Free product of ortholattices

SYLVIA PULMANNOVÁ

The purpose of this paper is to prove a structure theorem for the free product of ortholattices. The method of BRUNS [1] for constructing a free ortholattice is combined with GRÄTZER'S method for constructing the free product of lattices [2].

An ortholattice is a lattice L with a smallest element 0 and a largest element 1 and with an orthocomplementation $':L \rightarrow L$ such that

(i) $a''=a, a\in L,$

(ii) $a \leq b$ implies $b' \leq a'$, $a, b \in L$,

(iii) $a \lor a'=1$, $a \land a'=0$, $a \in L$.

The free product of ortholattices is defined as follows.

Definition 1. Let $(L_i, 0_i, 1_i, i)$, $i \in I$, be a set of ortholattices. An ortholattice (L, 0, 1, i) is a free product of the ortholattices L_i , $i \in I$, if

(i) for any $i \in I$, there is an injective homomorphism $u_i: L_i \to L$ which preserves the lattice operations and orthocomplementation so that each L_i can be considered as a subalgebra of L, and for $i, j \in I$, $i \neq j$, $L_i - \{0_i, 1_i\}$ and $L_j - \{0_j, 1_j\}$ are disjoint;

(ii) L is generated by $\bigcup \{u_i(L_i): i \in I\};$

(iii) for any ortholattice A and for a family of homomorphisms $\varphi_i: L_i \rightarrow A$, $i \in I$, there exists a homomorphism $\varphi: L \rightarrow A$ such that $\varphi \circ u_i$ agrees with φ_i for all $i \in I$.

Definition 2. Let X be an arbitrary set. The set P(X) of polynomials over X is the smallest set satisfying (i) and (ii), where

(i) $X \subset P(X)$,

(ii) if $p, q \in P(X)$, then $p \lor q$ and $p \land q \in P(X)$.

For a lattice A we define $A^b = A \cup \{0^b, 1^b\}$, where $0^b, 1^b \notin A$, and we order A^b by the rules: $0^b < x < 1^b$ for any $x \in A$, $x \le y$ in A^b if $x, y \in A$ and $x \le y$ in A. Thus

Received February 13, 1985.

 $A^b \neq A$ and we have $a \wedge b = 0^b$ only if $a = 0^b$ or $b = 0^b$, and $a \lor b = 1^b$ only if $a = 1^b$ or $b = 1^b$.

Let $\{L_i: i \in I\}$ be a set of ortholattices. Put $Q = \bigcup \{L_i: i \in I\}$. We suppose that L_i and L_i are disjoint provided $i \neq j$, $i, j \in I$.

Definition 3. Let P(Q) be the set of polynomials over Q. The upper *i*-cover of $p \in P(Q)$, $p^{(i)}$, is an element of $(L_i)^b$, defined as follows:

(i) for $a \in Q$ (i.e. $a \in L_i$ for exactly one $i \in I$), $a^{(j)} = a$ if j = i, $a^{(j)} = 1^b$ if $j \neq i$.

(ii) $(p \wedge q)^{(i)} = p^{(i)} \wedge q^{(i)}$ and $(p \vee q)^{(i)} = p^{(i)} \vee q^{(i)}$, where \wedge and \vee is taken in $(L_i)^b$.

The definition of lower *i*-cover, $p_{(i)}$, is analogous, with 0^b replacing 1^b in (i).

It is clear that $p^{(i)} \neq 0_b$ and $p_{(i)} \neq 1^b$. An upper or lower *i*-cover is proper if it is not 1^b or 0^b .

Corollary 4. [2] For any $p \in P(Q)$ and $i \in I$ we have that $p_{(i)} \leq p^{(i)}$, and if $p_{(i)}$ and $p^{(j)}$ are proper and $p_{(i)} \leq p^{(j)}$, then i=j.

Definition 5. For $p, q \in P(Q)$, we put $p \subseteq q$ if one of the following cases (i)--(vi) below occurs:

- (i) p = q,
- (ii) for some $i \in I$, $p^{(i)} \leq q_{(i)}$,

(iii) $p = p_0 \wedge p_1$ where $p_0 \subseteq q$ or $p_1 \subseteq q$, (iv) $p = p_0 \vee p_1$ where $p_0 \subseteq q$ and $p_1 \subseteq q$,

- (v) $q = q_0 \wedge q_1$ where $p \subseteq q_0$ and $p \subseteq q_1$,
- (vi) $q = q_0 \lor q_1$ where $p \subseteq q_0$ or $p \subseteq q_1$.

