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Abstract spectral theory. II: Minimal characters and 
minimal spectrums of multiplicative lattices 

N. K. THAKARE, C. S. MANJAREKAR and S. MAEDA 

1. Introduction 

A multiplicative lattice is a complete lattice in which there is defined a commu- • 
tative, associative multiplication which distributes over arbitrary joins (i.e., a(yxbx)= 
=\/xabx), ab^ahb and the greatest element 1 acts as a multiplicative identity. 
Throughout this paper, let L denote a multiplicative lattice. In L an element p dif-
ferent from 1 is called prime if ab=p implies a^p or b^p. A minimal element in 
the set of prime elements of L will be called a minimal prime element of L. A charac-
ter of L is a homomorphism of L onto a two element chain C2 • It was shown in [9] 
that an element a of L is prime if and only if there is a homomorphism (p of L onto 
C2with a=\/{x: <p(x)=0}. This means that a prime element of L can now be equiv-
alently associated with a character of L, and so a prime element itself will be called 
a character of L. We denote by a(L) and n(L) the sets of characters and minimal char-
acters of L respectively. 

This work is a continuation of the work initiated by THAKARE and MANJAREKAR 
[9]. Here we are concerned mainly with minimal characters of L and with the topology 
on the set n(L) which is the restriction of the hull kernel topology introduced on the 
set <j(L) (see [9]). 

The studies of minimal prime ideals for commutative rings, commutative semi-
groups, distributive lattices, lattice ordered groups,/-rings and recently O-distributive 
semilattices (THAKARE and PAWAR [11], [7]) have been carried out extensively. An 
attempt to unify these scattered studies was nicely made by KEIMEL [4]. Our study in 
this paper is close in spirit to the study [4], though however we carry out investiga-
tions to include many more novel notions the motivation for which stems from the 
desire to abstract available notions in commutative rings on the lines of DILWORTH [2]. 
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The notion a* of an element a of L is defined as the join of annihilators of powers 
of a, and this concept plays an important role in the investigations of minimal char-
acters in Sections 2 and 5. The concept of minimal characters belonging to an ele-
ment, appeared in MURATA [5] and ANDERSON [1], is discussed in Section 3. We ab-
stract the notion of an ideal B of a commutative ring R that is related to an ideal A 
of R, and this concept is used in the arguments on primary decompositions of ele-
ments of L in Section 4. 

In the previous paper [9], we assumed that L always satisfies the following condi-
tion which is equivalent to the ascending chain condition: 

(K) Every element of L is compact. 

In this paper, we assume that condition (K) or some weaker ones according to the 
need. 

We remark that for any p£o(L), the existence of a maximal character q with 
p=q can be proved under the assumption that L satisfies (K) (see [9]) but the exist-
ence of a minimal character r with rSp can be proved without this assumption 
(because, if Q is a chain of characters then p— f\Q is also a character). 

2. Characters and minimal characters 

A subset S of L is called multiplicatively closed if a, S implies ab€ S, and S 
is called submultiplicatively closed if for a, b£S there exists c£S with c^ab. With-
out assuming the condition (K), the Separation Lemma can be stated as follows 
(cf. [9], Lemma 2.2): 

Separa t ion Lemma. Let S be a submultiplicatively closed subset of L, and 
assume that every element of S is compact. If SH[0, d\—Q for some a£L, then there 
exists a character p of L which is a maximal element of the set {x£ L: a=x and 
SD[O,x]=0}. 

In fact, this set has a maximal element p by Zorn's lemma since every element 
of S is compact, and we can prove that p is a character since S is submultiplicatively 
closed. 

An element a of L is called M-compact if a" are compact for infinitely many in-
teger n. Every nilpotent element is M-compact. An idempotent is M-compact if and 
if it is compact. 

P ropos i t i on 2.1. If a is an M-compact element of L and if a"^b for every 
integer n, then there exists p£cr(L) such that b^p and a^p. Especially, if a is 
M-compact and is not nilpotent then there exists p£cr(L) such that a^p. 
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Proof . The set S={an: a" is compact} is submultiplicatively closed and 
Sn[0, b\=0. Hence, by the Separation Lemma there is p£<r(L) such that b^p 
and STl[O,/>]=0. Then, ai$p. 

