Varieties and quasivarieties, generated by two-element preprimal algebras, and their equivalences

KLAUS DENECKE*
Dedicated to Professor H.-J. Hoehnke on his 63rd birthday

1. Introduction

The subsequent considerations on universal algebras are stimulated by the following situation in the variety of Boolean algebras: It is generated by the two-element Boolean algebra 2 which has the property that every function defined on the two-element set $\{0,1\}$ is a term function of 2 . This property corresponds to the functional completeness of classical propositional calculus since the class of Boolean algebras constitutes a semantical basis for classical logics. As a generalization one defines a finite nontrivial algebra $\mathbf{A}=\langle A ; F\rangle$ to be primal if every function on A is a term function of \mathbf{A}. Then many properties of Boolean algebras carry over immediately to varieties generated by a primal algebra. This is already implied by the categorical equivalence between any variety which is generated by a primal algebra and the variety of Boolean algebras.

This equivalence is generalized now in two directions: firstly to preprimal algebras and secondly to quasivarieties. The term functions of a preprimal algebra $\mathbf{A}=\langle A ; F\rangle$ constitute a dual atom in the lattice of closed classes of functions defined on A. All two-element preprimal algebras were determined by E. L. Post [11]. Identifying algebras with the same term functions we obtain exactly the following twoelement preprimal algebras (up to isomorphisms):

$$
\begin{gathered}
\mathbf{C}_{3}=\langle\{0,1\} ; \wedge,+, 0\rangle, \quad \mathbf{A}_{1}=\langle\{0,1\} ; \wedge, \vee, 0,1\rangle, \\
\mathbf{D}_{3}=\langle\{0,1\} ; d, x+y+z, N\rangle, \quad \mathbf{L}_{\mathbf{1}}=\langle\{0,1\} ;+, N, 0,1\rangle .
\end{gathered}
$$

Received January 7, 1985, and in revised form July 3, 1985.

[^0]Here $\Lambda, \vee,+, N$ are the Boolean operations conjunction, disjunction, addition $\bmod 2$, and negation. Further d is the ternary operation with $d(x, y, z)=(x \wedge y) \vee$ $\vee(x \wedge z) \vee(y \wedge z)$. Our main result is the following: A quasivariety is equivalent to the quasivariety generated by one of the two-element preprimal algebras if and only if it is generated by a preprimal algebra of a special form. The result can be applied in non-classical logics and in electrical circuit theory. Consider a variety V_{2}, generated by a two-element algebra and assume $V_{2^{\prime}}=\operatorname{ISP}\left(2^{\prime}\right)$ (1 -isomorphisms, S-subalgebras, P -direct products), i.e., assume the quasivariety $Q V_{2^{\prime}}=\operatorname{ISP}\left(2^{\prime}\right)$ generated by 2^{\prime} agrees with the variety generated by 2^{\prime}. In [2] the algebras $B \in \operatorname{ISP}\left(2^{\prime}\right)$ are called pure dyadic algebras. Boolean algebras and Boolean rings, distributive lattices, implication algebras, median algebras, and Boolean groups are well-known examples of pure dyadic algebras. Let $\mathbf{B}(X) \in V_{2}$, be the free algebra freely generated by $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and let \mathbf{p}, \mathbf{q} be two terms of $\mathbf{B}(X)$. The fact that every algebra of $V_{2^{\prime}}$ is isomorphic to a subdirect power of 2^{\prime} implies that $\mathbf{p}, \mathbf{q} \in \mathbf{B}(X)$ are identical if for all homomorphisms $h: \mathbf{B}(X) \rightarrow 2^{\prime}$ one has $h(\mathbf{p})=h(\mathbf{q})$. In the case of Boolean algebras this property is meaningful in the complexity theory of Boolean functions and the truth table method of classical logics ([8]). Let \mathscr{K} be a variety which, as a category, is equivalent to V_{2}. Then there is a map t from the n-ary terms of V_{2}, to the n-ary terms of \mathscr{K} such that
(i) $t\left(\mathbf{x}_{i}\right)=\mathbf{x}_{i}$,
(ii) if α and β are self-maps of $\{1, \ldots, n\}$ and $V_{2^{\prime}}$ satisfies $\mathrm{p}\left(x_{\alpha 1}, \ldots, x_{\alpha n}\right)=$ $=\mathbf{p}\left(x_{\beta 1}, \ldots, x_{\beta n}\right)$, then \mathscr{K} satisfies $(t \mathbf{p})\left(x_{\alpha 1}, \ldots, x_{\alpha n}\right)=(\mathrm{tq})\left(x_{\beta 1}, \ldots, x_{\beta n}\right)$.

It follows that \mathscr{K} satisfies $(t \mathbf{p})\left(x_{\alpha 1}, \ldots, x_{a n}\right)=(t \mathbf{q})\left(x_{\beta 1}, \ldots, x_{\beta n}\right)$ if $h(\mathbf{p})=h(\mathbf{q})$ holds for all homomorphisms $h: \mathbf{B}(X) \rightarrow 2^{\prime}$.

2. Preliminaries

Let A be a nonempty finite set. The collection of n-ary operations on A will be denoted by $O_{A}^{(n)}(n \geqq 1)$. We set $O_{A}=\bigcup_{n \geqq 1} O_{A}^{(n)}$. Let ϱ be an h-ary relation on A ($h \geqq 1$), i.e. $\varrho \subseteq A^{h}$. Let Pol ϱ denote the set of all operations from O_{A} preserving ϱ, i.e. all operations $f \in O_{A}$ such that ϱ is a subalgebra of $\langle A ; f\rangle^{h}$. A ternary operation $d \in O_{A}^{(3)}$ is called a majority function if for all $x, y \in A$ we have