The rank r(p) of a $p \in P(Q)$ is defined as follows: for $p \in Q$, r(p)=1 and $r(p)==r(p_1)+r(p_2)$ if $p=p_1 \wedge p_2$ or $p=p_1 \vee p_2$.

Lemma 6. [2] Let $p, q, r \in P(Q)$ and $i \in I$. Then (i) $p \subseteq q$ implies $p_{(i)} \leq q_{(i)}$ and $p^{(i)} \leq q^{(i)}$. (ii) $p \subseteq q$ and $q \subseteq r$ imply $p \subseteq r$.

Since by 5 (i), $p \subseteq p$ for any $p \in P(Q)$, the relation \subseteq is a quasiordering, and so we can define $p \equiv q$ iff $p \subseteq q$ and $q \subseteq p$, $p, q \in P(Q)$. We put

$$R(p) = \{q \colon q \in P(Q) \text{ and } p \equiv q\}, \quad R(Q) = \{R(p) \colon p \in P(Q)\},$$
$$R(p) \leq R(q) \quad \text{if} \quad p \subseteq q.$$

Lemma 7. [2] R(Q) is a lattice, and we have

$$R(p) \wedge R(q) = R(p \wedge q), \quad R(p) \vee R(q) = R(p \vee q).$$

Furthermore, if $a, b, c, d \in L_i$, $i \in I$, and if $a \wedge b = c$, $a \lor b = d$ in L_i , then $R(a) \land R(b) = R(c)$ and $R(a) \lor R(b) = R(d)$.

As a consequence of Lemma 7 we get that $p \mapsto R(p)$, $p \in L_i$, is an embedding of L_i into R(Q). Therefore, identifying $p \in L_i$ with R(p) we get each L_i as a sublattice of R(Q), and hence $Q \subset R(Q)$. It is also obvoius that the partial ordering induced by R(Q) on Q agrees with the original partial ordering.

Let us add the set $\{0, 1\}$ to P(Q) and let us define $0 \subseteq p \subseteq 1$ for any $p \in P(Q)$, $p \lor 0 = p$, $p \land 0 = 0$, $p \lor 1 = 1$, $p \land 1 = p$. Let us further define the map ' on $P(Q) \cup \{0, 1\}$ as follows: if $x \in L_i$ for some $i \in I$, put $x' = x'^i$; 1' = 0, 0' = 1, and recursively, $(a \land b)' = a' \land b'$.

We note that the elements 0, 1 are different from the auxiliary elements 0^b and 1^b used in the definition of the lower and upper covers. In the following lemma we put $(0^b)'=1^b$, $(1^b)'=0^b$.

Lemma 8. For any $p \in P(Q)$, $(p')^{(i)} = (p_{(i)})'$ and $(p')_{(i)} = p^{(i)'}$.

Proof. We shall proceed by induction on r(p). If r(p)=1, then $p \in L_i$ for some $i \in I$, and $p^{(i)}=p_{(i)}=p$, $p^{(j)}=1^b$, $p_{(j)}=0^b$ for $j \neq i$. Therefore, $p^{(j)\prime}=(1^b)'=$ $=0^b=p_{(j)}$ for $j\neq i$, and as $p'=p'^i$ is the orthocomplement of p in L_i , we have $(p')^{(j)}=1^b$, $(p')_{(j)}=0^b$ for $j\neq i$. From this we obtain that $(p^{(j)})'=0^b=(p')_{(j)}$, $(p_{(j)})'=1^b=(p')^{(j)}$ for $j\neq i$. Further, $(p')^{(i)}=p'=(p_{(i)})'$, $(p')_{(i)}=p'=(p^{(i)})'$. Now let $p=q \lor r$, then $p'=q' \land r'$, and $(p')^{(i)}=(q')^{(i)} \land (r')^{(i)}=(q_{(i)})' \land (r_{(i)})'$ by the induction hypothesis, so that $(p')^{(i)}=(q_{(i)} \lor r_{(i)})'=(p_{(i)})'$, and dually for $p=q \land r$. The proof of $(p')_{(i)}=(p^{(i)})'$ is similar.

