Examples of local uniformity of congruences

IVAN CHAJDA

Following [6], a congruence Θ on an algebra A is *uniform* if every two congruence classes of Θ have the same cardinality. An algebra A is *uniform* if each $\Theta \in \text{Con } A$ has this property. A class of algebras is *uniform* if every algebra of this class has this property.

It is well known that groups and Boolean algebras are uniform. Moreover, every variety generated by quasi-primal algebras (i.e. a discriminator variety, see [7]) is uniform, see [6] or Theorem 2.2 in [7]. Some classes of uniform algebras are depicted also in [3]. Although such "nice" varieties are uniform, W. TAYLOR [6] proved that the class of uniform varieties is not definable by a Mal'cev condition. He introduces the following concept: an algebra A is weakly uniform if for every cardinal m there exists a cardinal n such that whenever B_1 and B_2 are congruence classes of some $\Theta \in \text{Con } A$, if card $B_1 \leq m$ then card $B_2 \leq n$. It was proven in [6] that the class of varieties of weakly uniform algebras is definable by a Mal'cev condition.

For algebras with a nullary operation, we can give a local version of uniformity:

Definition. An algebra A with a nullary operation c is c-locally uniform if for each element $a \in A$ and each $\Theta \in \text{Con } A$, card $[a]_{\Theta} \leq \text{card } [c]_{\Theta}$. A class K of algebras of the same type with a nullary operation c is c-locally uniform if each $A \in \mathscr{K}$ has this property.

It is clear that every uniform algebra with a nullary operation c is c-locally uniform and every c-locally uniform algebra is weakly uniform with $n = card [c]_{e}$.

Recall that an algebra A is *regular* if every two congruences on A coincide whenever they have a congruence class in common. An algebra A with a nullary operation c is *weakly regular (with respect to c)* if every two congruences $\Theta, \Phi \in$ \in Con A coincide whenever $[c]_{\Theta} = [c]_{\Phi}$. A class \mathcal{K} of algebras is *(weakly) regular* if each $A \in \mathcal{K}$ has this property.

Received January 23, 1985.

Proposition (Lemma 2.6 in [5]). Every uniform variety is regular.

We can prove a similar result for c-locally uniform algebras.

Theorem 1. Let \mathscr{K} be a class of algebras of the same type with a nullary operation c closed under homomorphic immages. If \mathscr{K} is c-locally uniform, then \mathscr{K} is weakly regular with respect to c.

Proof. Let c be a nullary operation of a c-locally uniform class \mathcal{K} . Let \mathcal{K} be closed under homomorphic immages. Suppose $A \in \mathcal{K}$, Θ_1 , $\Theta_2 \in \text{Con } A$ and

$$(*) [c]_{\theta_1} = [c]_{\theta_2}.$$

In this case we have clearly $[c]_{\theta_1 \land \theta_2} = [c]_{\theta_1 \lor \theta_2} = [c]_{\theta_1} = [c]_{\theta_2}$; without loss of generality, we can assume $\Theta_1 \leq \Theta_2$. Denote by ω the identity relation on A/Θ_1 . By (*), the congruences $\omega = \Theta_1/\Theta_1$ and Θ_2/Θ_1 of $A/\Theta_1 \in \mathcal{K}$ have the same congruence class containing the nullary operation $[c]_{\theta_1}$ of A/Θ_1 . Thus

 $\operatorname{card} [c]_{\theta_2/\theta_1} = \operatorname{card} [c]_{\omega} = 1.$

Since A/Θ_1 is c-locally uniform, we have

 $1 \leq \operatorname{card} [a]_{\theta_2/\theta_1} \leq \operatorname{card} [c]_{\theta_2/\theta_1} = 1$

for each $a \in A$, thus $\Theta_2 / \Theta_1 = \omega$, i.e. $\Theta_2 = \Theta_1$.

The aim of this paper is to show that there exist important classes of finite algebras which are c-locally uniform but not uniform. By Theorem 1, they must be weakly regular. By [4], such algebras can be found among Heyting algebras, implication algebras and other types of lattice ordered algebras with pseudocomplementation.

An algebra $\langle L; \vee, \wedge, \cdot, 1 \rangle$ with three binary and one nullary operations is an *rp-algebra* if $\langle L; \vee, \wedge, 1 \rangle$ is a lattice with greatest element 1 and \cdot satisfies the following identities:

$$(**) x \cdot x = 1, (x \cdot y) \wedge y = y, (x \cdot y) \wedge x = x \wedge y.$$

Theorem 2. The class of all finite rp-algebras is 1-locally uniform but not uniform.

Proof. Let \mathscr{K} be a class of all finite *rp*-algebras. Clearly \mathscr{K} is not uniform, because, e.g. the three-element chain $C = \{0, a, 1\}, 0 < a < 1$, with a binary operation \cdot defined by

 $a \cdot 0 = 0, 1 \cdot 0 = 0$ and $x \cdot y = 1$ for all other combinations of variables

is an *rp*-algebra but the partition $\{0\}$, $\{a, 1\}$ forms a congruence on C which is not uniform.

