Varieties and quasivarieties, generated by two-element preprimal algebras, and their equivalences

KLAUS DENECKE*

Dedicated to Professor H.-J. Hoehnke on his 63rd birthday

1. Introduction

The subsequent considerations on universal algebras are stimulated by the following situation in the variety of Boolean algebras: It is generated by the two-element Boolean algebra 2 which has the property that every function defined on the two-element set $\{0, 1\}$ is a term function of 2. This property corresponds to the functional completeness of classical propositional calculus since the class of Boolean algebras constitutes a semantical basis for classical logics. As a generalization one defines a finite nontrivial algebra $\mathbf{A} = \langle A; F \rangle$ to be primal if every function on A is a term function of \mathbf{A} . Then many properties of Boolean algebras carry over immediately to varieties generated by a primal algebra. This is already implied by the categorical equivalence between any variety which is generated by a primal algebra and the variety of Boolean algebras.

This equivalence is generalized now in two directions: firstly to preprimal algebras and secondly to quasivarieties. The term functions of a preprimal algebra $\mathbf{A} = \langle A; F \rangle$ constitute a dual atom in the lattice of closed classes of functions defined on A. All two-element preprimal algebras were determined by E. L. Post [11]. Identifying algebras with the same term functions we obtain exactly the following two-element preprimal algebras (up to isomorphisms):

$$C_3 = \langle \{0, 1\}; \land, +, 0 \rangle, \quad A_1 = \langle \{0, 1\}; \land, \lor, 0, 1 \rangle,$$
$$D_3 = \langle \{0, 1\}; d, x + y + z, N \rangle, \quad L_1 = \langle \{0, 1\}; +, N, 0, 1 \rangle.$$

Received January 7, 1985, and in revised form July 3, 1985.

*) During the preparation of this paper, the author worked at the Institut für Züchtungsforschung der Akademie der Landwirtschaftswissenschaften der DDR, Quedlinburg.

Here $\Lambda, \vee, +, N$ are the Boolean operations conjunction, disjunction, addition mod 2, and negation. Further d is the ternary operation with $d(x, y, z) = (x \land y) \lor$ $\bigvee(x \wedge z) \bigvee(y \wedge z)$. Our main result is the following: A quasivariety is equivalent to the quasivariety generated by one of the two-element preprimal algebras if and only if it is generated by a preprimal algebra of a special form. The result can be applied in non-classical logics and in electrical circuit theory. Consider a variety $V_{2'}$ generated by a two-element algebra and assume $V_{2'} = ISP(2')$ (I-isomorphisms, S-subalgebras, P-direct products), i.e., assume the quasivariety $QV_{2'} = ISP(2')$ generated by 2' agrees with the variety generated by 2'. In [2] the algebras $B \in ISP(2')$ are called pure dyadic algebras. Boolean algebras and Boolean rings, distributive lattices, implication algebras, median algebras, and Boolean groups are well-known examples of pure dyadic algebras. Let $\mathbf{B}(X) \in V_{2'}$ be the free algebra freely generated by $X = \{x_1, ..., x_n\}$, and let **p**, **q** be two terms of **B**(X). The fact that every algebra of $V_{2'}$ is isomorphic to a subdirect power of 2' implies that $\mathbf{p}, \mathbf{q} \in \mathbf{B}(X)$ are identical if for all homomorphisms $h: \mathbf{B}(X) \rightarrow 2'$ one has $h(\mathbf{p}) = h(\mathbf{q})$. In the case of Boolean algebras this property is meaningful in the complexity theory of Boolean functions and the truth table method of classical logics ([8]). Let \mathcal{K} be a variety which, as a category, is equivalent to $V_{2'}$. Then there is a map t from the n-ary terms of $V_{2'}$ to the *n*-ary terms of \mathcal{K} such that

(i) $t(\mathbf{x}_i) = \mathbf{x}_i$,

(ii) if α and β are self-maps of $\{1, ..., n\}$ and $V_{2'}$ satisfies $\mathbf{p}(x_{\alpha 1}, ..., x_{\alpha n}) = = \mathbf{p}(x_{\beta 1}, ..., x_{\beta n})$, then \mathcal{K} satisfies $(t\mathbf{p})(x_{\alpha 1}, ..., x_{\alpha n}) = (t\mathbf{q})(x_{\beta 1}, ..., x_{\beta n})$.

It follows that \mathscr{K} satisfies $(t\mathbf{p})(x_{a1}, ..., x_{an}) = (t\mathbf{q})(x_{\beta 1}, ..., x_{\beta n})$ if $h(\mathbf{p}) = h(\mathbf{q})$ holds for all homomorphisms $h: \mathbf{B}(X) \rightarrow \mathbf{2}'$.