$$
d(x, x, y)=d(x, y, x)=d(y, x, x)=x
$$

We adopt the terminology of [7] except that polynomials will be called term functions. $T(\mathbf{A})$ denotes the set of term functions of an algebra $\mathbf{A}=\langle A ; F\rangle . \mathbf{A}$ is said to be primal if $T(\mathbf{A})=O_{A}$. \mathbf{A} is order complete if there is a lattice order \leqq on A such that $\mathrm{Pol} \leqq=T(\mathbf{A})$. A is said to be preprimal if $T(\mathbf{A}) \neq O_{A}$ and the algebra
$\langle A ; F \cup\{f\}\rangle$ is primal for every operation $f \in O_{A} \backslash T(\mathbf{A})$. By a compatible relation of an algebra $\mathbf{A}=\langle A ; F\rangle$ we mean a relation ϱ on A such that $F \subseteq \mathrm{Pol} \varrho$. The compatible binary reflexive and symmetric relations on \mathbf{A} are called tolerance relations of \mathbf{A}. We say a relation ϱ generates an algebra \mathbf{A} if $T(\mathbf{A})=\operatorname{Pol} \varrho$, and we write $\mathbf{A} \varrho$ for any such algebra.

For $2 \leqq h<\infty$ let $\sigma_{h}=\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}: a_{i} \neq a_{j}, 1 \leqq i<j \leqq h\right\}$. Furthermore, we set $l_{h}=A^{h} \backslash \sigma_{h}$. An h-ary relation ϱ on $A(h \geqq 3)$ is totally reflexive if $\varrho \supseteq t_{h}$. A binary relation on A is called trivial if $\varrho=t_{2}$ or $\varrho=A^{2}$.

We say that an algebra is tolerance-free if it has no nontrivial tolerance relation. An algebra $\mathbf{A}=\langle A ; F\rangle$ is said to be semiprimal if every operation on A admitting all subalgebras of \mathbf{A} is a term function of \mathbf{A} and demiprimal if \mathbf{A} has no proper subalgebra and every operation on A admitting all automorphisms of \mathbf{A} is a term function of \mathbf{A}. We need the following result from [1].

Theorem 2.1. Let $\mathbf{A}=\langle A ; F\rangle$ be a finite algebra with a majority term function. Then an operation on A is a term function of \mathbf{A} iff it preserves all compatible binary relations of \mathbf{A}.

From Theorem 2.1 we obtain immediately the following
Corollary 2.2. Let $\mathbf{A}=\langle A ; F\rangle$ be a finite algebra with a majority term function. Then \mathbf{A} is primal iff it has no nontrivial compatible binary relation. Moreover, \mathbf{A} is preprimal iff it has a nontrivial compatible binary relation and for any two nontrivial compatible relations ϱ_{1} and ϱ_{2} of \mathbf{A} we have $\operatorname{Pol} \varrho_{1}=\operatorname{Pol} \varrho_{2}$.

We need the following list of preprimal algebras ([12], [5]):
\mathbf{A}_{\leqq}, where \leqqis a lattice order on A, hence \mathbf{A}_{\leqq}is order complete,
$\mathbf{A}_{\{b\}}$, where $\{b\}$ is a one-element subalgebra of $\mathbf{A}_{\{b\}}$, hence $\mathbf{A}_{\{b\}}$ is semiprimal,
where s_{2} is a permutation on A without invariant elements and with cycles of the same length 2, hence $\mathbf{A}_{s_{2}}$ is demiprimal, $|A|=2 m, m \in N$,
$\mathbf{A}_{\alpha_{m}}$, where $\alpha_{m}=\{(x, y, z, e): e=x+y+z\}, x+y+z$ is the operation of a Boolean 3-group $\mathrm{G}_{3}^{m}=\langle A ; x+y+z\rangle$ with $|A|=2^{m}, m \in N, m \geqq 1$.
Clearly, $\mathbf{A}_{1}, \mathbf{C}_{3}, \mathbf{D}_{3}$ and \mathbf{L}_{1} are preprimal algebras of these forms with $|A|=2$.
Let \mathscr{L} and \mathscr{K} be quasivarieties which are equivalent as categories, i.e., there are functors $G: \mathscr{K} \rightarrow \mathscr{L}$ and $H: \mathscr{L} \rightarrow \mathscr{K}$, and for each $\mathbf{A} \in \mathscr{K}$ and $\mathbf{B} \in \mathscr{L}$ there are isomorphisms $\alpha_{A}: \mathbf{A} \rightarrow H G(\mathbf{A})$ and $\beta_{B}: \mathbf{B} \rightarrow G H(\mathbf{B})$ such that for each $g: \mathbf{A} \rightarrow \mathbf{A}^{\prime}$ in \mathscr{K} and each $h: \mathbf{B} \rightarrow \mathbf{B}^{\prime}$ in \mathscr{L} the following diagrams commute:

The question arises, which properties of a quasivariety carry over to equivalent quasivarieties? Necessary conditions are given by

Theorem 2.2. [3] Let \mathscr{L} and \mathscr{K} be quasivarieties which are equivalent as categories via the functors $G: \mathscr{K} \rightarrow \mathscr{L}$ and $H: \mathscr{L} \rightarrow \mathscr{K}$.
(1) If $\mathbf{A} \in \mathscr{L}$ is a finite algebra, then $H(\mathbf{A})$ is a finite algebra.
(2) For all $\mathbf{A} \in \mathscr{L}$ the subalgebra lattices of \mathbf{A} and $H(\mathbf{A})$ are isomorphic. Therefore the subalgebra lattices of \mathbf{A}^{2} and $H\left(\mathbf{A}^{2}\right)$ are isomorphic and since $H\left(\mathbf{A}^{2}\right)$ is isomorphic to $H(\mathbf{A})^{2}$, the subalgebra lattices of \mathbf{A}^{2} and $H(\mathbf{A})^{2}$ are isomorphic.
(3) H maps subdirectly irreducible algebras to subdirectly irreducible algebras, simple algebras to simple algebras, and tolerance-free algebras to tolerance-free algebras.
(4) If \mathscr{L} is the variety generated by some algebra \mathbf{A}, then \mathscr{K} is the variety generated by $H(\mathbf{A})$.
(5) If \mathscr{L} and \mathscr{K} are varieties and if in \mathscr{L} there exists a majority term then in \mathscr{K} there also exists a majority term; i.e. if \mathscr{L} is the variety generated by \mathbf{A} and \mathbf{A} has a majority function among its term functions then $H(\mathbf{A})$ also has a majority function among its term functions.