Coro l l a ry 2.2. If the greatest element 1 of L is compact, then for any bÇ_L 
with b< 1 there exists p£a(L) such that b=p. 

Proof . Put a— 1 in Proposition 2.1. 

We need to introduce the following notation which is important in the arguments 
on minimal characters. For a£L, 

a* = V{x£L: ( f x = 0 for some integer n}. 

Evidently, 0*=1, 1* = 0, and a^b implies b*Sa*. 

Lemma 2.3. (i) If a* is compact, then (fa*—0 for some n, and aha* is nil-
potent. 

(ii) In the case that 1 is compact, a£L is nilpotent if and only if a*= 1. 

Proof . (i)Theset S={x£L: anx—0 for some «} is an ideal, since ara+"(xV> ,)s 
Samx\J(fy. Hence, if a* is compact then a*£S. Thus, a"a*=0 for some n, and 
(a/\a*)n+1=0. 

(ii) If a*— 1 then a is nilpotent by (i). The converse is evident. 

Lemma 2.4. Let a£L and pdcr(L). a^p implies a*^Sp. (Hence, aAa*^p 
always.) 

Proof . Assume a^p. If a"x—0 then we have anx=p and a"^p. Hence, 
x^p. Therefore, a*=p. 

Using the condition (K), we now get a fundamental result with some interesting 
corollaries. 

Theorem 2.5. Assume that L satisfies (K). For a£L and p£a(L) the follow-
ing statements are equivalent: 

(1) a*^p; 
(2) -there is some q£n(L) with q~p and a^q. 

Proof . (1)=K2): Let S={a"x: x^p, «=1 ,2 , ...}. Then S is multiplicatively 
closed. We have because if a"x=0 then x^a*^p by (1). By the Separation 
Lemma there exists r€<r(L) such that ST)[0, r]=0. Take qdn(L) such that q^r. 
We have r^p, since otherwise ar£Sf)[0, r], a contradiction. Also, a^=r, since 
a£S. Hence, q^p and a^q. 

(2)=>(1): If q ^ p and a ^ q , then a * ^ q S p by Lemma 2.4. 
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C o r o l l a r y 2.6. Assume that L satisfies (K), and let p(Lo(L). If p*~p then 
p is not minimal. 

Proof . If p*^p, there is q£n(L) with q^p and p^pq by Theorem 2.5. Thus, 
q<p, and p is not minimal. 

As stated in the previous paper [9], the hull kernel topology on o(L) is given as 
follows. For a£L we put 

V(a) = {pdo(L): a =§ p}. 

Since V(0)=o(L), F(1)=0, V(a)UV(b)=V(ab) (=V(aAb)) and nxV(ax)= 
= V(Vxax), we obtain a topology on a(L) such that {V(a): a£L} is the family of 
all closed sets. It is easy to verify that the closure R of a subset R of <r(L) coincides 
with V(AR). 

C o r o l l a r y 2.7. Assume that L satisfies (K), and let a£L. V(a*) is equal to the 
closure of the open set a(L)—V{a). 

Proof . By Lemma 2.4, we have o(L)— V(a)aV(a*). Hence, it suffices to show 
that if a(L)-V{a)<zV(x) then V(a*)cV(x). Let p€V(a*). By Theorem 2.5 there 
is q£n(L) with q^p and a^q. Then, qdo(L)— V(a)aV(x), and hence x^qSp. 
Hence p£V(x), and we obtain V(a*)<zV(x). 

The concept of regular characters was introduced by [3], [8] and [9], while its dual 
concept, coregular characters, appeared in [8] for bounded distributive lattices. 

A character r£<x(L) is called coregular if for p, qdo(L), r^p and q=p 
together imply r ^ q . The companion of Theorem 2.7 of [9] would now be proved. 

T h e o r e m 2.8. Assume that L satisfies (K). For r$.o(L) the following five state-
ments are equivalent: 

(1) r is coregular; 
(2) the set V(r) is open; 
(3) V(r)DV(r*)=0; 
(4) r \ / r * = 1; 
(5) there is xZ L such that x\/r= 1 and r"x=0 for some integer n. 