2. Preliminaries

Let A be a nonempty finite set. The collection of *n*-ary operations on A will be denoted by $O_A^{(n)}$ $(n \ge 1)$. We set $O_A = \bigcup_{n \ge 1} O_A^{(n)}$. Let ϱ be an *h*-ary relation on A $(h \ge 1)$, i.e. $\varrho \subseteq A^h$. Let Pol ϱ denote the set of all operations from O_A preserving ϱ , i.e. all operations $f \in O_A$ such that ϱ is a subalgebra of $\langle A; f \rangle^h$. A ternary operation $d \in O_A^{(3)}$ is called a majority function if for all $x, y \in A$ we have

$$d(x, x, y) = d(x, y, x) = d(y, x, x) = x.$$

We adopt the terminology of [7] except that polynomials will be called term functions. $T(\mathbf{A})$ denotes the set of term functions of an algebra $\mathbf{A} = \langle A; F \rangle$. A is said to be primal if $T(\mathbf{A}) = O_A$. A is order complete if there is a lattice order \leq on Asuch that Pol $\leq = T(\mathbf{A})$. A is said to be preprimal if $T(\mathbf{A}) \neq O_A$ and the algebra $\langle A; F \cup \{f\} \rangle$ is primal for every operation $f \in O_A \setminus T(A)$. By a compatible relation of an algebra $A = \langle A; F \rangle$ we mean a relation ϱ on A such that $F \subseteq Pol \ \varrho$. The compatible binary reflexive and symmetric relations on A are called tolerance relations of A. We say a relation ϱ generates an algebra A if $T(A) = Pol \ \varrho$, and we write $A\varrho$ for any such algebra.

For $2 \le h < \infty$ let $\sigma_h = \{(a_1, ..., a_h) \in A^h : a_i \ne a_j, 1 \le i < j \le h\}$. Furthermore, we set $\iota_h = A^h \setminus \sigma_h$. An *h*-ary relation ϱ on A ($h \ge 3$) is totally reflexive if $\varrho \supseteq \iota_h$. A binary relation on A is called trivial if $\varrho = \iota_2$ or $\varrho = A^2$.

We say that an algebra is tolerance-free if it has no nontrivial tolerance relation. An algebra $\mathbf{A} = \langle A; F \rangle$ is said to be semiprimal if every operation on A admitting all subalgebras of \mathbf{A} is a term function of \mathbf{A} and demiprimal if \mathbf{A} has no proper subalgebra and every operation on A admitting all automorphisms of \mathbf{A} is a term function of \mathbf{A} . We need the following result from [1].

Theorem 2.1. Let $\mathbf{A} = \langle A; F \rangle$ be a finite algebra with a majority term function. Then an operation on A is a term function of A iff it preserves all compatible binary relations of A.

From Theorem 2.1 we obtain immediately the following

Corollary 2.2. Let $\mathbf{A} = \langle A; F \rangle$ be a finite algebra with a majority term function. Then \mathbf{A} is primal iff it has no nontrivial compatible binary relation. Moreover, \mathbf{A} is preprimal iff it has a nontrivial compatible binary relation and for any two nontrivial compatible relations ϱ_1 and ϱ_2 of \mathbf{A} we have Pol $\varrho_1 = \text{Pol } \varrho_2$.

We need the following list of preprimal algebras ([12], [5]):

- A_{\leq} , where \leq is a lattice order on A, hence A_{\leq} is order complete,
- $A_{\{b\}}$, where $\{b\}$ is a one-element subalgebra of $A_{\{b\}}$, hence $A_{\{b\}}$ is semiprimal,
- A_{s_2} , where s_2 is a permutation on A without invariant elements and with cycles of the same length 2, hence A_{s_2} is demiprimal, $|A|=2m, m \in N$,
- A_{a_m}, where $\alpha_m = \{(x, y, z, e): e = x + y + z\}, x + y + z$ is the operation of a Boolean 3-group $\mathbf{G}_3^m = \langle A; x + y + z \rangle$ with $|A| = 2^m$, $m \in N$, $m \ge 1$.

Clearly, A_1 , C_3 , D_3 and L_1 are preprimal algebras of these forms with |A|=2. Let \mathscr{L} and \mathscr{K} be quasivarieties which are equivalent as categories, i.e., there are functors $G: \mathscr{K} \to \mathscr{L}$ and $H: \mathscr{L} \to \mathscr{K}$, and for each $A \in \mathscr{K}$ and $B \in \mathscr{L}$ there are isomorphisms $\alpha_A: A \to HG(A)$ and $\beta_B: B \to GH(B)$ such that for each $g: A \to A'$ in \mathscr{K} and each $h: B \to B'$ in \mathscr{L} the following diagrams commute:

$$\begin{array}{ccc} \mathbf{A} & & & & \mathbf{B} & & & \mathbf{B}' \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

The question arises, which properties of a quasivariety carry over to equivalent quasivarieties? Necessary conditions are given by

Theorem 2.2. [3] Let \mathcal{L} and \mathcal{K} be quasivarieties which are equivalent as categories via the functors $G: \mathcal{K} \rightarrow \mathcal{L}$ and $H: \mathcal{L} \rightarrow \mathcal{K}$.

(1) If $A \in \mathscr{L}$ is a finite algebra, then H(A) is a finite algebra.

(2) For all $A \in \mathscr{L}$ the subalgebra lattices of A and H(A) are isomorphic. Therefore the subalgebra lattices of A^2 and $H(A^2)$ are isomorphic and since $H(A^2)$ is isomorphic to $H(A)^2$, the subalgebra lattices of A^2 and $H(A)^2$ are isomorphic.

(3) H maps subdirectly irreducible algebras to subdirectly irreducible algebras, simple algebras to simple algebras, and tolerance-free algebras to tolerance-free algebras.

(4) If \mathcal{L} is the variety generated by some algebra A, then \mathcal{K} is the variety generated by $H(\mathbf{A})$.