Lemma 9. a''=a for any $a \in P(Q) \cup \{0, 1\}$, and $a \subseteq b$ implies $b' \subseteq a'$ for any $a, b \in P(Q) \cup \{0, 1\}$.

Proof. By the definition, 0''=1'=0, 1''=0'=1. If $a \in L_i$ for some $i \in I$, then obviously a''=a. Let $a=b \wedge c$. Then $a'=b' \vee c'$, and $a''=b'' \wedge c''$. By induction we obtain that a''=a. For $a=b \vee c$ the situation is dual.

Now we shall prove the second statement. If a=0 or b=1, it is obvious. We shall suppose that $a, b \notin \{0, 1\}$ and proceed by induction on r(a)+r(b). If r(a)+r(b)=2, then $a \subseteq b$ holds by 5 (i) or 5 (ii), so that $a, b \in L_i$ for some $i \in I$, and $a'=a'^i$, $b'=b'^i$, which implies that $b'\subseteq a'$. Now let r(a)+r(b)=r, and let the statement hold for all r(a)+r(b) < r. If $a \subseteq b$ holds by 5 (i), then a'=b'. If $a \subseteq b$ holds by 5 (ii), then a'=b'. If $a \subseteq b$ holds by 5 (ii), then $a^{(i)} \leq b_{(i)}$ for some $i \in I$. By Lemma 8, $(a^{(i)})'=(a')_{(i)}$ and $(b_{(i)})'=(b')^{(i)}$. Therefore $a^{(i)} \leq b_{(i)}$ implies $(b')^{(i)} \leq (a')_{(i)}$, which in turn implies that $b' \subseteq a'$ by 5 (ii). If $a \subseteq b$ by 5 (iii) with $a=a_0 \wedge a_1$, then $a_0 \subseteq b$ or $a_1 \subseteq b$, which implies by the induction hypothesis that $b' \subseteq a'_0$ or $b' \subseteq a'_1$. As $a'=a'_0 \lor a'_1$, we get that $b' \subseteq a'$ by 5 (vi). If $a \subseteq b$ by 5 (iv) and $a=a_0 \lor a_1$, where $a_0 \subseteq b$ and $a_1 \subseteq b$.

4

then $b' \subseteq a'_0$ and $b' \subseteq a'_1$ and this implies that $b' \subseteq a'_0 \land a'_1 = a'$ by 5 (v). If $a \subseteq b$ by 5 (v), then $b = b_0 \land b_1$ and $a \subseteq b_0$ and $a \subseteq b_1$. This implies that $b'_0 \subseteq a'$ and $b'_1 \subseteq a'$, which implies that $b' = b'_0 \lor b'_1 \subseteq a'$ by 5 (iv). If $a \subseteq b$ by 5 (vi), where $b = b_0 \lor b_1$ with $a \subseteq b_0$ or $a \subseteq b_1$, then $b'_0 \subseteq a'$ or $b'_1 \subseteq a'$, and therefore $b'_0 \land b'_1 \subseteq a'$ by 5 (ii).

Following BRUNS [1], we shall define the subset S of reduced elements in $P(Q) \cup \{0, 1\}$.

Definition 10. Define a subset S of $P(Q) \cup \{0, 1\}$ recursively as follows: a is in S if

(i) $a \in \{0, 1\}$ or $a \in \bigcup \{L_i - \{0_i, 1_i\}: i \in I\}$, (ii) $a = b \lor c$ with $b, c \in S$ and $b' \subseteq a, c' \subseteq a$, (iii) $a = b \land c$ with $b, c \in S$ and $a \subseteq b', a \subseteq c'$.

Lemma 11. The set S is closed under '.