(We remark that (5)=>(4)=^(3)=>-(2)=>(l) can be proved without the assumption 
(K).) 

P roo f . (5)=>(4) is evident. (4)=*(3): If V(r)f]V(r*) had an element p then 
r\Jr*^p< 1, contradicting (4). (3)=>(2): We have V(r)UV(r*)=(r(L) by Lemma 
2.4. Hence, by (3) we have F(r)=a(L)-V(r*), and then V(r) is an open set. (2)=>-
( l ) :Let r^p and q^p, and put G=a(L)—V(r). Since G is closed by (2), we have 
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p$G=G=V(AG), and hence A G ^ p . As q=p, we have A G ^ q , whence q$G. 
Hence, r ^ q . 

Next, we assume that L satifies (K). (4) implies (5), since r"r*—Q for some n 
by Lemma 2.3 (i). (l)=K4):If r\Jr*<l, then there is pdo(L) with r\Jr*^p by 
Corollary 2.2. By Theorem 2.5 there is q£n(L) with q^p and r^q, con-
tradicting (1). 

Recall the concept of multiplicative normal (i.e. M-normal) lattice introduced in 
[9]. A multiplicative lattice L is called M-normal if each character of L contains a 
unique minimal character of L. We shall have several characterizations of M-nor-
mal multiplicative lattices in the following two theorems. 

T h e o r e m 2.9. The following two statements are equivalent: 
(1) L is M-normal; 
(2) every minimal character of L is coregular. 

If 1 is compact, (1) is also equivalent to the following statement: 
(3) <7IV<?2= 1 for any distinct minimal characters qx, q2 of L. 

P r o o f . (1)=>(2): Let r£n(L), and we take p,qdo(L) with r^p and q^p. 
There is q'dn(L) with q'=q. Then, r,q'^p, and hence r=q'^q by (1). Hence, r 
is coregular. (2)=>-(l): Let pdcr(L), rfcn(L) ( /=1 ,2) and r^p. Since rt is coregular 
by (2), we have r^r2. Similarly we have r2—ri> and hence rl=r2. 

(1)=*(3): Assume that 1 is compact. If ^1V<y2
< 1> then there is p£a(L) with 

qj\Jq2^p by Corollary 2.2, and hence q1 — q2 by (1). (3)=>(1) is evident. 

Recall that a topological space is called extremally disconnected if the closure of 
each open set is open. 

L e m m a 2.10. A topological space X is extremally disconnected if and only if 
for open subsets GX,G2 of X, G 1 HG 2 =0 implies G1PlG2=0. 

P r o o f . Assume that X is extremally disconnected. If G 1 f lG 2 =0, then 
GX<ZX—G2, since X~G2 is closed. Hence, G2<ZX—G1, Since GI is open, we have 
GaCX-Gx, and then G1F)G2=0. 

Next we shall prove the converse. For an open set G, we put U—X— G. Then, 
U is open and U(1G=0, and hence U(1G=0. Hence, U<zX—G=U, which im-
plies that U is closed. Hence, G is open. 

T h e o r e m 2.11. Assume that L satisfies (K). The following five statements are 
equivalent: 

(1) L is M-normal; 
(2) if GI and G2 are open sets of a (L) with G1f)G2=0 then G1DG2=0; 
(3) o(L) is extremally disconnected; 
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(4) V(a*) is open for every a^L\ 
(5) if V(a){JV(b)=a(L) then a*\Jb*=l. 

Proof . The equivalences (2)o(3) and (3)<=>(4) immediately follow from Lemma 
2.10 and Corollary 2.7, respectively. 

(1)=>(2): Let Gj. and G2 be open sets with G i n G 2 = 0 . We can put G f=<7(L)-
- F ( a . ) for some a£L ( i= l ,2 ) . By Corollary 2.7, we have Gt=V(af). If GlilG2 

had an element p, then a f s p and by Theorem 2.5 there would exist q1, q2£n(L) 
with q^p and at^qt. By (1), we have q1=qiwhich implies q^G^G^, a 
contradiction. 

(2)=>(5): Let V(a){JV(b)=o{L). Putting G^o^-Via) and G2 = o{L)~ 
-V(b), we have G1HG2=0. By (2) we have V(a*)nV(b*)=G1DG2=0. Hence, 
a*Vb*=l by Corollary 2.2. 