(5) If \mathcal{L} and \mathcal{H} are varieties and if in \mathcal{L} there exists a majority term then in \mathcal{H} there also exists a majority term; i.e. if \mathcal{L} is the variety generated by A and A has a majority function among its term functions then H(A) also has a majority function among its term functions.

3. Tolerance-free algebras having majority term functions

The two-element preprimal algebras C_3 , A_1 and D_3 have majority functions among their algebraic functions ([4]) and admit no nontrivial tolerance relation. By [4] the quasivarieties generated by C_3 , A_1 and D_3 agree with the varieties generated by these algebras. Therefore, by Theorem 2.2 (3), (4), (5), varieties equivalent as categories to V_{C_3} , V_{A_1} , V_{D_3} are generated by tolerance-free algebras $H(C_3)$, $H(A_1)$, and $H(D_3)$ having majority functions among their term functions. In order to characterize varieties equivalent to V_{C_3} , V_{A_1} , V_{D_3} we give some properties for tolerance-free algebras having majority term functions.

For a binary relation on A define two *n*-ary relations ρ_n and ρ'_n $(2 \le n \le |A|)$ as follows:

 $\varrho_n = \{(a_1, \dots, a_n) \in A^n : (a_i, u) \in \varrho, i = 1, \dots, n, \text{ for some } u \in A\}, \\ \varrho'_n = \{(a_1, \dots, a_n) \in A^n : (o, a_i) \in \varrho, i = 1, \dots, n, \text{ for some } o \in A\}.$

Lemma 3.1. Let ϱ be a binary relation on A preserved by a majority function $d \in O_A^{(3)}$. If $\varrho \circ \varrho^{-1} = A^2$ ($\varrho^{-1} \circ \varrho = A^2$), then $\varrho_n = A^n$ ($\varrho'_n = A^n$) for every n = 2, ..., |A|.

Proof. We prove the lemma by induction on *n*. Clearly, $\varrho_2 = \varrho \circ \varrho^{-1} = A^2$. Suppose that $\varrho_{n-1} = A^{n-1}$, $2 \le n \le |A|$. From the definition of ϱ_n it follows that $\varrho_n \supseteq \iota_n$, i.e. ϱ_n is totally reflexive. Now, if $(a_1, ..., a_n) \in A^n$ then $(a_2, a_2, a_3, a_4, ..., a_n) \in \varrho_n$, $(a_1, a_1, a_3, a_4, ..., a_n) \in \varrho_n$ and $(a_1, a_2, a_2, a_4, ..., a_n) \in \varrho_n$. Therefore $(a_1, ..., a_n) = (d(a_2, a_1, a_1), d(a_2, a_1, a_2), d(a_3, a_3, a_2), d(a_4, a_4, a_4), ..., d(a_n, a_n, a_n)) \in e_n$. Hence $\varrho_n = A^n$. (Similarly, we can prove that $\varrho^{-1} \circ \varrho = A^2$ implies $\varrho'_n = A^n$, n = 2, ..., |A|.)

Lemma 3.2. Let $\mathbf{A} = \langle A; F \rangle$ be a tolerance-free algebra admitting a majority term function, and let ϱ be a binary nontrivial reflexive compatible relation of \mathbf{A} . Then ϱ is a lattice order.

Proof. $\varrho \cap \varrho^{-1} (\subseteq \varrho)$ is a tolerance relation of A distinct from A^2 . Therefore $\varrho \cap \varrho^{-1} = \iota_2$, i.e. ϱ is antisymmetric. $\varrho \circ \varrho^{-1}$ and $\varrho^{-1} \circ \varrho$ are tolerance relations distinct from ι_2 . Therefore, $\varrho \circ \varrho^{-1} = \varrho^{-1} \circ \varrho = A^2$, which by Lemma 3.1 implies that $\varrho_{|A|} = \varrho'_{|A|} = A^{|A|}$. Hence there are elements $0, 1 \in A$ such that $(a, 1) \in \varrho$ and $(0, a) \in \varrho$ for every $a \in A$. Let d be a majority term function of A. It is known [6] that $d(0, a, b) = a \wedge b$ and $d(1, a, b) = a \vee b$ are the infimum and supremum of a and b with respect to ϱ . Finally we show that ϱ is transitive. Let $(a, b) \in \varrho$ and $(b, c) \in \varrho$. Then $d(0, a, b) = a \wedge b = a$ and $d(1, b, c) = b \vee c = c$. Therefore $(a, c) = (d(0, a, b), d(1, b, c)) \in \varrho$, which completes the proof.

Lemma 3.3. Let $\mathbf{A} = \langle A; F \rangle$ be a tolerance-free algebra with a majority term function admitting no proper subalgebra. Let ϱ be a binary nontrivial symmetric compatible relation of \mathbf{A} with $\varrho \cap \iota_2 = \emptyset$. Then $\varrho = \{(a, s(a)): a \in A\}$ where s is an automorphism of \mathbf{A} without fixed points and with cycles of equal length 2.