Proof. If $a \in \{0, 1\}$, then obviously $a' \in \{0, 1\}$. If $a \in L_i - \{0_i, 1_i\}$ for some $i \in I$, then $a' \in L_i - \{0_i, 1_i\}$ so that $a' \in S$. If $a = b \lor c$, $b, c \in S$ and $b' \oplus a, c' \oplus a$, then $a' = b' \land c'$ and $a' \oplus b$, $a' \oplus c$. By induction, $b', c' \in S$, and $a' \in S$ by 10 (iii). If $a = b \land c$ with $b, c \in S$ and $a \oplus b'$, $a \oplus c'$, then by induction, $b', c' \in S$, and $b \oplus a'$, $c \oplus a'$ implies that $a' \in S$ by 10 (ii).

Lemma 12. If $a \in S - \{0, 1\}$ then $a^{(i)} \neq 0_i$ and $a_{(i)} \neq 1_i$ for all $i \in I$.

Proof. We shall proceed by induction. If $a \in L_i - \{0_i, 1_i\}$ then $a^{(i)} = a_{(i)} = a \notin \{0_i, 1_i\}$, and $a_{(j)} = 0^b$, $a^{(j)} = 1^b$ for $j \neq i$. Now let $a = b \lor c$. Let us suppose that $a^{(i)} = 0_i$ for some $i \in I$. Then $a^{(i)} = b^{(i)} \lor c^{(i)}$ implies that $b^{(i)}$ and $c^{(i)}$ are proper, and $b^{(i)} = c^{(i)} = 0_i$, which contradicts the induction hypothesis. Now let $a = b \land c$, $b, c \in S$, $a \nsubseteq b'$, $a \oiint c'$. If $a^{(i)} = 0_i$, then $a^{(i)} = b^{(i)} \land c^{(i)}$ implies that $b^{(i)}$ or $c^{(i)}$ are proper, and $a^{(i)} = 0_i \subseteq (b^{(i)})' = (b')_{(i)}$ implies by 5 (ii) that $a \subseteq b'$, a contradiction. Now let us suppose that $a_{(i)} = 1_i$ for $a \in S$, $i \in I$. By Lemma 11, $a' \in S$, and by Lemma 8, $(a_{(i)})' = (a')^{(i)} = 0_i$, which contradicts the above part of the proof.

Lemma 13. For any $a \in S - \{1\}$, $a' \subseteq a$. If $a \in P(Q)$ and $b \in S - \{1\}$, then $a \subseteq b$ or $a' \subseteq b$.

Proof. If $a \in S - \{1\}$ by 10 (i), then a=0 or $a \in L_i - \{0_i, 1_i\}$ for some $i \in I$. In both cases $a' \subseteq a$ holds. Now let us suppose that $a \in S - \{1\}$ and $a' \subseteq a$ holds by 5 (ii). Then $(a')^{(i)} \leq a_{(i)}$ for some $i \in I$. This implies that $(a')^{(i)} = (a_{(i)})' \leq a_{(i)}$, but this is impossible by Lemma 12. Now let $a \in S$ by 10 (ii) with $a = b \lor c$. If $b' \land c' \subseteq b \lor c$ holds by 5 (iii), then $b' \subseteq b \lor c$ or $c' \subseteq b \lor c$, which contradicts 10 (ii). If $b' \land c' \subseteq b \lor c$ by 5 (vi), then $b' \land c' \subseteq b$ or $b' \land c' \subseteq c$. From this it follows that $b' \subseteq a$ or $c' \leq a$, contradicting 10 (ii). If $a = b \land c$, then if $b' \lor c' \subseteq b \land c$ by 5 (iv), then $b' \subseteq b \land c$ and $c' \subseteq b \land c$. But this implies that $b' \subseteq b$ and $c' \subseteq c$ by 5 (v), contradicting the induction hypothesis. If $b' \lor c' \subseteq b \land c$ by 5 (v), then $b' \lor c' \subseteq b$ and $b' \lor c' \subseteq c$, and this implies by 5 (iv) that $b' \subseteq b$ and $c' \subseteq c$, contradicting the induction hypothesis. Thus the first part of Lemma 13 is proved.

Finally, if $a \subseteq b$ and $a' \subseteq b$ with $a \in P(Q)$ and $b \in S - \{1\}$, then $a' \subseteq b$ implies $b' \subseteq a$, and this together with $a \subseteq b$ gives $b' \subseteq b$, which contradicts the first part of the proof.