(5)=>(1): Let qi, q2£n(L) with q1^q2, and we shall show V (ql)]JV (q^)—a(L). 
For any p£cr(L), there is q£n(L) with q=p. If q^qi, then since q^q we have 
q*^q^p by Lemma 2.4. If q=qlt then q^q2 and hence we have q2^p. Thus, 
we get V(q*)\JV(qt)=a(L), and then q**\/q**=l by (5). Since qf^qt by Cor-
ollary 2.6, we get q**^q t by Lemma 2.4. Hence, qiVq2= 1, and there is no char-
acter which contains both qx and q2. 

3. Minimal characters belonging to an element 

We consider a relation between characters and multiplicatively closed subsets. 
For a£L, we put 

C(a) = {x£L: x $ a}. 

(This notion was introduced in NEMITZ [6].) The set of all multiplicatively closed 
subsets of L is denoted by Jl (L). 

Lemma 3.1. C(p)£Jl(L) if and only if p is a character of L. The mapping 
pi-^C(p) of o(L) into Jl(L) is one-to-one, and p^qoC(p)z)C(q). 

Proof . Evident. 

Lemma 3.2. Let a£L, and take M£J/(L) with MC\[0, a]=0. 
(i) ale={NdJi(L)\ Nz)M and TVflfO, a]=0} has a maximal element. 

(ii) is maximal in if and only if for any x(LL with x$N* there exists 
y£N* such that xny~a for some integer n. 

Proof , (i) For any chain -f the union U {N: N Z ' f } belongs to aU. 
Hence, Ql has a maximal element by Zorn's lemma. 
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(ii) Let N* be maximal and let x$N*. The set N1={xn,y,xny: y£N*, 
n= 1 ,2, . . .} is multiplicatively closed since (L), and NXt>N*. Moreover, 
N^N*, for xdN} and x$N*. Hence, by the maximality of N* we have A^fl 
fl[0, a]=0. Then, there exists y£N* such that x"y^a for some n. 

Next, take N£J((L) with N^N*, and take x£N-N*. If N* satisfies the 
given condition, there exists y£N* such that xny=a for some n. Then, 
D[0, a]. Hence, N* is maximal in 

Recall the concept of minimal characters belonging to an element, which was 
initiated by MURATA [5]. For a£L with A < 1, a minimal element of V(a)= 
= {p£a(L): a=p) is called a minimal character belonging to a. The set of all minimal 
characters belonging to a is denoted by Vmia(a). For any chain Q in V(a), we have 
AQ£V(a). Hence, for any p£V(a) there is q£Vmm(a) with q^p by Zorn's 
lemma. We remark that J^nin(0)=7t(L). 

T h e o r e m 3.3. Let a£L with a < l and let p£a(L). If L satisfies (K) then 
the following statements are equivalent: 

(i) /№„ ( « ) ; 
(2) C(p) is maximal in the set {N£Jt(L): Nf)[0, a]=0}; 
(3) aSp and there exists x£L such that x^p and p"x^a for some integer n. 
Moreover, without assuming (K), the statements (2) and (3) are equivalent, and 

(2) implies (1). 

Proof . (2)o-(3): Putting M= {1} in Lemma 3.2, (2) is equivalent to the follow-
ing statement: " a s / ; and for any x ^ p there is y%p such that x " y ^ a for some 
n". Evidently, this is equivalent to (3). 

(2)=>(1): If a^q^p with q£o(L), then C(q)iJ({L), C(?)n[0, a]=0 and 
C(q)z>C(p). Hence, C(q)=C(p) by (2), and then q~p. 

We assume (K) and prove (1)=K2). Put ¿11= {N£ Ji(L): iVn[0, a]=0). C(p)£W 
by a ^ p . If C(p)<zN£%, then AT)[0, a]=0, and by the Separation Lemma there is 
q£<x(L) with a^q and A^D[0, q]=0. Then, C(q)z>Nz>C(p), and hence p^q. 
Hence, p=q by (1), and then C{p)=N. Thus, C{p) is maximal in 

T h e o r e m 3.4. Let a£L with a < 1. If every finite product of elements of 
Vmia(a) is compact (especially, if L satisfies (K)J, then Fmin(a) is a finite set. 