Proof. Since $\varrho \circ \varrho^{-1}$ and $\varrho^{-1} \circ \varrho$ are tolerance relations of **A** it follows that $\varrho \circ \varrho^{-1}$, $\varrho^{-1} \circ \varrho \in \{\iota_2, A^2\}$. If $\varrho \circ \varrho^{-1} = A^2$, then by Lemma 3.1 $\varrho_{|A|} = A^{|A|}$. Thus there is a $u \in A$ such that $(a, u) \in \varrho$ for every $a \in A$, implying that $(u, u) \in \varrho$, a contradiction. Similarly we can prove that $\varrho^{-1} \circ \varrho \neq A^2$. Hence $\varrho \circ \varrho^{-1} = \varrho^{-1} \circ \varrho = \iota_2$, which implies that $\varrho = \{(a, s(a)): a \in A\}$ for a permutation s on A. Clearly, s has no fixed point $(\varrho \cap \iota_2 = \emptyset)$. From $\varrho = \varrho^{-1}$ one gets $\varrho^2 = \iota_2$. Therefore each cycle of s has length 2.

The proof of the next lemma is given in [6].

Lemma 3.4. Let $\mathbf{A} = \langle A; F \rangle$ be a tolerance-free algebra having a majority term function. Then \mathbf{A} has at most two compatible lattice orders ϱ and ϱ^{-1} .

Lemma 3.5. Let $\mathbf{A} = \langle A; F \rangle$ be an algebra with a majority term function and exactly one proper subalgebra which moreover has exactly one element. Let $\{b\}$ be the one-element subalgebra of \mathbf{A} . Suppose \mathbf{A} has exactly three nontrivial binary compatible relations. Then \mathbf{A} is a semiprimal algebra of the form $\mathbf{A}_{\{b\}}$ and thus preprimal.

Proof. $\{b\} \times \{b\}, A \times \{b\}$, and $\{b\} \times A$ are all nontrivial compatible binary relations of **A**. Therefore, by Theorem 2.1, $T(\mathbf{A}) = \operatorname{Pol}(\{b\} \times \{b\}) \cap \operatorname{Pol}(A \times \{b\}) \cap$

K. Denecke

 \cap Pol ({b}×A)=Pol ({b}), i.e. A is a semiprimal algebra of the form $A_{(b)}$ and thus preprimal.

We are ready to formulate and prove our first theorem.

Theorem 3.6. Let **P** be one of the two-element algebras A_1, C_3, D_3 , and let $V_{\mathbf{p}}$ be the variety generated by **P**. Let \mathcal{K} be a variety equivalent as a category to $V_{\mathbf{p}}$. Then \mathcal{K} is generated by one of the preprimal algebras $A_{\leq}, A_{\langle b \rangle}$ or A_{s_*} .

Proof. Let \mathscr{K} be a quasivariety which is equivalent as a category to the quasivariety $QV_{\mathbf{P}}$ via some functors $G: \mathscr{K} \to QV_{\mathbf{P}}$ and $H: QV_{\mathbf{P}} \to \mathscr{K}$. Since \mathbf{P} has a term function which is a majority function, by a result of Jónsson [10], we have $QV_{\mathbf{P}}=V_{\mathbf{P}}$. By Theorem 2.2, \mathscr{K} is the variety generated by the finite algebra $H(\mathbf{P})$ and $H(\mathbf{P})$ is tolerance-free, having a term function which is a majority function. $H(\mathbf{A}_1)$ and $H(\mathbf{D}_3)$ have no proper subalgebras and $H(\mathbf{C}_3)$ has exactly one (one-element) subalgebra. By Theorem 2.2 (2), the subalgebra lattices of \mathbf{P}^2 and $H(\mathbf{P})^2$ are isomorphic. Therefore $H(\mathbf{D}_3)$ has exactly one nontrivial compatible binary relation ϱ and $\varrho \cap \iota_2 = \emptyset$ holds. By Lemma 3.3, Theorem 2.1, and Corollary 2.2 $H(\mathbf{D}_3)$ is a demiprimal preprimal algebra of the form \mathbf{A}_{s_2} . Further, $H(\mathbf{A}_1)$ has exactly two binary nontrivial compatible relations which are reflexive. By Lemma 3.2, Lemma 3.4, Theorem 2.1, and Corollary 2.2 $H(\mathbf{A}_1)$ is an order-complete preprimal algebra \mathbf{A}_{\leq} . $H(\mathbf{C}_3)$ has exactly three nontrivial binary compatible relations. By Lemma 3.5, $H(\mathbf{C}_3)$ is a semiprimal preprimal algebra of the form $\mathbf{A}_{(p)}$.

4. Dualities and full dualities of quasivarieties

The next statements concern the category equivalence of a quasivariety generated by any preprimal algebra of the form A_{\leq} , $A_{\{b\}}$, A_{s_2} , A_{a_m} to the quasivariety generated by a two-element preprimal algebra A_1 , C_3 , D_3 , L_1 . These considerations rest upon concepts and results of DAVEY—WERNER [3] on dualities and equivalences of quasivarieties.