3. Tolerance-free algebras having majority term functions

The two-element preprimal algebras $\mathbf{C}_{3}, \mathbf{A}_{1}$ and \mathbf{D}_{3} have majority functions among their algebraic functions ([4]) and admit no nontrivial tolerance relation. By [4] the quasivarieties generated by $\mathbf{C}_{3}, \mathbf{A}_{1}$ and \mathbf{D}_{3} agree with the varieties generated by these algebras. Therefore, by Theorem 2.2 (3), (4), (5), varieties equivalent as categories to $V_{\mathrm{C}_{3}}, V_{\mathrm{A}_{1}}, V_{\mathrm{D}_{3}}$ are generated by tolerance-free algebras $H\left(\mathrm{C}_{3}\right), H\left(\mathbf{A}_{1}\right)$, and $H\left(\mathrm{D}_{3}\right)$ having majority functions among their term functions. In order to characterize varieties equivalent to $V_{C_{3}}, V_{\mathbf{A}_{1}}, V_{\mathbf{D}_{3}}$ we give some properties for tolerance-free algebras having majority term functions.

For a binary relation on A define two n-ary relations ϱ_{n} and $\varrho_{n}^{\prime}(2 \leqq n \leqq|A|)$ as follows:

$$
\begin{aligned}
& \varrho_{n}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}:\left(a_{i}, u\right) \in \varrho, i=1, \ldots, n, \text { for some } u \in A\right\}, \\
& \varrho_{n}^{\prime}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}:\left(o, a_{i}\right) \in \varrho, i=1, \ldots, n, \text { for some } o \in A\right\} .
\end{aligned}
$$

Lemma 3.1. Let ϱ be a binary relation on A preserved by a majority function $d \in O_{A}^{(3)}$. If $\varrho \circ \varrho^{-1}=A^{2}\left(\varrho^{-1} \circ \varrho=A^{2}\right)$, then $\varrho_{n}=A^{n}\left(\varrho_{n}^{\prime}=A^{n}\right)$ for every $n=2, \ldots,|A|$.

Proof. We prove the lemma by induction on n. Clearly, $\varrho_{2}=\varrho \varrho \varrho^{-1}=A^{2}$. Suppose that $\varrho_{n-1}=A^{n-1}, 2 \leqq n \leqq|A|$. From the definition of ϱ_{n} it follows that $\varrho_{n} \supseteqq l_{n}$, i.e. ϱ_{n} is totally reflexive. Now, if $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ then $\left(a_{2}, a_{2}, a_{3}\right.$, $\left.a_{4}, \ldots, a_{n}\right) \in \varrho_{n},\left(a_{1}, a_{1}, a_{3}, a_{4}, \ldots, a_{n}\right) \in \varrho_{n}$ and $\left(a_{1}, a_{2}, a_{2}, a_{4}, \ldots, a_{n}\right) \in \varrho_{n}$. Therefore
$\left(a_{1}, \ldots, a_{n}\right)=\left(d\left(a_{2}, a_{1}, a_{1}\right), d\left(a_{2}, a_{1}, a_{2}\right), d\left(a_{3}, a_{3}, a_{2}\right), d\left(a_{4}, a_{4}, a_{4}\right), \ldots, d\left(a_{n}, a_{n}, a_{n}\right)\right) \in$ $\epsilon \varrho_{n}$. Hence $\varrho_{n}=A^{n}$. (Similarly, we can prove that $\varrho^{-1} \circ \varrho=A^{2}$ implies $\varrho_{n}^{\prime}=A^{n}$, $n=2, \ldots,|A|$.)

Lemma 3.2. Let $\mathbf{A}=\langle A ; F\rangle$ be a tolerance-free algebra admitting a majority term function, and let @ be a binary nontrivial reflexive compatible relation of \mathbf{A}. Then @ is a lattice order.

Proof. $\varrho \cap \varrho^{-1}(\subseteq \varrho)$ is a tolerance relation of \mathbf{A} distinct from A^{2}. Therefore $\varrho \cap \varrho^{-1}=t_{2}$, i.e. ϱ is antisymmetric. $\varrho \circ \varrho^{-1}$ and $\varrho^{-1} \circ \varrho$ are tolerance relations distinct from t_{2}. Therefore, $\varrho \circ \varrho^{-1}=\varrho^{-1} \circ \varrho=A^{2}$, which by Lemma 3.1 implies that $\varrho_{|A|}=\varrho_{|A|}^{\prime}=A^{|A|}$. Hence there are elements $0,1 \in A$ such that $(a, 1) \in \varrho$ and $(0, a) \in \varrho$ for every $a \in A$. Let d be a majority term function of \mathbf{A}. It is known [6] that $d(0, a, b)=a \wedge b$ and $d(1, a, b)=a \vee b$ are the infimum and supremum of a and b with respect to ϱ. Finally we show that ϱ is transitive. Let $(a, b) \in \varrho$ and $(b, c) \in \varrho$. Then $d(0, a, b)=a \wedge b=a$ and $d(1, b, c)=b \vee c=c$. Therefore $\quad(a, c)=(d(0, a, b)$, $d(1, b, c)) \in \varrho$, which completes the proof.

Lemma 3.3. Let $\mathbf{A}=\langle\boldsymbol{A} ; F\rangle$ be a tolerance-free algebra with a majority term function admitting no proper subalgebra. Let ϱ be a binary nontrivial symmetric compatible relation of \mathbf{A} with $\varrho \cap l_{2}=\emptyset$. Then $\varrho=\{(a, s(a)): a \in A\}$ where s is an automorphism of \mathbf{A} without fixed points and with cycles of equal length 2.