Proof . Assume that Vmia(a) is an infinite set. The set M of all finite products 
of elements of Vmin(a) is multiplicatively closed. If b£M, then b=p1...p„ with 
Pi^Vmm(a), and by the assumption there is q£Vm-m(a) which is different from all 
Pi. We have b^q since p&q for all i, and then b^a. Thus, we have Mf][0, a]=0. 
By the Separation Lemma there is r£<x(L) with a^r and MC\[O,r]=0. But, we 
can take r0£ Vmia(a) with r0^r, and then roCMfl[0, r], a contradiction. 
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The concept of radicals is a classical notion of commutative ring theory and its 
abstract formulation has been attempted long back and is scattered in several papers 
in various forms (see for example MURATA [5] and ANDERSON [1]). Let us recall this 
concept in abstract form. The radical of an element a£L, denoted by J f a , is de-
fined by 

/ a = V{x£L: / s a for some integer n}. 

Evidently, asfa for any a£L, and p—fp if p(Lo(L). Hence, we have 
V(fa)=V(a). 

Lemma 3.5. (i) If j/q is compact then | / a n S a for some integer n. 
(ii) If i a and fb are compact then fab = y aAb - fa Afb. 

(iii) If 1 is compact, then 1 implies fa< 1. 

Proof , (i) The set S={x£L: x"^a for some w} is an ideal, for (xVj>)m+"s= 
^Xm\/y". Hence, if fa is compact then fa£S. 

(ii) Evidently, fab s^aAb ^ f a A]/b. By (i), fam^a, fbnSb for some m, n. 
Then, (faAfb)m+n=(faAfb)m(faAfb)n^famfbn^ab. Hence, faAfb^fab. 

(iii) By Corollary 2.2, there is p£a(L) with a^p. Then, fa ^ f p = p< 1. 

Theo rem 3.6. Assume that L is generated by M-compact elements, that is, 
every element of L is a join of M-compact elements. For a£L with a < 1, 

}/a = A{p: PdVmin(a)} = A{p: p£V(a)}. 

Proof . Evidently, AVmia(a)= AV (a), and / a ^ A F ( / a ) = A F ( a ) . If fa-,: 
< A V(a), there would exist an M-compact element x such that x^A V(a) and 
x^fa. Then, xn^a for every n, and by Proposition 2.1 there is pdo(L) with 
a=p and x^p. This contradicts x^A V(a). 

Coro l l a ry 3.7. Assume that L is generated by M-compact elements, and let 
a£L with 1. Vmin(a) contains only one element if and only if fa is a character. 

Proof . The "only if" part follows from the theorem, and the converse is evident. 

We remark that the r-lattice introduced in [1] satisfies the assumption of this 
theorem, because any compact element of an r-lattice is M-compact by Theorem 2.1 
of [1]. 
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4. Related elements and associated characters of primary elements 

We now take up a notion of one more related concept which is found in ring 
theory. The notion so far has not been pulled down to lattice theory nor has been 
abstracted in the sense of DILWORTH [2]. 

Let adL with 1. An element b£L is said to be related to a if there exists 
x£L such that x.^a and bx^a. If b is related to a and b'^b then evidently b' 
is related to a. Hence, the set of all elements of L which are related to a is multiplica-
tively closed. Next, let p£o(L). Evidently, b is related to p if and only if b^p. 
Hence, the set of all elements of L which are unrelated to p coincides with C (p) and 
hence it is multiplicatively closed. 

Lemma 4.1. Let a£L with 1, and let bdL. 
(i) If a=a1A...Aa„ 1) and i f b is related to a, then b is related to at for 

some i. 
(ii) If there exists x£L such that x^a and b"xSa for some integer n, thenb 

is related to a. 
(iii) Assume that fa is compact. I f b is related to fa then b is related to a. Espe-

cially, fa is related to a. 

Proof , (i) is evident. 
(ii) If J t^a and b"x^a, then taking the smallest integer i such that b'x^a, 

we have b'~1x^a and b(bi~1x)^a (b°— 1). Hence, b is related to a. 
(iii) By Lemma 3.5 (i), for some n. If x^a and bx^ fa, then x"^a 

and b"x"^fan^a. Hence, b is related to a by (ii). 