Let $C = \langle C; F \rangle$ be a finite algebra and let $\mathscr{L} = ISP(C)$ be the quasivariety generated by C. Let $C = \langle C; \tau, R \rangle$ be a topological relational structure where R is a set of compatible relations of C, and τ is the discrete topology on C. Let \mathscr{L} be the class of all topological relational structures of the same type as C. For X, $Y \in \mathscr{L}$ a morphism $X \to Y$ is a map between the carrier sets of X, Y, which preserves the defining relations of X, Y. Let $\mathscr{L}(X, Y)$ denote the set of all continuous morphisms $X \to Y$. A mapping $\Phi \in \mathscr{L}(X, Y)$ is an embedding if it is one-to-one, closed, and for each relation $r \in R$ and $x_1, ..., x_n \in X$ we have

$$(\Phi(x_1), \ldots, \Phi(x_n)) \in r \Rightarrow (x_1, \ldots, x_n) \in r.$$

An onto-embedding is an isomorphism in \mathscr{Z} . Let $X \in \mathscr{Z}$ and $Y \subseteq X$. Y is a closed substructure if the inclusion map $Y \rightarrow X$ is an embedding. A power of C is always endowed with the product topology and the pointwise relations, i.e. the sets

$$\langle i; p \rangle := \{x \in C^I : x(i) = p\}$$
 with $i \in I$ and $p \in C$

form a subbasis for the topology on C^{I} . For $x_1, ..., x_n \in C^{I}$ one has

$$(x_1, \ldots, x_n) \in r \Leftrightarrow (\forall i \in I) (x_1(i), \ldots, x_n(i)) \in r.$$

The subclass of \mathscr{Z} consisting of all members isomorphic to a closed substructure of a power of C is denoted by \mathscr{R} . Symbolically, we write $\mathscr{R} = ISP(C)$.

The following lemma shows the interconnection between the categories \mathscr{L} and \mathscr{R} .

Lemma 4.1. There exists a pair of adjoint contravariant functors $D: \mathcal{L} \rightarrow \mathcal{R}$, $E: \mathcal{R} \rightarrow \mathcal{L}$.

A pair (D, E) as in Lemma 4.1 is called a protoduality. The protoduality is called a duality if for each algebra A in \mathscr{L} the embedding $e_A: A \rightarrow ED(A)$ is an isomorphism.

Let $\mathscr{R}_0 \subseteq \mathscr{R}$ be the subcategory consisting of all structures isomorphic to some closed substructure of a power of C. Then the duality (D, E) is called a full duality between \mathscr{L} and \mathscr{R}_0 if for all $X \in \mathscr{R}_0$ the embedding $\varepsilon_X : X \to DE(X)$ is an isomorphism. C is said to be injective in \mathscr{R}_0 (with respect to some class \mathscr{I} of embeddings) if for each embedding $\sigma : X \to Y$ in \mathscr{R}_0 ($\sigma \in \mathscr{I}$), every continuous morphism $\varphi : X \to C$ extends to a continuous morphism $\psi : Y \to C$ with $\psi \circ \sigma = \varphi$.

The next statements rest upon the following two conditions (IB) and (EF).

- (IB) For every substructure **X** of a finite power C^n of **C**, each morphism $\varphi: X \rightarrow C$ extends to a term function $\overline{\varphi}: C^n \rightarrow C$ of **C**.
- (EF) If X is a proper substructure of some finite $Y \in \mathscr{R}_0$ then there exist two different morphisms $\varphi, \psi: Y \rightarrow C$ such that $\varphi/X = \psi/X$.

Lemma 4.2. Let $\mathcal{L}=ISP(C)$ for a finite algebra $C = \langle C; F \rangle$. Let $C = \langle C; \tau, R \rangle$ be a (finite) relational structure where R is a finite set of compatible relations on C and $\mathcal{R}=ISP(C)$. Suppose the conditions (IB) and (EF) hold. Then the protoduality (D, E) is a full duality between \mathcal{L} and \mathcal{R}_0 , and C is injective in \mathcal{R}_0 .

Now we assume that C admits a majority term function.

Lemma 4.3. Let $C = \langle C; F \rangle$ be a finite algebra with a majority term function. Let R be the set of all binary compatible relations on C. Then the protoduality (D, E) is a duality between \mathcal{L} and \mathcal{R}_0 , and C is injective in \mathcal{R}_0 . If (EF) holds, (D, E) is a full duality between \mathcal{L} and \mathcal{R}_0 .

K. Denecke

We are ready to apply the preceding duality theory to obtain dualities or even full dualities for varieties (quasivarieties) generated by two-element preprimal algebras.

Theorem 4.4. Let $2_{p} = \langle \{0, 1\}; F \rangle$ be a two-element preprimal algebra $(2_{p} \in \{A_{1}, C_{3}, D_{3}, L_{1}\})$. Let $2_{p} = \langle \{0, 1\}; \varrho \rangle$ be a finite relational structure with $F = \text{Pol } \varrho$ and $\mathcal{R} = \text{ISP}(2_{p})$. Then the protoduality is a full duality between \mathcal{L} and \mathcal{R}_{0} and 2_{p} is injective in \mathcal{R}_{0} .