Proof. Since $\varrho \circ \varrho^{-1}$ and $\varrho^{-1} \circ \varrho$ are tolerance relations of \mathbf{A} it follows that $\varrho \circ \varrho^{-1}, \varrho^{-1} \circ \varrho \in\left\{l_{2}, A^{2}\right\}$. If $\varrho \circ \varrho^{-1}=A^{2}$, then by Lemma $3.1 \varrho_{|A|}=A^{|A|}$. Thus there is a $u \in A$ such that $(a, u) \in \varrho$ for every $a \in A$, implying that $(u, u) \in \varrho$, a contradiction. Similarly we can prove that $\varrho^{-1} \circ \varrho \neq A^{2}$. Hence $\varrho \circ \varrho^{-1}=\varrho^{-1} \circ \varrho=l_{2}$, which implies that $\varrho=\{(a, s(a)): a \in A\}$ for a permutation s on A. Clearly, s has no fixed point ($\varrho \cap t_{2}=\emptyset$). From $\varrho=\varrho^{-1}$ one gets $\varrho^{2}=t_{2}$. Therefore each cycle of s has length 2.

The proof of the next lemma is given in [6].
Lemma 3.4. Let $\mathbf{A}=\langle A ; F\rangle$ be a tolerance-free algebra having a majority term function. Then \mathbf{A} has at most two compatible lattice orders ϱ and ϱ^{-1}.

Lemma 3.5. Let $\mathbf{A}=\langle A ; F\rangle$ be an algebra with a majority term function and exactly one proper subalgebra which moreover has exactly one element. Let $\{b\}$ be the one-element subalgebra of \mathbf{A}. Suppose \mathbf{A} has exactly three nontrivial binary compatible relations. Then \mathbf{A} is a semiprimal algebra of the form $\mathbf{A}_{\{b\}}$ and thus preprimal.

Proof. $\{b\} \times\{b\}, A \times\{b\}$, and $\{b\} \times A$ are all nontrivial compatible binary relations of \mathbf{A}. Therefore, by Theorem 2.1, $\quad T(\mathbf{A})=\operatorname{Pol}(\{b\} \times\{b\}) \cap \operatorname{Pol}(A \times\{b\}) \cap$
$\cap \operatorname{Pol}(\{b\} \times A)=\operatorname{Pol}(\{b\})$, i.e. \mathbf{A} is a semiprimal algebra of the form $\mathbf{A}_{\{b\}}$ and thus preprimal.

We are ready to formulate and prove our first theorem.
Theorem 3.6. Let \mathbf{P} be one of the two-element algebras $\mathbf{A}_{1}, \mathbf{C}_{3}, \mathbf{D}_{3}$, and let $V_{\mathbf{P}}$ be the variety generated by \mathbf{P}. Let \mathscr{K} be a variety equivalent as a category to $V_{\mathbf{P}}$. Then \mathscr{K} is generated by one of the preprimal algebras $\mathbf{A}_{\leq}, \mathbf{A}_{\{b\}}$ or $A_{s_{2}}$.

Proof. Let \mathscr{K} be a quasivariety which is equivalent as a category to the quasivariety $Q V_{\mathbf{P}}$ via some functors $G: \mathscr{K} \rightarrow Q V_{\mathbf{P}}$ and $H: Q V_{\mathbf{P}} \rightarrow \mathscr{K}$. Since \mathbf{P} has a term function which is a majority function, by a result of JóNSSON [10], we have $Q V_{\mathbf{P}}=V_{\mathbf{P}}$. By Theorem $2.2, \mathscr{K}$ is the variety generated by the finite algebra $H(\mathbf{P})$ and $H(\mathrm{P})$ is tolerance-free, having a term function which is a majority function. $H\left(\mathbf{A}_{1}\right)$ and $H\left(\mathbf{D}_{3}\right)$ have no proper subalgebras and $H\left(\mathrm{C}_{3}\right)$ has exactly one (one-element) subalgebra. By Theorem 2.2 (2), the subalgebra lattices of \mathbf{P}^{2} and $H(\mathbf{P})^{2}$ are isomorphic. Therefore $H\left(\mathrm{D}_{3}\right)$ has exactly one nontrivial compatible binary relation ϱ and $\varrho \cap t_{2}=\emptyset$ holds. By Lemma 3.3, Theorem 2.1, and Corollary $2.2 H\left(\mathbf{D}_{3}\right)$ is a demiprimal preprimal algebra of the form $\mathbf{A}_{s_{2}}$. Further, $H\left(\mathbf{A}_{1}\right)$ has exactly two binary nontrivial compatible relations which are reflexive. By Lemma 3.2, Lemma 3.4, Theorem 2.1, and Corollary $2.2 \boldsymbol{H}\left(\mathbf{A}_{1}\right)$ is an order-complete preprimal algebra $\mathbf{A}_{\leqq} . H\left(\mathrm{C}_{3}\right)$ has exactly three nontrivial binary compatible relations. By Lemma 3.5, $H\left(\mathbf{C}_{3}\right)$ is a semiprimal preprimal algebra of the form $\mathbf{A}_{\{b\}}$.

4. Dualities and full dualities of quasivarieties

The next statements concern the category equivalence of a quasivariety generated by any preprimal algebra of the form $\mathbf{A}_{\leqq}, \mathbf{A}_{\{b\}}, \mathbf{A}_{s_{2}}, \mathbf{A}_{\alpha_{m}}$ to the quasivariety generated by a two-element preprimal algebra $\mathbf{A}_{1}, \mathbf{C}_{3}, \mathbf{D}_{3}, \mathbf{L}_{1}$. These considerations rest upon concepts and results of Davey-Werner [3] on dualities and equivalences of quasivarieties.