T h e o r e m 4.2. Assume that L satisfies (K), and let a£L with a<l. Every 
minimal character p belonging to a is related to a. 

Proof . By Theorem 3.3, there is x£L such that x ^ p and p " x ^ a for some«. 
Then, we have x^a, for aSp. Hence, p is related to a by Lemma 4.1. (ii). 

Following DILWORTH [2], an element q£L with 1 is called primary if xy=q 
implies x^q or y"=q for some integer n. 

Lemma 4.3. If q£L is primary and if i q is compact, then Yq£a(L) and 
Vm-m(q)={^ q}. Moreover, b£L is related to q if and only if b^q. 

Proof . This can be proved by using the fact: Yq"^q for some n, and the details 
are omitted. 

Hereafter in this section, we assume that 
(*) For every primary element q of L the element )jq is compact. 

9 
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By this assumption, we have f l f ^ q for some integer n, and fq is the least 
element of V(q). We call fq the character associated with q. 

As stated in [2], we have the following lemma (the proof is omitted). 

Lemma 4.4. If q1, q2 are primary elements associated with the same character p, 
then qtAq2 is also a primary element with the same associated character p. 

Following [2], an element a£L is said to have an irredundant (or normal) pri-
mary decomposition, if a=q1A...Aqm for some primary elements qx, ..., qm and if 
this expression cannot be reduced further. Then, by Lemma 4.4, qt, ...,qm are asso-
ciated with distinct characters. 

Remark 4.5. If a£L has an irredundant primary decomposition a=q1A... 
...Aqm (ms2), then a is not primary. This fact can be proved by the same way as 
[5], Lemma 7, since fa =fq1A...Afqm by Lemma 3.5 (ii). 

Lemma 4.6. Let a£L have an irredundant primary decomposition a—q^A... 
...A qm and put p=fqi (p£a(L)). 

(i) For pda(L), a^p if and only if pt=p for some i. 
(ii) An element c£L is related to a if and only if c^pi for some i. 

m 
Proof , (i) Let a^p. We have p">^q; for some integer nt. Put b= JJp"1. 

i = l 
Since b^q-t for every i, we have bsa^p. Then, pt=p for some i, since p is a 
character. The converse is evident. 

(ii) If c is related to a, then c ^ = pt for some i by Lemma 4.1 (i) and Lemma 
4.3. Conversely, let cSpl for some /. Putting b= ¡\ qJf we have ¿>>a since the 

m 
decompositon is irredundant. Since p1=qi for somen, we have f\ q}=a. 

i=i 
Hence, c is related to a by Lemma 4.1 (ii). 

Theorem 4.7. Let a£L have an irredundant primary decomposition a=q1A... 
...A qm and put Px—fqi. The set of all minimal elements of {pl5 ..., pm} coincides 
with Fmin(a). The set of all maximal elements of {px, ...,pm} coincides with the set of 
all maximal elements of the set {x£L: x is related to a}. 

Proof . These statements immediately follow from Lemma 4.6. 

Coro l la ry 4.8. If a£L has an irredundant primary decomposition, then every 
maximal element among all the elements related to a is a character containing a. 

For a£L and p£a(L), we put 

a(p) = V{x£L: xy s a for some y ^ p). 
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We now set ourselves to describe the elements a(p). 

Lemma 4.9. If a^p then a^a(p)Sp. If a^p then a{p)= ]. 

Proof . Let a ^ p . If x y ^ a and y ^ p , then we have xSp , since xy^p . 
Hence, a(p)^p. Moreover, a^a(p), since al^a and Next, a^p implies 
a(p)= 1, since 1 aS.a. 

Lemma 4.10. Let a£L have an irredundant primary decomposition a—qlt\... 
...Aqm and put Pi — iqi- For p£o(L), if we put l(p)~{i: pt^p}, then a{p)= 
= A{GI: iel(p)}. (a(p)= 1 if I(P)=0.) 