Proof. By Corollary 2.2 for any two nontrivial compatible relations ϱ_1 , ϱ_2 of a preprimal algebra $\mathbf{A} = \langle A; F \rangle$ we have $F = \operatorname{Pol} \varrho_1 = \operatorname{Pol} \varrho_2$. Therefore we can set $\mathbf{2}_P = \langle \{0, 1\}; \varrho \rangle$ with $F = \operatorname{Pol} \varrho$. The algebras $\mathbf{A}_1, \mathbf{C}_3$, and \mathbf{D}_3 have majority term functions. In view of Lemma 4.3 it is sufficient to prove that condition (EF) is satisfied. We define $\mathbf{A}_1 = \langle \{0, 1\}; \leq \rangle$, $\mathbf{C}_3 = \langle \{0, 1\}; 0 \rangle$, $\mathbf{D}_3 = \langle \{0, 1\}; N \rangle$. In the first case, if $\mathbf{X} \subset \mathbf{Y} \in \mathcal{R}_0$, Y finite, and $a \in Y \setminus X$, then both $(a] = \{y \in Y: y \leq a\}$ and (a) = $= \{y \in Y: y < a\}$ are ideals such that $X \cap (a] = X \cap (a)$. Thus $\varphi, \psi: Y \to \{0, 1\}$, $\varphi(x) = 0 \Leftrightarrow x \leq a, \ \psi(x) = 0 \Leftrightarrow x < a$ are two order-preserving maps which agree on X. In the second case, let $\mathbf{X} \subset \mathbf{Y}$ be a substructure of a finite $\mathbf{Y} \in \mathcal{R}_0$, i.e. $0 \in \mathbf{X}$ and let $\varphi, \psi: Y \to C_3$ with $\varphi(x) = 0$ and

$$\psi(x) = \begin{cases} 0 & \text{if } x \in X \\ 1 & \text{if } x \notin X. \end{cases}$$

Then φ and ψ are morphisms, $\varphi \neq \psi$ but $\varphi/X = \psi/X$.

Now we consider \mathbf{D}_3 . Let $\mathbf{X} \subset \mathbf{Y} \in \mathcal{R}_0$, Y finite, i.e. $N\mathbf{X} \subseteq \mathbf{X}$ where N is a permutation on Y with cycles of the same length 2 and without fixed points. Then we consider two proper subsets $X_1, X_2 \subset X$ with $X_1 = \{x \in X: Nx \in X_2\}, X_2 = \{x \in X: Nx \in X_1\}, 0 \in X_1, 1 \in X_2, N0 = 1$. From $Nx \neq x$, $x \in Y$ it follows $X_1 \cap X_2 = \emptyset$. Further, we have $X_1 \cup X_2 = X, X_1$ and X_2 can be extended to Y_1 and Y_2 , respectively, such that $Y_1 = \{x \in Y: Nx \in Y_2\}, Y_2 = \{x \in Y: Nx \in Y_1\}, Y_1 \cap Y_2 = \emptyset, Y_1 \cup Y_2 = Y$. We choose

$$\varphi(x) = \begin{cases} 0 & \text{if } x \in X_1 \\ 1 & \text{if } x \in X_2 \\ 0 & \text{if } x \in Y_1 \setminus X_1 \\ 1 & \text{if } x \in Y_2 \setminus X_2 \end{cases}, \quad \psi(x) = \begin{cases} 0 & \text{if } x \in X_1 \\ 1 & \text{if } x \in X_2 \\ 1 & \text{if } x \in Y_1 \setminus X_1 \\ 0 & \text{if } x \in Y_2 \setminus X_2 \end{cases}$$

 φ and ψ are two distinct morphisms which agree on X.

Finally, we consider $L_1 = \langle \{0, 1\}, +, N, 0, 1 \rangle$. Let $\mathscr{L} = ISP(L_1)$ be the quasivariety generated by L_1 ($\mathscr{L} \neq V_{L_1}$). The term functions of L_1 are exactly all Boolean functions which preserve $\alpha = \{(x, y, z, e): e = x + y + z\}$. Here x + y + z is the ternary operation of the Boolean 3-group $G_3 = \langle \{0, 1\}; x + y + z \rangle$. For $L_1 = G_3$ condition (IB) is satisfied. ISP(G_3) is the variety of Boolean 3-groups. X being a proper subalgebra of a finite Boolean 3-group $Y \in \mathscr{R}_0$, we choose a maximal subgroup Z of Y containing X. $Y \setminus Z$ is simple and thus isomorphic to L_1 . Hence we have two homomorphisms $Y \rightarrow L_1$ with kernels Z and Y, respectively, which therefore agree on X. Thus condition (EF) is satisfied.

5. Application of the Equivalent Quasivarieties Theorem

In this section we prove that the quasivarieties generated by the preprimal algebras \mathbf{A}_{\leq} , $\mathbf{A}_{\langle b \rangle}$, \mathbf{A}_{s_2} , \mathbf{A}_{α_m} , respectively, are equivalent as categories to the varieties (quasivarieties) generated by the two-element preprimal algebras \mathbf{A}_1 , \mathbf{C}_3 , \mathbf{D}_3 , \mathbf{L}_1 . We need the following Equivalent Quasivarieties Theorem [3].

Theorem 5.1. Assume that the protoduality (D, E) is a full duality between \mathcal{L} and \mathcal{R}_0 and assume further that C is injective in \mathcal{R}_0 . Then a quasivariety \mathcal{K} is equivalent as a category to the quasivariety \mathcal{L} if and only if the following conditions are satisfied:

(i) there is a finite algebra **Q** in \mathcal{H} and a family **R** of compatible relations on **Q** such that $\mathbf{Q} = \langle Q; R \rangle$ is an object of \mathcal{R}_0 ,

(ii) (a) $\mathscr{K} = \text{ISP}(\mathbf{Q}),$

(b) C is isomorphic to a subalgebra of a power of Q,

(iii) **Q** is injective in \mathcal{R}_0 (or equivalently, **Q** is a retract of a finite power of **C**),

(iv) for each positive integer n every morphism $\mathbf{Q}^n \rightarrow \mathbf{Q}$ is a term function on \mathbf{Q} . If \mathscr{K} is equivalent as a category to \mathscr{L} , then \mathbf{Q} above can be chosen to be $H(\mathbf{C})$.