We prove that \mathscr{K} is 1-locally uniform. Let $A \in \mathscr{K}$, $z \in A$, $\Theta \in \text{Con } A$. Since A is a finite lattice, the congruence class $[z]_{\Theta}$ contains a greatest element a. Put $\varphi(x) = = a \cdot x$. We prove that φ is an injection of $[z]_{\Theta}$ into $[1]_{\Theta}$. If $x \in [z]_{\Theta}$, then $\langle x, a \rangle \in \Theta$. Since φ is an algebraic function over A, it follows that $\langle \varphi(x), \varphi(a) \rangle = \langle \varphi(x), a \cdot a \rangle = = \langle \varphi(x), 1 \rangle \in \Theta$, i.e. $\varphi(x) \in [1]_{\Theta}$. Thus $\varphi: [z]_{\Theta} \rightarrow [1]_{\Theta}$. Suppose $\varphi(x) = \varphi(y)$ for $x, y \in [z]_{\Theta}$. Then $a \cdot x = a \cdot y$, whence $a \wedge (a \cdot x) = a \wedge (a \cdot y)$. By (**), this yields $a \wedge x = a \wedge y$. Since $x \leq a, y \leq a$, we obtain x = y. Thus φ is an injection, and therefore card $[z]_{\Theta} \leq \text{card } [1]_{\Theta}$.

Let L be a lattice and $a, b \in L$. An element $x \in L$ is called a *relative pseudo*complement of a with respect to b if x is the greatest element satisfying $a \land x = a \land b$; denote it by a * b. A lattice L is *relatively pseudocomplemented* if a * b exists for each $a, b \in L$. Then clearly L has a greatest element 1, and a * a = 1 for each $a \in L$. Clearly the operation * satisfies the identities (* *), i.e. we obtain the following

Corollary 1. Every finite relatively pseudocomplemented lattice is 1-locally uniform.

Note that a finite lattice is relatively pseudocomplemented if and only if it is distributive. Corollary 1 implies immediately (for the definition, see e.g. [7])

Corollary 2. Every finite Heyting algebra is 1-locally uniform.

Remark. By [4], a Heyting algebra is regular if and only if it is a Boolean algebra. Every three-element chain 0 < a < 1 with a pseudocomplementation is a Heyting algebra which is not uniform.

Following [1], an algebra $\langle A; \cdot \rangle$ with one binary operation is an *implication* algebra if it satisfies

$$(x \cdot y) \cdot x = x, \quad (x \cdot y) \cdot y = (y \cdot x) \cdot x, \quad x \cdot (y \cdot z) = y \cdot (x \cdot z).$$

As it was proven in [1], every implication algebra A has a nullary operation 1 such that $a \cdot a = 1$ for each $a \in A$.

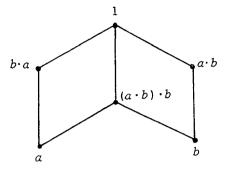
Lemma 1. Every implication algebra is a \lor -semilattice with greatest element 1 with respect to the operation $a \lor b = (a \cdot b) \cdot b$.

For the proof, see Theorem 3 and Theorem 4 in [1].

Lemma 2. (Theorem 5 in [1]). Let A be an implication algebra and $a, b \in A$. If p is any lower bound for a and b (with respect to the semilattice ordering), then the infimum $a \wedge b$ of a and b exists, and $a \wedge b = [a \cdot (b \cdot p)] \cdot p$.

Theorem 3. The class of all finite implication algebras is 1-locally uniform but not uniform.

Proof. Let A be free implication algebra with two free generators a, b. By the Corollary of Theorem 2 in [1], A has the following diagram (as a \lor -semilattice):



Clearly the equivalence Θ given by the partition

 $\{b \cdot a, 1\}, \{a, (a \cdot b) \cdot b\}, \{a \cdot b\}, \{b\}$

is a congruence on A which is not uniform.

Let A be a finite implication algebra, $\Theta \in \text{Con } A$ and $z \in A$. By Lemma 1, there exists a greatest element a in $[z]_{\Theta}$. Put $\varphi(x) = a \cdot x$. Clearly $\varphi(a) = a \cdot a = 1$. If $x \in [z]_{\Theta}$, then $\langle x, a \rangle \in \Theta$ which implies $\langle \varphi(x), \varphi(a) \rangle = \langle \varphi(x), 1 \rangle \in \Theta$, i.e. $\varphi(x) \in [1]_{\Theta}$. Thus φ is a mapping of $[z]_{\Theta}$ into $[1]_{\Theta}$.

We prove that φ is an injection on $[z]_{\theta}$. Suppose $x, y \in [z]_{\theta}$ and $\varphi(x) = \varphi(y)$. Then $a \cdot x = a \cdot y$. Since $x \leq a$, $x \leq a \cdot x$ and $y \leq a$, $y \leq a \cdot y$, therefore x is a lower bound of a and $a \cdot x$, y is a lower bound of a and $a \cdot y$. By Lemma 2, $a \wedge a \cdot x$ and $a \wedge a \cdot y$ exist, and $a \cdot x = a \cdot y$ implies that $a \cdot x \wedge a = a \cdot y \wedge a$. By Lemma 2, $a \cdot x \wedge a =$ $= [(a \cdot x)(a \cdot x)] \cdot x = 1 \cdot x = x$, and analogously $a \cdot y \wedge a = y$. Hence x = y.

References

- [1] J. C. ABBOTT, Semi-Boolean algebra, Mat. Vestnik, 4 (19) (1967), 177-198.
- [2] S. BURRIS, H. P. SANKAPPANAVAR, A Course in Universal Algebra, Springer-Verlag (Berlin-Heidelberg-New York, 1981).
- [3] I. CHAJDA, Notes on the Big Dipper identity, Ann. Univ. Sci. Budapest, R. Eötvös Nom., 29 (1986), 97-101.
- [4] J. C. VARLET, Regularity in p-algebras and p-semilattices, in: Banach Center Publ., Vol. 9, Polish Sci. Publ. (Warszawa, 1982); pp. 369–382.
- [5] R. W. QUACKENBUSH, