a^{\prime} \in S$ by 10 (iii). If $a=b \wedge c$ with $b, c \in S$ and $a \Phi b^{\prime}, a \Phi c^{\prime}$, then by induction, $b^{\prime}, c^{\prime} \in S$, and $b \Phi a^{\prime}$, $c \Phi a^{\prime}$ implies that $a^{\prime} \in S$ by 10 (ii).

Lemma 12. If $a \in S-\{0,1\}$ then $a^{(i)} \neq 0_{i}$ and $a_{(i)} \neq 1_{i}$ for all $i \in I$.
Proof. We shall proceed by induction. If $a \in L_{i}-\left\{0_{i}, 1_{i}\right\}$ then $a^{(i)}=a_{(i)}=$ $=a \notin\left\{0_{i}, 1_{i}\right\}$, and $a_{(j)}=0^{b}, a^{(j)}=1^{b}$ for $j \neq i$. Now let $a=b \vee c$. Let us suppose that $a^{(i)}=0_{i}$ for some $i \in I$. Then $a^{(i)}=b^{(i)} \vee c^{(i)}$ implies that $b^{(i)}$ and $c^{(i)}$ are proper, and $b^{(i)}=c^{(i)}=0_{i}$, which contradicts the induction hypothesis. Now let $a=b \wedge c$, $b, c \in S, a \Phi b^{\prime}, a \Phi c^{\prime}$. If $a^{(i)}=0_{i}$, then $a^{(i)}=b^{(i)} \wedge c^{(i)}$ implies that $b^{(i)}$ or $c^{(i)}$ are proper, and $a^{(i)}=0_{i} \subseteq\left(b^{(i)}\right)^{\prime}=\left(b^{\prime}\right)_{(i)}$ implies by 5 (ii) that $a \subseteq b^{\prime}$, a contradiction. Now let us suppose that $a_{(i)}=1_{i}$ for $a \in S, i \in I$. By Lemma 11, $a^{\prime} \in S$, and by Lemma 8, $\left(a_{(i)}\right)^{\prime}=\left(a^{\prime}\right)^{(i)}=0_{i}$, which contradicts the above part of the proof.

Lemma 13. For any $a \in S-\{1\}, a^{\prime} \Phi a$. If $a \in P(Q)$ and $b \in S-\{1\}$, then $a \ddagger b$ or $a^{\prime} \Phi b$.

Proof. If $a \in S-\{1\}$ by 10 (i), then $a=0$ or $a \in L_{i}-\left\{0_{i}, 1_{i}\right\}$ for some $i \in I$. In both cases $a^{\prime} \Phi a$ holds. Now let us suppose that $a \in S-\{1\}$ and $a^{\prime} \subseteq a$ holds by 5 (ii). Then $\left(a^{\prime}\right)^{(i)} \leqq a_{(i)}$ for some $i \in I$. This implies that $\left(a^{\prime}\right)^{(i)}=\left(a_{(i)}\right)^{\prime} \leqq a_{(i)}$, but this is impossible by Lemma 12 . Now let $a \in S$ by 10 (ii) with $a=b \vee c$. If $b^{\prime} \wedge c^{\prime} \subseteq$ $\subseteq b \vee c$ holds by 5 (iii), then $b^{\prime} \subseteq b \vee c$ or $c^{\prime} \subseteq b \vee c$, which contradicts 10 (ii). If $b^{\prime} \wedge c^{\prime} \subseteq b \vee c$ by 5 (vi), then $b^{\prime} \wedge c^{\prime} \subseteq b$ or $b^{\prime} \wedge c^{\prime} \subseteq c$. From this it follows that $b^{\prime} \subseteq a$ or $c^{\prime} \leqq a$, contradicting 10 (ii). If $a=b \wedge c$, then if $b^{\prime} \vee c^{\prime} \subseteq b \wedge c$ by 5 (iv), then
$b^{\prime} \sqsubseteq b \wedge c$ and $c^{\prime} \subseteq b \wedge c$. But this implies that $b^{\prime} \subseteq b$ and $c^{\prime} \subseteq c$ by 5 (v), contradicting the induction hypothesis. If $b^{\prime} \vee c^{\prime} \subseteq b \wedge c$ by $5(\mathrm{v})$, then $b^{\prime} \vee c^{\prime} \cong b$ and $b^{\prime} \vee c^{\prime} \subseteq c$, and this implies by 5 (iv) that $b^{\prime} \subseteq b$ and $c^{\prime} \subseteq c$, contradicting the induction hypothesis. Thus the first part of Lemma 13 is proved.

Finally, if $a \subseteq b$ and $a^{\prime} \subseteq b$ with $a \in P(Q)$ and $b \in S-\{1\}$, then $a^{\prime} \subseteq b$ implies $b^{\prime} \subseteq a$, and this together with $a \subseteq b$ gives $b^{\prime} \subseteq b$, which contradicts the first part of the proof.

Obviously, the relation \subseteq defined on $S \times S$ by Definition 5 together with the rule $0 \subseteq x \subseteq 1$ for all $x \in S$, is a quasiordering on S. Let Θ be the relation defined on $S \times S$ by $a \Theta b$ iff $a \sqsubseteq b$ and $b \subseteq a$. We prove now that S / Θ is an ortholattice with $0 / \Theta$ as the smallest and $1 / \Theta$ as the largest element, $a / \Theta \vee b / \Theta=(a \vee b) / \Theta$ if $a \vee b \in S$ and $a / \Theta \vee b / \Theta=1 / \Theta$ if $a \vee b \notin S$, and, finally, that $a / \Theta \mapsto a^{\prime} / \Theta$ is an orthocomplementation.

Let us define $a / \Theta \leqq b / \Theta$ iff $a \subseteq b, a, b \in S$. Obviously, \leqq is a partial ordering on S / Θ, and $0 / \Theta$ and $1 / \Theta$ are the smallest and largest element of S / Θ, respectively. If, for $a, b \in S$, the element $a \vee b \in S$, then $a / \Theta \vee b / \Theta=(a \vee b) / \Theta$ by Lemma 7. If, for $a, b \in S$, the element $a \vee b \nsubseteq S$, then $a^{\prime} \subseteq a \vee b$ or $b^{\prime} \subseteq a \vee b$ holds, and for every c in S such that $a, b \sqsubseteq c$ we get by 5 (iv) that $a, a^{\prime} \sqsubseteq c$ or $b, b^{\prime} \subseteq c$. This implies by Lemma 13 that $c=1$. Thus $1 / \Theta$ is the supremum of a / Θ and b / Θ. For meets the situation is dual. Therefore, S / Θ is a lattice. For every $a \in S-\{0,1\}$ the elements $a \bigvee a^{\prime}$ and $a \wedge a^{\prime}$ are not in S, and this implies that a^{\prime} / Θ is the complement of a / Θ in S.

Theorem 14. Let $\left\{L_{i}: i \in I\right\}$ be a set of ortholattices and let $Q=\bigcup\left\{L_{i}: i \in I\right\}$. Denote by $P(Q)$ the set of all polynomials over Q and by S the subset of $P(Q) \cup\{0,1\}$ given by Definition 10. Finally, let Θ be the congruence relation defined $b y a \Theta b$ iff $a \subseteq b$ and $b \subseteq a$. Then S / Θ is a free product of $L_{i}, i \in I$.

Proof. Put $L=S / \Theta$. We have to prove that
(i) each $L_{i}, i \in I$, is a subalgebra of L and for $i, j \in I, i \neq j, L_{i}-\left\{0_{i}, 1_{i}\right\}$ and $L_{j}-\left\{0_{j}, 1_{j}\right\}$ are disjoint,
(ii) L is generated by $\cup\left\{L_{i}: i \in I\right\}$,
(iii) for any ortholattice A and for a family of homomorphisms $\varphi_{i}: L_{i} \rightarrow A$, $i \in I$, there exists a homomorphism $\varphi: L \rightarrow A$ such that φ agrees on L_{i} with φ_{i} for all $i \in I$.
(i) We have already proved that L is an ortholattice. Define $\psi_{i}: L_{i} \rightarrow L$ by $\psi_{i}(x)=x / \Theta \equiv R(x)$ if $x \in L_{i}-\left\{0_{i}, 1_{i}\right\}$, and $\psi_{i}\left(1_{i}\right)=1 / \Theta, \psi_{i}\left(0_{i}\right)=0 / \Theta$. Clearly, we have $\psi_{i}\left(x^{\prime}\right) \equiv \psi_{i}(x)^{\prime}$, and $\psi_{i}(x \vee y)=\psi_{i}(x) \vee \psi_{i}(y)$ for $x, y \in L_{i}$. If $x \in L_{i}, x \neq 0_{i}$, then $x / \Theta \neq 0 / \Theta$, which implies that ψ_{i} is an embedding.
(ii) is clear.
(iii) We define inductively a map $v: P(Q) \rightarrow A$ as follows: for $p \in Q$ we set
$v(p)=\varphi_{i}(p)$ if $p \in L_{i}, i \in I$. If $p=p_{0} \wedge p_{1}$ or $p=p_{0} \vee p_{1}, v\left(p_{0}\right)$ and $v\left(p_{1}\right)$ have already been defined, we set $v(p)=v\left(p_{0}\right) \wedge v\left(p_{1}\right)$ or $v(p)=v\left(p_{0}\right) \vee v\left(p_{1}\right)$, respectively.

We need the following lemma.
Lemma 15. For $p \in P(Q)$ and $i \in I$, the following hold.
(i) If $p_{(i)}$ is proper, then $v\left(p_{(i)}\right) \leqq v(p)$.
(ii) If $p^{(i)}$ is proper, then $v(p) \leqq v\left(p^{(i)}\right)$.
(iii) $p \leqq q$ implies that $v(p) \leqq v(q)$.
(iv) $v\left(p^{\prime}\right)=v(p)^{\prime}$ in A.

Proof. (i)-(iii) The proof is the same as the proof of Lemma 9 in [2].
(iv) If $p \in Q$, then $p \in L_{i}$ for exactly one $i \in I$, and $v(p)=\varphi_{i}(p)$, so that $v\left(p^{\prime}\right)=$ $=\varphi_{i}\left(p^{\prime}\right)=\varphi_{i}(p)^{\prime}=v(p)^{\prime}$. If $\quad p=p_{0} \wedge p_{1}, \quad$ then $\quad v\left(p^{\prime}\right)=v\left(p_{0}^{\prime} \vee p_{1}^{\prime}\right)=v\left(p_{0}^{\prime}\right) \vee v\left(p_{1}^{\prime}\right)=$ $=v\left(p_{0}\right)^{\prime} \vee v\left(p_{1}\right)^{\prime}$ by the induction hypothesis, which implies that $v\left(p^{\prime}\right)=\left(v\left(p_{0}\right) \wedge\right.$ $\left.\wedge v\left(p_{1}\right)\right)^{\prime}=v(p)^{\prime}$. The situation for $p=p_{0} \vee p_{1}$ is dual.

Now we can complete the proof of Theorem 14. Take a $p \in S$ and define $\varphi(p / \Theta)=v(p)$ if $p \in S-\{0,1\}$, and $\varphi(1 / \Theta)=1, \varphi(0 / \Theta)=0$ in $A . \varphi$ is well-defined since if $p, q \in S-\{0,1\}$ and $p / \Theta=q / \Theta$, then $p \subseteq q$ and $q \subseteq p$, which implies by Lemma 15 that $v(p)=v(q)$. Further, $\varphi(p / \Theta \wedge q / \Theta)=\varphi((p \wedge q) / \Theta)=v(p \wedge q)=$ $=v(p) \wedge v(q)=\varphi(p / \Theta) \wedge \varphi(q / \Theta)$ if $p \wedge q \in S, \quad p, q \in S-\{0,1\}$. Clearly, $\varphi(p / \Theta \wedge$ $\wedge 0 / \Theta)=\varphi(0 / \Theta)=0=\varphi(p / \Theta) \wedge \varphi(0 / \Theta), \quad$ and $\quad \varphi(p / \Theta \wedge 1 / \Theta)=\varphi(p / \Theta)=\varphi(p / \Theta) \wedge$ $\wedge \varphi(1 / \Theta)$. If $p, q \in S$, and $p \wedge q \notin S$, then $p \wedge q \subseteq p^{\prime}$ or $p \wedge q \subseteq q^{\prime}$, so that $v(p \wedge q) \leqq$ $\leqq v(p)^{\prime}$ or $v(q)^{\prime}$, which implies that $v(p \wedge q)=v(p) \wedge v(q)=0$. Hence, $\varphi(p / \Theta) \wedge$ $\wedge \varphi(q / \Theta)=v(p) \wedge v(q)=0=\varphi(0 / \Theta)=\varphi(p / \Theta \wedge q / \Theta)$. Further, $\varphi\left(p^{\prime} / \Theta\right)=v\left(p^{\prime}\right)=$ $=v(p)^{\prime}=\varphi(p / \Theta)^{\prime}$ if $p \in S-\{0,1\}$, and $\varphi(1 / \Theta)=\varphi(0 / \Theta)^{\prime}$. We see that $\varphi: S / \Theta \rightarrow A$ is a homomorphism. Finally, for $p \in L_{i}, p \neq 0_{i}, 1_{i}$, we have $\varphi(p / \Theta)=\varphi\left(\psi_{i}(p)\right)=$ $=\nu(p)=\varphi_{i}(p), \quad \varphi\left(\psi_{i}\left(0_{i}\right)\right)=\varphi(0 / \Theta)=0=\varphi_{i}\left(0_{i}\right), \quad \varphi\left(\psi_{i}\left(1_{i}\right)\right)=\varphi(1 / \Theta)=1=\varphi_{i}\left(1_{i}\right), \quad$ so that $\varphi \circ \psi_{i}=\varphi_{i}$. This completes the proof.

References

[1] G. Bruns, Free ortholattices, Canad. J. Math., 28 (1976), 977-985.
[2] G. Grätzer, Free products and reduced free products of lattices, in: Proc. Univ. Houston Lattice Theory Conf. (1973), Dept. Math., Univ. of Houston (Houston, 1973); pp. 539-563.