Let $2_{p} = \langle \{0, 1\}; F \rangle$ be a two-element preprimal algebra and let $2_{p} = \langle \{0, 1\}; \varrho \rangle$ be a relational structure with $F = \text{Pol } \varrho$. We set $\mathscr{L} = \text{ISP}(2_{p})$ and $\mathscr{R} = \text{ISP}(2_{p})$. By Theorem 4.4 (D, E) is a full duality between \mathscr{L} and \mathscr{R}_{0} and 2_{p} is injective in \mathscr{R}_{0} . In order to apply Theorem 5.1 for the proof that the quasivariety generated by one of the preprimal algebras \mathbf{A}_{\leq} , $\mathbf{A}_{\langle b \rangle}$, $\mathbf{A}_{s_{2}}$, $\mathbf{A}_{\alpha_{m}}$ is equivalent as a category to the quasivariety \mathscr{L} one has to show that conditions (i)—(iv) are satisfied.

Lemma 5.2. The variety generated by a preprimal algebra A_{\leq} is category equivalent to $V_{A_{1}}$.

Proof. By Theorem 3.6 $\mathscr{H} = \text{ISP}(A_{\leq})$ is the variety generated by A_{\leq} . It is clear that $C = A_1 = \langle \{0, 1\}; \leq \rangle$, $Q = A_{\leq}$, $Q = A_{\leq} = \langle A; \leq \rangle$ fulfil the conditions (i), (ii) (a), and (iv). A_1 is isomorphic to the substructure of A_{\leq} consisting of the least and the greatest element with respect to \leq , i.e. (ii) (b) holds. Then the lattice P(A) of all subsets of A is isomorphic to a finite power of A_1 , and the maps σ and τ

given by

$$\sigma: \mathbf{A}_{\leq} \to P(A), \quad \sigma(a) = \{x \in A : (x, a) \in \leq \text{ for all } a \in A\},\\ \tau: P(A) \to \mathbf{A}_{\leq}, \quad \tau(B) = \sup B \text{ for all } B \subseteq A,$$

are order preserving and such that $\sigma \circ \tau = I_{A_{\tau}}$. Hence (iii) holds.

Lemma 5.3. The variety generated by a preprimal algebra $A_{\{b\}}$ is category equivalent to V_{C_n} .

Proof. By Theorem 3.6 we have $\mathscr{K} = ISP(\mathbf{A}_{\{b\}}) = V_{\mathbf{A}_{\{b\}}}$. For $\mathbf{C} = \mathbf{C}_3 = = \langle \{0, 1\}; 0 \rangle$, $\mathbf{Q} = \mathbf{A}_{\{b\}}$, $\mathbf{Q} = \mathbf{A}_{\{b\}} = \langle A; b \rangle$, conditions (i), (ii) (a), and (iv) hold. \mathbf{C}_3 is isomorphic to a substructure of $\mathbf{A}_{\{b\}}$ consisting of b and any other element of A. Hence (ii) (b) holds. We choose a positive integer n such that $|A| \leq 2^n$. Then there exist a monomorphism $\sigma: \mathbf{A}_{\{b\}} \to \langle \{0, 1\}^n; 0 \rangle$ and an epimorphism $\tau: \langle \{0, 1\}^n; 0 \rangle \to \mathbf{A}_{\{b\}}$ such that $\sigma \circ \tau = \mathbf{1}_{\mathbf{A}_{\{b\}}}$. Hence (iii) holds.

Lemma 5.4. The variety generated by a preprimal algebra A_{s_2} is category equivalent to V_{D_2} .

Proof. By Theorem 3.6, we have $\mathscr{K} = ISP(\mathbf{A}) = V_{\mathbf{A}_{s_2}}$. For $\mathbf{C} = \mathbf{D}_3 = = \langle \{0, 1\}; N \rangle$, $\mathbf{Q} = \mathbf{A}_{s_2}$, $\mathbf{Q} = \mathbf{A}_{s_2} = \langle A; N \rangle$, conditions (i), (ii) (a), and (iv) hold. \mathbf{C}_3 is isomorphic to a substructure of \mathbf{A}_{s_2} consisting of any two elements $a, b, a \neq b$, of A with Na = b, Nb = a (|A| = 2k). Hence (ii) (b) holds. We choose n such that $|A| \leq 2^n$. Without restriction of generality we choose $\mathbf{A}_{s_2} = \langle \{0, 1, ..., 2k-1\}; N \rangle$ with N = (01)(23)...(2k-12k), and $2^n = \langle \{a_0, a_1, ..., a_{2^n-1}\}, N \rangle$. Then we can define a monomorphism $\sigma: \mathbf{A}_{s_2} \to 2^n$ by $\sigma(i) = a_i, i = 0, ..., 2k-1$, and an epimorphism $\tau: 2^n \to \mathbf{A}_{s_2}$ by $\tau(a_i) = i$ for i = 0, ..., 2k-1 and $\tau(a_{2k+i}) = i$ for $i = 0, ..., 2^n - 2k$ such that $\sigma \circ \tau = \mathbf{1}_{\mathbf{A}_i}$. Hence (iii) holds.