Let $\mathbf{C}=\langle C ; F\rangle$ be a finite algebra and let $\mathscr{L}=\operatorname{ISP}(\mathbf{C})$ be the quasivariety generated by \mathbf{C}. Let $\mathbf{C}=\langle C ; \tau, R\rangle$ be a topological relational structure where R is a set of compatible relations of \mathbf{C}, and τ is the discrete topology on C. Let \mathscr{Z} be the class of all topological relational structures of the same type as \boldsymbol{C}. For $\boldsymbol{X}, \mathbf{Y} \in \mathscr{Z}$ a morphism $X \rightarrow Y$ is a map between the carrier sets of X, Y, which preserves the defining relations of X, Y. Let $\mathscr{Z}(X, Y)$ denote the set of all continuous morphisms $X \rightarrow Y$. A mapping $\Phi \in \mathscr{Z}(X, Y)$ is an embedding if it is one-to-one, closed, and for each relation $r \in R$ and $x_{1}, \ldots, x_{n} \in X$ we have

$$
\left(\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right) \in r \Rightarrow\left(x_{1}, \ldots, x_{n}\right) \in r .
$$

An onto-embedding is an isomorphism in \mathscr{Z}. Let $X \in \mathscr{Z}$ and $Y \subseteq X . Y$ is a closed substructure if the inclusion map $Y \rightarrow X$ is an embedding. A power of C is always endowed with the product topology and the pointwise relations, i.e. the sets

$$
\langle i ; p\rangle:=\left\{x \in C^{I}: x(i)=p\right\} \quad \text { with } i \in I \text { and } p \in C
$$

form a subbasis for the topology on C^{I}. For $x_{1}, \ldots, x_{n} \in C^{I}$ one has

$$
\left(x_{1}, \ldots, x_{n}\right) \in r \Leftrightarrow(\forall i \in I)\left(x_{1}(i), \ldots, x_{n}(i)\right) \in r
$$

The subclass of \mathscr{Z} consisting of all members isomorphic to a closed substructure of a power of C is denoted by \mathscr{R}. Symbolically, we write $\mathscr{R}=\operatorname{ISP}(C)$.

The following lemma shows the interconnection between the categories \mathscr{L} and \mathscr{R}.
Lemma 4.1. There exists a pair of adjoint contravariant functors $D: \mathscr{L} \rightarrow \mathscr{R}$, $E: \mathscr{R} \rightarrow \mathscr{L}$.

A pair (D, E) as in Lemma 4.1 is called a protoduality. The protoduality is called a duality if for each algebra \mathbf{A} in \mathscr{L} the embedding $e_{A}: \mathbf{A} \rightarrow E D(\mathbf{A})$ is an isomorphism.

Let $\mathscr{R}_{0} \subseteq \mathscr{R}$ be the subcategory consisting of all structures isomorphic to some closed substructure of a power of C. Then the duality (D, E) is called a full duality between \mathscr{L} and \mathscr{R}_{0} if for all $X \in \mathscr{R}_{0}$ the embedding $\varepsilon_{X}: X \rightarrow D E(X)$ is an isomorphism. \boldsymbol{C} is said to be injective in \mathscr{R}_{0} (with respect to some class \mathscr{I} of embeddings) if for each embedding $\sigma: X \rightarrow Y$ in $\mathscr{R}_{0}(\sigma \in \mathscr{I})$, every continuous morphism $\varphi: X \rightarrow C$ extends to a continuous morphism $\psi: Y \rightarrow C$ with $\psi \circ \sigma=\varphi$.

The next statements rest upon the following two conditions (IB) and (EF).
(IB) For every substructure X of a finite power C^{n} of C, each morphism $\varphi: X \rightarrow C$ extends to a term function $\bar{\varphi}: C^{n} \rightarrow C$ of C.
(EF) If X is a proper substructure of some finite $Y \in \mathscr{R}_{0}$ then there exist two different morphisms $\varphi, \psi: Y \rightarrow C$ such that $\varphi / X=\psi / X$.

Lemma 4.2. Let $\mathscr{L}=\operatorname{ISP}(\mathbf{C})$ for a finite algebra $\mathbf{C}=\langle C ; F\rangle$. Let $\mathbf{C}=$ $=\langle C ; \tau, R\rangle$ be a (finite) relational structure where R is a finite set of compatible relations on C and $\mathscr{R}=\operatorname{ISP}(C)$. Suppose the conditions (IB) and (EF) hold. Then the protoduality (D, E) is a full duality between \mathscr{L} and \mathscr{R}_{0}, and C is injective in \mathscr{R}_{0}.

Now we assume that \mathbf{C} admits a majority term function.
Lemma 4.3. Let $\mathbf{C}=\langle C ; F\rangle$ be a finite algebra with a majority term function. Let R be the set of all binary compatible relations on C . Then the protoduality (D, E) is a duality between \mathscr{L} and \mathscr{R}_{0}, and \mathbb{C} is injective in \mathscr{R}_{0}. If (EF) holds, (D, E) is a full duality between \mathscr{L} and \mathscr{R}_{0}.

We are ready to apply the preceding duality theory to obtain dualities or even full dualities for varieties (quasivarieties) generated by two-element preprimal algebras.

Theorem 4.4. Let $2_{P}=\langle\{0,1\} ; F\rangle$ be a two-element preprimal algebra $\left(\mathbf{2}_{P} \in\left\{\mathbf{A}_{1}, \mathbf{C}_{3}, \mathbf{D}_{3}, \mathbf{L}_{\mathbf{1}}\right\}\right)$. Let $\mathbf{2}_{P}=\langle\{0,1\} ; \varrho\rangle$ be a finite relational structure with $F=\operatorname{Pol} \varrho$ and $\mathscr{R}=\operatorname{ISP}\left(\mathbf{2}_{p}\right)$. Then the protoduality is a full duality between \mathscr{L} and \mathscr{R}_{0} and $\mathbf{2}_{P}$ is injective in \mathscr{R}_{0}.