Proof . Let /€/(?)• If xySa and y ^ p , then since p ^ p , we have y ^ p t = 
= ]/qi, and hence yn^qt for every n. Since xy^qt, we have x^q^ Thus, a(/>)— 
^qt. Put b—A{qi: i£l(p)}. As above we get a(p)sb. Next, since p"jJ=qj for 
some nj, we put c=JJ{py: j$I(p)}. Then, c^p, since pj^p for every j£l(p). 
We have CS A {qj: j$I(p)}, and hence bcSa. Therefore, b^a(p). (If I(p)=0 
then we may put ¿=1.) 

Theorem 4.11. Let a£L have an irredundant primary decomposition a=q1f\... 
...A qm and put p-=fqi. For p£a{L), p=pt for some i if and only if a(p)< 1 and 
p is maximal among all the elements related to a(p). 

Proof . Let p=pk and put 1= {i: pi=pk} ( / ^0 , since k£l). By Lemma 4.10, 
a(pk) has an irredundant primary decomposition a(pk) = A : i£l}. Since pk is 
maximal in {/>,: /£/}, pk is maximal in {x(!L: x is related to a(p)} by Theorem 4.7. 

Conversely, if a(p)< 1, then I(p)={i: pt=p} is non-empty and a(p) has an 
irredundant primary decomposition a(p)=/\{qi: i£l(p)}. If p is maximal among the 
elements related to a(p), then p coincides with a maximal element of {/?,: i£l(p)}. 

Coro l la ry 4.12. Any two irredundant primary decompositions of an element 
a£L have the same number of components and the same set of associated characters. 

5. Minimal spectrum 

First we shall introduce a new concept. A character p£o(L) is called purely 
minimal if C(/>) is maximal in the set {M£ Jl(L): 0 I t follows from Lemma 3.1 
that any purely minimal character is minimal. The set of all purely minimal charac-
ters is denoted by n0(L). This is a subset of n(L). 

Theorem 5.1. (i) For p£<j(L) the following four statements are equivalent: 
(1) p is purely minimal; 
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(2) there exists x£L such that x^p and p"x—0 for some integer n: 
(3) 
(4) for any x£L,p contains precisely one of x and x*; 
(ii) if L satisfies (K), then any minimal character is purely minimal, that is, 

n0(L)=n(L). 

Proof . The equivalence of (1) and (2) follows from Theorem 3.3 by putting a=0. 
The statement (ii) also follows from Theorem 3.3. The equivalence (2)«-(3) and 
the implication (4)=>(3) are evident. (3)=>-(4): If x^p, then x*Sp by Lemma 2.4. 
If x ^ p , then p*^x*, and hence x*^p by (3). 

Coro l l a ry 5.2. If pd(j(L) is purely minimal then p**^p, and x=p implies 
x**Sp. . 

Proof . Since p*^p by Theorem 5.1, we have p**^p by Lemma 2.4. If xSp, 
then we have x*^p*, and hence x**^p**^p. 

The hull kernel topology on n(L) is the induced topology of the hull kernel top-
ology on a(L). n(L) with this topology will be called the minimal spectrum of L. For 
any a£L, the set h(a)= {p£n(L): a^p} is called the hull of a. For any subset R 
of n(L), the element K(R)= A {/>: p£R} is called the kernel of R. Then, a subset R 
of n(L) is closed if and only if R=h(a) for some a£L. Evidently, a^K(h(a)) for 
every a£L, and for every Rcziz(L), h(K(R)) is equal to the closure of R. 

Now we get an important topological property of purely minimal characters. 

Theorem 5.3. If p£n(L) is purely minimal then p is an isolated point of n(L). 

Proof . Put G=n(L)—h(p*). G is an open set, and p£G since p*^p. If 
q£n(L) and q^p, then pi^q and hence p*=q by Lemma 2.4. Hence we have 
G={p}, and p is an isolated point. 

Coro l l a ry 5.4. The induced topology on n0(L) from n(L) is discrete. If L satisfies 
(K) then the minimal spectrum n(L) is discrete. 

Proof . These statements follow from Theorem 5.3 and Theorem 5.1 (ii) imme-
diately. 

Remark 5.5. If every finite product of elements of n(L) is compact (especially, 
f L satisfies (K)), then n(L) is a finite set. This follows from Theorem 3.4 by putting 
a=0. 

Finally, we shall obtain several important results about hulls and nilpotent 
elements, assuming the condition (K). 