Lemma 5.5. A quasivariety \mathcal{K} is category equivalent to the quasivariety generated by \mathbf{L}_1 if and only if it is generated by a preprimal algebra \mathbf{A}_{a_1} .

Proof. Let $\mathscr{L} = ISP(L_1)$ be the quasivariety generated by L_1 . By Theorem 4.4, for $C = L_1 = G_3 = \langle \{0, 1\}; x + y + z \rangle$, $\mathscr{R} = ISP(L_1)$ the protoduality (D, E) is a full duality between \mathscr{L} and \mathscr{R}_0 , and L_1 is injective in \mathscr{R}_0 .

Let \mathscr{K} be equivalent to $\mathscr{L}=\text{ISP}(\mathbf{L}_1)$. Then by Theorem 5.1 (i), there exist a finite algebra \mathbf{Q} in \mathscr{K} and a family R of compatible relations of \mathbf{Q} such that $\mathbf{Q}=\langle Q; R \rangle$ is an object of \mathscr{R}_0 , i.e. \mathbf{Q} is a Boolean 3-group and therefore \mathbf{Q} is a finite power of the two-element Boolean 3-group. By (iv), \mathbf{Q} is a preprimal algebra of the form \mathbf{A}_{α_m} with $\alpha_m = \{(x, y, z, e): e = x + y + z\}$ and x + y + z the operation of a Boolean 3-group $\mathbf{G}_3^m = \langle A; x + y + z \rangle$, $|A| = 2^m$, m > 1. Conversely, let $\text{ISP}(\mathbf{A}_{\alpha_m})$ be the quasivariety generated by \mathbf{A}_{α_m} . Taking $\mathbf{Q} = \mathbf{A}_{\alpha_m}$, $\mathbf{Q} = \mathbf{G}_3^m$, (i), (ii) (a), (b), and (iv)

are satisfied. Since G_3 is injective in \mathcal{R}_0 , $Q = G_3^m$ also is injective in \mathcal{R}_0 . Hence (iii) holds and ISP (A_{α_m}) is equivalent to ISP (L_1) .

Finally, by Lemmas 5.2-5.5 and Theorem 3.6 we obtain

Theorem 5.6. A quasivariety is category equivalent to the quasivariety generated by a two-element preprimal algebra iff it is generated by a preprimal algebra of one of the forms \mathbf{A}_{\leq} , $\mathbf{A}_{\{b\}}$, $\mathbf{A}_{s_{\mathbf{z}}}$ (|A|=2k), $\mathbf{A}_{\alpha_{m}}$ ($|A|=2^{m}$).

References

- K. A. BAKER and A. F. PIXLEY, Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems, *Math. Z.*, 143 (1975), 165–174.
- [2] G. BIRKHOFF, Some applications of universal algebra, in: Universal Algebra (Proc. Conf. Esztergom, 1977), Colloq. Math. Soc. János Bolyai, vol. 26, North-Holland (Amsterdam, 1982); pp. 107—128.
- [3] B. A. DAVEY and H. WERNER, Dualities and equivalences for varieties of algebras, in: Contributions to Lattice Theory (Proc. Conf. Szeged, 1980), Colloq. Math. Soc. János Bolyai, vol. 33, North-Holland (Amsterdam, 1983); pp. 101-275.
- [4] K. DENECKE, Algebraische Fragen nichtklassischer Aussagenkalküle, Dissertation, Päd. Hochschule Potsdam (1978).
- [5] K. DENECKE, Preprimal Algebras, Akademie-Verlag (Berlin, 1982).
- [6] K. DENECKE and L. SZABÓ, Characterization of algebras having majority term functions and admitting no proper subalgebras and no nontrivial tolerance relations, in: *Lectures in Univer*sal Algebra (Proc. Conf. Szeged, 1983), Colloq. Math. Soc. J. Bolyai, vol. 43, North-Holland (Amsterdam, 1986), pp. 497-506.
- [7] G. GRÄTZER, Universal Algebra, 2nd ed., Birkhäuser-Verlag (Basel, 1979).
- [8] H.-J. HOEHNKE, Struktursätze der Algebra und Kompliziertheit logischer Schemata. I, Math. Nachr., 61 (1974), 15-53.
- [9] T. K. Hu, Stone duality for primal algebra theory, Math. Z., 110 (1969), 180-198.
- [10] B. JÓNSSON, Algebras whose congruence lattices are distributive, Math. Scand., 21 (1967), 110– 121.
- [11] E. L. POST, *The two-valued iterative systems of mathematical logic*, Ann, Math. Studies, vol. 5, Amer. Math. Soc. (Princeton, 1941).
- [12] I. ROSENBERG, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpr. ČSAV, Řada Math. Přír. Věd, 80 (1970), 3-93.
- [13] W. TAYLOR, Characterizing Mal'cev conditions, Algebra Universalis, 3 (1977), 351-391.

SEKTION MATHEMATIK/PHYSIK PÅDAGOGISCHE HOCHSCHULE "KARL LIEBKNECHT" AM NEUEN PALAIS 1571 POTSDAM, GDR