Proof. By Corollary 2.2 for any two nontrivial compatible relations ϱ_{1}, ϱ_{2} of a preprimal algebra $\mathbf{A}=\langle A ; F\rangle$ we have $F=\operatorname{Pol} \varrho_{1}=\operatorname{Pol} \varrho_{2}$. Therefore we can set $\mathbf{2}_{P}=\langle\{0,1\} ; \varrho\rangle$ with $F=\operatorname{Pol} \varrho$. The algebras $\mathbf{A}_{1}, \mathbf{C}_{3}$, and \mathbf{D}_{3} have majority term functions. In view of Lemma 4.3 it is sufficient to prove that condition (EF) is satisfied. We define $\boldsymbol{A}_{1}=\langle\{0,1\} ; \leqq\rangle, \boldsymbol{C}_{3}=\langle\{0,1\} ; 0\rangle, \quad \boldsymbol{D}_{3}=\langle\{0,1\} ; N\rangle$. In the first case, if $X \subset Y \in \mathscr{R}_{0}, Y$ finite, and $a \in Y \backslash X$, then both $(a]=\{y \in Y: y \leqq a\}$ and $(a)=$ $=\{y \in Y: y<a\}$ are ideals such that $X \cap(a]=X \cap(a)$. Thus $\varphi, \psi: Y \rightarrow\{0,1\}$, $\varphi(x)=0 \Leftrightarrow x \leqq a, \psi(x)=0 \Leftrightarrow x<a$ are two order-preserving maps which agree on X. In the second case, let $X \subset Y$ be a substructure of a finite $\boldsymbol{Y} \in \mathscr{R}_{0}$, i.e. $0 \in \boldsymbol{X}$ and let $\varphi, \psi: Y \rightarrow C_{3}$ with $\varphi(x)=0$ and

$$
\psi(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in X \\
1 & \text { if } & x \notin X .
\end{array}\right.
$$

Then φ and ψ are morphisms, $\varphi \neq \psi$ but $\varphi / X=\psi / X$.
Now we consider \mathbf{D}_{3}. Let $X \subset Y \in \mathscr{R}_{0}, Y$ finite, i.e. $N X \subseteq X$ where N is a permutation on Y with cycles of the same length 2 and without fixed points. Then we consider two proper subsets $X_{1}, X_{2} \subset X$ with $X_{1}=\left\{x \in X: N x \in X_{2}\right\}, X_{2}=\left\{x \in X: N x \in X_{1}\right\}$, $0 \in X_{1}, 1 \in X_{2}, N 0=1$. From $N x \neq x, x \in Y$ it follows $X_{1} \cap X_{2}=\emptyset$. Further, we have $X_{1} \cup X_{2}=X, X_{1}$ and X_{2} can be extended to Y_{1} and Y_{2}, respectively, such that $Y_{1}=\left\{x \in Y: N x \in Y_{2}\right\}, \quad Y_{2}=\left\{x \in Y: N x \in Y_{1}\right\}, \quad Y_{1} \cap Y_{2}=\emptyset, \quad Y_{1} \cup Y_{2}=Y$. We choose

$$
\varphi(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in X_{1} \\
1 & \text { if } & x \in X_{2} \\
0 & \text { if } & x \in Y_{1} \backslash X_{1} \\
1 & \text { if } & x \in Y_{2} \backslash X_{2}
\end{array}, \quad \psi(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in X_{1} \\
1 & \text { if } & x \in X_{2} \\
1 & \text { if } & x \in Y_{1} \backslash X_{1} \\
0 & \text { if } & x \in Y_{2} \backslash X_{2}
\end{array} .\right.\right.
$$

φ and ψ are two distinct morphisms which agree on X.
Finally, we consider $\mathbf{L}_{1}=\langle\{0,1\},+, N, 0,1\rangle$. Let $\mathscr{L}=\operatorname{ISP}\left(\mathbf{L}_{1}\right)$ be the quasivariety generated by $\mathbf{L}_{\mathbf{1}}\left(\mathscr{L} \neq V_{\mathbf{L}_{1}}\right)$. The term functions of $\mathbf{L}_{\mathbf{1}}$ are exactly all Boolean functions which preserve $\alpha=\{(x, y, z, e): e=x+y+z\}$. Here $x+y+z$ is the ternary operation of the Boolean 3-group $\mathbf{G}_{3}=\langle\{0,1\} ; x+y+z\rangle$. For $\mathbf{L}_{1}=\mathbf{G}_{3}$ condition (IB) is satisfied. $\operatorname{ISP}\left(\mathbf{G}_{3}\right)$ is the variety of Boolean 3 -groups. X being a proper subal-
gebra of a finite Boolean 3-group $\mathbf{Y} \in \mathscr{R}_{0}$, we choose a maximal subgroup \mathbf{Z} of \mathbf{Y} containing $X . Y \backslash Z$ is simple and thus isomorphic to L_{1}. Hence we have two homomorphisms $\boldsymbol{Y}_{\rightarrow} \boldsymbol{L}_{1}$ with kernels \mathbf{Z} and \boldsymbol{Y}, respectively, which therefore agree on X. Thus condition (EF) is satisfied.

5. Application of the Equivalent Quasivarieties Theorem

In this section we prove that the quasivarieties generated by the preprimal algebras $\mathbf{A}_{\leftrightarrows}, \mathbf{A}_{\{b\}}, \mathbf{A}_{s_{2}}, \mathbf{A}_{\alpha_{m}}$, respectively, are equivalent as categories to the varieties (quasivarieties) generated by the two-element preprimal algebras $\mathbf{A}_{1}, \mathbf{C}_{3}, \mathbf{D}_{3}, \mathbf{L}_{1}$. We need the following Equivalent Quasivarieties Theorem [3].