Lemma 5.6. Assume that L satisfies (K). For a£L and pZn(L), a^p if aud 
only if a*^p. Hence, h(a)=n{L)-h(a*) = h(a**). 
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Proof . This follows from the property (4) in Theorem 5.1. 

Theorem 5.7. Assume that L satisfies (K), and let R be a subset of n(L). If we 
put a= V{p*: p£R), then R=h(a*)=h(K(R)). 

Proof . If p£R, then we have p*^a and p*^pp, and then a^p. Conversely, 
if a^pdn(L), there exists q£R such that q*^pp. Then, q=p by Lemma 5.6, and 
hence p-q£R. Therefore, R=n(L)-h(a)=h(a*). Next, we have a*^K(h(a*))= 
= K(R), and hence h (K(R))czh(a*)=R(zh (K(R)). 

Lemma 5.8. Assume that L satisfies (K). 
(i) fa is the greatest nilpotent element and is equal to A {p: pdn(L)}. 

(ii) x£L is nilpotent if and only if h(x)—n(L). 
(iii) x* is nilpotent if and only if h(x)=0. 
(iv) xAx* is nilpotent for every x£L. 

Proof , (i) follows from Lemma 3.5 (i) and Theorem 3.6. Evidently, (ii) follows 
from (i). (iii) follows from (ii), since h(x*)=n(L)—h(x). (iv) follows from Lemma 
2.3 (i). 

Theorem 5.9. Assume that L satisfies (K). The following eight statements are 
equivalent: 

(1) no nonzero element of L is nilpotent; 
(2) A {p: p£n(L)}=0; 
(3) x*= t\{p£n(L): x^p) for every x£L; 
(4) x* = K(h(x*)) for every x£L; 
(5) x** = K(h(x)) for every x£L; 
(6) x^x** for every x£L; 
(7) xAx* = 0' for every x£L; 
(8) x * = l implies x=0. 

Proof . The equivalence of (1) and (2) follows from Lemma 5.8 (i). The equiva-
lence of (3) and (4) follows from Lemma 5.6. (2)^(4): Putting y=K(h(x*)), we have 
x*^y. If x^p£n(L), then y~p, since x*Sp. Hence, xySp for every p£n(L), 
and hence by (2). Thus, y^x*. (4)=>(5) is evident, since h(x**)=h(x). 
(5)=>.(6) is evident. (6)=>-(8) is evident, since 1*=0. (8)=>(1) follows from Lemma 
2.3 (ii). (1)=>(7) follows from Lemma 5.8 (iv). (7)=>(8) is evident. 

Theorem 5.10. Assume that L satisfies (K) and that no nonzero element of L is 
nilpotent. 

5 
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(i) L is pseudo-complemented and x* is a pseudo-complement of x for any x£ L. 
(ii ) For x,y£L, h(x)<zh(y) if and only if x* S y*. Hence, h(x)=h(y) if and 

only if x*=y*. 
(iii) x***=x* for every x£L. 
(iv) For a£L, the following four statements are equivalent: 
(1) a—a** (following [10], a may be called normal); 
(2) a= b* for some b£L; 
(3) a=K(h(a))-, 
(4) a is the kernel of some subset of n(L). 

Proof , (i) If yAx=0, then xy—0 and hence ySx*. Then, by (7) of Theorem 
5.9, x* is thé greatest element of the set {y£L: jAx=0}. 

(ii) If h(x)ah{y), then h(x*)=7t(L)-h(x)^>n(L)-h(y)=h(y*), and hence 
x*=K{h(x*))^K(h(y*))=y* by (4) of Theorem 5.9. Conversely, if x*^y*, then 
h(x*)z>h(y*) and then h(x)ch(y). 

(iii) By (6) of Theorem 5.9, we have x*ë(x*)**, and moreover implies 
(x**)*^x*. .... -

(iv) (1)=>(2) and (3)=>(4) are trivial. (1) and (3) are equivalent by (5) of Theorem 
5.9. (2)=>(1): If a=b* then a**=b***=b*=a by (iii). (4)=>(3): If a—K(R) for 
some Rcm(L), then we have h(a)—R by Theorem 5.7. 
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