Obviously, the relation \subseteq defined on $S \times S$ by Definition 5 together with the rule $0 \subseteq x \subseteq 1$ for all $x \in S$, is a quasiordering on S. Let Θ be the relation defined on $S \times S$ by $a\Theta b$ iff $a \subseteq b$ and $b \subseteq a$. We prove now that S/Θ is an ortholattice with $0/\Theta$ as the smallest and $1/\Theta$ as the largest element, $a/\Theta \vee b/\Theta = (a \vee b)/\Theta$ if $a \vee b \in S$ and $a/\Theta \vee b/\Theta = 1/\Theta$ if $a \vee b \notin S$, and, finally, that $a/\Theta \mapsto a'/\Theta$ is an orthocomplementation.

Let us define $a/\Theta \leq b/\Theta$ iff $a \subseteq b$, $a, b \in S$. Obviously, \leq is a partial ordering on S/Θ , and $0/\Theta$ and $1/\Theta$ are the smallest and largest element of S/Θ , respectively. If, for $a, b \in S$, the element $a \lor b \in S$, then $a/\Theta \lor b/\Theta = (a \lor b)/\Theta$ by Lemma 7. If, for $a, b \in S$, the element $a \lor b \notin S$, then $a' \subseteq a \lor b$ or $b' \subseteq a \lor b$ holds, and for every c in Ssuch that $a, b \subseteq c$ we get by 5 (iv) that $a, a' \subseteq c$ or $b, b' \subseteq c$. This implies by Lemma 13 that c=1. Thus $1/\Theta$ is the supremum of a/Θ and b/Θ . For meets the situation is dual. Therefore, S/Θ is a lattice. For every $a \in S - \{0, 1\}$ the elements $a \lor a'$ and $a \land a'$ are not in S, and this implies that a'/Θ is the complement of a/Θ in S.

Theorem 14. Let $\{L_i: i \in I\}$ be a set of ortholattices and let $Q = \bigcup \{L_i: i \in I\}$. Denote by P(Q) the set of all polynomials over Q and by S the subset of $P(Q) \cup \{0, 1\}$ given by Definition 10. Finally, let Θ be the congruence relation defined by $a\Theta b$ iff $a \subseteq b$ and $b \subseteq a$. Then S/Θ is a free product of L_i , $i \in I$.

Proof. Put $L=S/\Theta$. We have to prove that

(i) each L_i , $i \in I$, is a subalgebra of L and for $i, j \in I$, $i \neq j$, $L_i - \{0_i, 1_i\}$ and $L_i - \{0_i, 1_i\}$ are disjoint,

(ii) L is generated by $\bigcup \{L_i: i \in I\},\$

(iii) for any ortholattice A and for a family of homomorphisms $\varphi_i: L_i \rightarrow A$, $i \in I$, there exists a homomorphism $\varphi: L \rightarrow A$ such that φ agrees on L_i with φ_i for all $i \in I$.

(i) We have already proved that L is an ortholattice. Define $\psi_i: L_i \rightarrow L$ by $\psi_i(x) = x/\Theta \equiv R(x)$ if $x \in L_i - \{0_i, 1_i\}$, and $\psi_i(1_i) = 1/\Theta$, $\psi_i(0_i) = 0/\Theta$. Clearly, we have $\psi_i(x') \equiv \psi_i(x)'$, and $\psi_i(x \lor y) = \psi_i(x) \lor \psi_i(y)$ for $x, y \in L_i$. If $x \in L_i$, $x \neq 0_i$, then $x/\Theta \neq 0/\Theta$, which implies that ψ_i is an embedding.

(ii) is clear.

(iii) We define inductively a map $v: P(Q) \rightarrow A$ as follows: for $p \in Q$ we set

 $v(p) = \varphi_i(p)$ if $p \in L_i$, $i \in I$. If $p = p_0 \wedge p_1$ or $p = p_0 \vee p_1$, $v(p_0)$ and $v(p_1)$ have already been defined, we set $v(p) = v(p_0) \wedge v(p_1)$ or $v(p) = v(p_0) \vee v(p_1)$, respectively.

We need the following lemma.

Lemma 15. For $p \in P(Q)$ and $i \in I$, the following hold. (i) If $p_{(i)}$ is proper, then $v(p_{(i)}) \leq v(p)$. (ii) If $p^{(i)}$ is proper, then $v(p) \leq v(p^{(i)})$. (iii) $p \subseteq q$ implies that $v(p) \leq v(q)$. (iv) v(p') = v(p)' in A.

Proof. (i)—(iii) The proof is the same as the proof of Lemma 9 in [2].

(iv) If $p \in Q$, then $p \in L_i$ for exactly one $i \in I$, and $v(p) = \varphi_i(p)$, so that $v(p') = \varphi_i(p') = \varphi_i(p)' = v(p)'$. If $p = p_0 \wedge p_1$, then $v(p') = v(p'_0 \vee p'_1) = v(p'_0) \vee v(p'_1) = v(p_0)' \vee v(p_1)'$ by the induction hypothesis, which implies that $v(p') = (v(p_0) \wedge \wedge v(p_1))' = v(p)'$. The situation for $p = p_0 \vee p_1$ is dual.

Now we can complete the proof of Theorem 14. Take a $p \in S$ and define $\varphi(p|\Theta) = v(p)$ if $p \in S - \{0, 1\}$, and $\varphi(1|\Theta) = 1$, $\varphi(0|\Theta) = 0$ in A. φ is well-defined since if $p, q \in S - \{0, 1\}$ and $p/\Theta = q/\Theta$, then $p \subseteq q$ and $q \subseteq p$, which implies by Lemma 15 that v(p) = v(q). Further, $\varphi(p/\Theta \wedge q/\Theta) = \varphi((p \wedge q)/\Theta) = v(p \wedge q) =$ $=v(p)\wedge v(q)=\varphi(p/\Theta)\wedge \varphi(q/\Theta)$ if $p\wedge q\in S$, $p,q\in S-\{0,1\}$. Clearly, $\varphi(p/\Theta\wedge$ $\wedge 0/\Theta) = \varphi(0/\Theta) = 0 = \varphi(p/\Theta) \wedge \varphi(0/\Theta),$ $\varphi(p|\Theta \wedge 1|\Theta) = \varphi(p|\Theta) = \varphi(p|\Theta) \wedge$ and $\wedge \varphi(1|\Theta)$. If $p, q \in S$, and $p \wedge q \notin S$, then $p \wedge q \subseteq p'$ or $p \wedge q \subseteq q'$, so that $v(p \wedge q) \leq q \leq q'$. $\leq v(p)'$ or v(q)', which implies that $v(p \wedge q) = v(p) \wedge v(q) = 0$. Hence, $\varphi(p/\Theta) \wedge \varphi(q) = 0$. $\wedge \varphi(q/\Theta) = v(p) \wedge v(q) = 0 = \varphi(0/\Theta) = \varphi(p/\Theta \wedge q/\Theta).$ Further, $\varphi(p'|\Theta) = v(p') =$ $= v(p)' = \varphi(p/\Theta)'$ if $p \in S - \{0, 1\}$, and $\varphi(1/\Theta) = \varphi(0/\Theta)'$. We see that $\varphi: S/\Theta \to A$ is a homomorphism. Finally, for $p \in L_i$, $p \neq 0_i, 1_i$, we have $\varphi(p|\Theta) = \varphi(\psi_i(p)) =$ $=v(p)=\varphi_i(p), \quad \varphi(\psi_i(0_i))=\varphi(0/\Theta)=0=\varphi_i(0_i), \quad \varphi(\psi_i(1_i))=\varphi(1/\Theta)=1=\varphi_i(1_i), \text{ so}$ that $\varphi \circ \psi_i = \varphi_i$. This completes the proof.

References

- [1] G. BRUNS, Free ortholattices, Canad. J. Math., 28 (1976), 977-985.
- [2] G. GRÄTZER, Free products and reduced free products of lattices, in: Proc. Univ. Houston Lattice Theory Conf. (1973), Dept. Math., Univ. of Houston (Houston, 1973); pp. 539-563.

MATEMATICKÝ ÚSTAV SAV OBRANCOV MIERU 49 814 73 BRATISLAVA, CZECHOSLOVAKIA