Theorem 5.1. Assume that the protoduality (D, E) is a full duality between \mathscr{L} and \mathscr{R}_{0} and assume further that C is injective in \mathscr{R}_{0}. Then a quasivariety \mathscr{K} is equivalent as a category to the quasivariety \mathscr{L} if and only if the following conditions are satisfied:
(i) there is a finite algebra \mathbf{Q} in \mathscr{K} and a family R of compatible relations on \mathbf{Q} such that $\mathbf{Q}=\langle Q ; R\rangle$ is an object of \mathscr{R}_{0},
(ii) (a) $\mathscr{K}=\operatorname{ISP}(Q)$,
(b) \mathbf{C} is isomorphic to a subalgebra of a power of \mathbf{Q},
(iii) Q is injective in \mathscr{R}_{0} (or equivalently, Q is a retract of a finite power of C),
(iv) for each positive integer n every morphism $\mathbf{Q}^{\boldsymbol{n}} \rightarrow \mathbf{Q}$ is a term function on \mathbf{Q}. If \mathscr{K} is equivalent as a category to \mathscr{L}, then \mathbf{Q} above can be chosen to be $H(\mathbf{C})$.

Let $\mathbf{2}_{P}=\langle\{0,1\} ; F\rangle$ be a two-element preprimal algebra and let $\mathbf{2}_{P}=\langle\{0,1\} ; \varrho\rangle$ be a relational structure with $F=\operatorname{Pol} \varrho$. We set $\mathscr{L}=\operatorname{ISP}\left(\mathbf{2}_{P}\right)$ and $\mathscr{R}=\operatorname{ISP}\left(\mathbf{2}_{P}\right)$. By Theorem $4.4(D, E)$ is a full duality between \mathscr{L} and \mathscr{R}_{0} and $\mathbf{2}_{P}$ is injective in \mathscr{R}_{0}. In order to apply Theorem 5.1 for the proof that the quasivariety generated by one of the preprimal algebras $\mathbf{A}_{\underline{\underline{3}}}, \mathbf{A}_{\{b\}}, \mathbf{A}_{s_{2}}, \mathbf{A}_{\alpha_{m}}$ is equivalent as a category to the quasivariety \mathscr{L} one has to show that conditions (i)-(iv) are satisfied.

Lemma 5.2. The variety generated by a preprimal algebra \mathbf{A}_{\leqq}is category equivalent to $V_{\mathrm{A}_{1}}$.

Proof. By Theorem $3.6 \mathscr{K}=\operatorname{ISP}\left(\mathbf{A}_{\leqq}\right)$is the variety generated by \mathbf{A}_{\leqq}. It is clear that $\boldsymbol{C}=\boldsymbol{A}_{1}=\langle\{0,1\} ; \leqq\rangle, \mathbf{Q}=\mathbf{A}_{\leqq}, \mathbf{Q}=\boldsymbol{A}_{\leqq}=\left\langle A_{;} \leqq\right\rangle$fulfil the conditions (i), (ii) (a), and (iv). \boldsymbol{A}_{1} is isomorphic to the substructure of \boldsymbol{A}_{\leqq}consisting of the least and the greatest element with respect to \leqq, i.e. (ii) (b) holds. Then the lattice $P(A)$ of all subsets of A is isomorphic to a finite power of A_{1}, and the maps σ and τ
given by

$$
\begin{array}{ll}
\sigma: A_{\leqq} \rightarrow P(A), & \sigma(a)=\{x \in A:(x, a) \in \leqq \text { for all } a \in A\}, \\
\tau: P(A) \rightarrow A_{\leqq}, & \tau(B)=\sup B \text { for all } B \leqq A,
\end{array}
$$

are order preserving and such that $\sigma \circ \tau=1_{A_{s}}$. Hence (iii) holds.
Lemma 5.3. The variety generated by a preprimal algebra $\mathbf{A}_{\{b\}}$ is category equivalent to $V_{\mathrm{C}_{3}}$.

Proof. By Theorem 3.6 we have $\mathscr{K}=\operatorname{ISP}\left(\mathbf{A}_{\{b\}}\right)=V_{\mathbf{A}_{\{b\}}}$. For $\boldsymbol{C}=\boldsymbol{C}_{3}=$ $=\langle\{0,1\} ; 0\rangle, \mathbf{Q}=\mathbf{A}_{\{b\}}, \mathbf{Q}=\mathbf{A}_{\{b\}}=\langle A ; b\rangle$, conditions (i), (ii) (a), and (iv) hold. \boldsymbol{C}_{3} is isomorphic to a substructure of $\mathbf{A}_{\{b\}}$ consisting of b and any other element of A. Hence (ii) (b) holds. We choose a positive integer n such that $|A| \leqq 2^{n}$. Then there exist a monomorphism $\sigma: \boldsymbol{A}_{\{b\}} \rightarrow\left\langle\{0,1\}^{n} ; 0\right\rangle$ and an epimorphism $\tau:\left\langle\{0,1\}^{n} ; 0\right\rangle \rightarrow$ $\rightarrow \boldsymbol{A}_{\{b\}}$ such that $\sigma \circ \tau={ }^{1} \boldsymbol{A}_{\{b\}}$. Hence (iii) holds.

Lemma 5.4. The variety generated by a preprimal algebra $\mathbf{A}_{s_{\mathbf{z}}}$ is category equivalent to $V_{\mathrm{D}_{3}}$.

Proof. By Theorem 3.6, we have $\mathscr{K}=\operatorname{ISP}(\mathbf{A})=V_{A_{s_{2}}}$. For $C=D_{3}=$ $=\langle\{0,1\} ; N\rangle, \mathbf{Q}=\mathbf{A}_{s_{2}}, \mathbf{Q}=\boldsymbol{A}_{s_{2}}=\langle A ; N\rangle$, conditions (i), (ii) (a), and (iv) hold. \boldsymbol{C}_{3} is isomorphic to a substructure of $\boldsymbol{A}_{s_{2}}$ consisting of any two elements $a, b, a \neq b$, of A with $N a=b, N b=a(|A|=2 k)$. Hence (ii) (b) holds. We choose n such that $|A| \leqq 2^{n}$. Without restriction of generality we choose $A_{s_{2}}=\langle\{0,1, \ldots, 2 k-1\} ; N\rangle$ with $N=(01)(23) \ldots(2 k-12 k)$, and $2^{n}=\left\langle\left\{a_{0}, a_{1}, \ldots, a_{2^{n}-1}\right\}, N\right\rangle$. Then we can define a monomorphism $\sigma: \boldsymbol{A}_{s_{2}} \rightarrow 2^{n}$ by $\sigma(i)=a_{i}, i=0, \ldots, 2 k-1$, and an epimorphism $\tau: 2^{n} \rightarrow A_{s_{2}}$ by $\tau\left(a_{i}\right)=i$ for $i=0, \ldots, 2 k-1$ and $\tau\left(a_{2 k+i}\right)=i$ for $i=0, \ldots$ $\ldots, 2^{n}-2 k$ such that $\sigma \circ \tau=l_{A_{s_{2}}}$. Hence (iii) holds.

Lemma 5.5. A quasivariety \mathscr{K} is category equivalent to the quasivariety generated by \mathbf{L}_{1} if and only if it is generated by a preprimal algebra $\mathbf{A}_{\alpha_{m}}$.

Proof. Let $\mathscr{L}=\operatorname{ISP}\left(\mathbf{L}_{1}\right)$ be the quasivariety generated by \mathbf{L}_{1}. By Theorem 4.4, for $C=L_{1}=\mathbf{G}_{3}=\langle\{0,1\} ; x+y+z\rangle, \mathscr{R}=\operatorname{ISP}\left(\mathbf{L}_{1}\right)$ the protoduality (D, E) is a full duality between \mathscr{L} and \mathscr{R}_{0}, and L_{1} is injective in \mathscr{R}_{0}.

Let \mathscr{K} be equivalent to $\mathscr{L}=\operatorname{ISP}\left(\mathrm{L}_{1}\right)$. Then by Theorem 5.1 (i), there exist a finite algebra \mathbf{Q} in \mathscr{K} and a family \boldsymbol{R} of compatible relations of \mathbf{Q} such that $\mathbf{Q}=\langle Q ; R\rangle$ is an object of \mathscr{R}_{0}, i.e. \mathbf{Q} is a Boolean 3-group and therefore \mathbf{Q} is a finite power of the two-element Boolean 3-group. By (iv), \mathbf{Q} is a preprimal algebra of the form $\mathbf{A}_{\alpha_{m}}$ with $\alpha_{m}=\{(x, y, z, e): e=x+y+z\}$ and $x+y+z$ the operation of a Boolean 3-group $\mathbf{G}_{3}^{m}=\langle A ; x+y+z\rangle,|A|=2^{m}, m>1$. Conversely, let $\operatorname{ISP}\left(\mathbf{A}_{a_{m}}\right)$ be the quasivariety generated by $\mathbf{A}_{\alpha_{m}}$. Taking $\mathbf{Q}=\mathbf{A}_{\alpha_{m}}, \mathbf{Q}=\mathbf{G}_{3}^{m}$, (i), (ii) (a), (b), and (iv)
are satisfied. Since G_{3} is injective in $\mathscr{R}_{0}, Q=G_{3}^{m}$ also is injective in \mathscr{R}_{0}. Hence (iii) holds and $\operatorname{ISP}\left(\mathbf{A}_{\alpha_{m}}\right)$ is equivalent to $\operatorname{ISP}\left(\mathbf{L}_{1}\right)$.

Finally, by Lemmas $5.2-5.5$ and Theorem 3.6 we obtain
Theorem 5.6. A quasivariety is category equivalent to the quasivariety generated by a two-element preprimal algebra iff it is generated by a preprimal algebra of one of the forms $\quad \mathbf{A}_{\leqq}, \mathbf{A}_{\{b\}}, \quad \mathbf{A}_{s_{2}}(|A|=2 k), \quad \mathbf{A}_{\alpha_{m}}\left(|A|=2^{m}\right)$.

References

[1] K. A. Baker and A. F. Pixley, Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems, Math. Z., 143 (1975), 165-174.
[2] G. Birkhoff, Some applications of universal algebra, in: Universal Algebra (Proc. Conf. Esztergom, 1977), Colloq. Math. Soc. János Bolyai, vol. 26, North-Holland (Amsterdam, 1982); pp. 107-128.
[3] B. A. Davey and H. Werner, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory (Proc. Conf. Szeged, 1980), Colloq. Math. Soc. János Bolyai, vol. 33, North-Holland (Amsterdam, 1983); pp. 101-275.
[4] K. Denecke, Algebraische Fragen nichtklassischer Aussagenkalküle, Dissertation, Päd. Hochschule Potsdam (1978).
[5] K. Denecke, Preprimal Algebras, Akademie-Verlag (Berlin, 1982).
[6] K. Denecke and L. Szabó, Characterization of algebras having majority term functions and admitting no proper subalgebras and no nontrivial tolerance relations, in: Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, vol. 43, North-Holland (Amsterdam, 1986), pp. 497-506.
[7] G. Grätzer, Universal Algebra, 2nd ed., Birkhäuser-Verlag (Basel, 1979).
[8] H.J. Hoehnke, Struktursätze der Algebra und Kompliziertheit logischer Schemata. I, Math. Nachr., 61 (1974), 15-53.
[9] T. K. Hu, Stone duality for primal algebra theory, Math. Z., 110 (1969), 180-198.
[10] B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand., 21 (1967), 110— 121.
[11] E. L. Post, The two-valued iterative systems of mathematical logic, Ann, Math. Studies, vol. 5, Amer. Math. Soc. (Princeton, 1941).
[12] I. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpr. ČSAV, Řada Math. Přir. Věd, 80 (1970), 3-93.
[13] W. Taylor, Characterizing Mal'cev conditions, Algebra Universalis, 3 (1977), 351-391.

[^0]: *) During the preparation of this paper, the author worked at the Institut für Züchtungsforschung der Akademie der Landwirtschaftswissenschaften der DDR, Quedlinburg.

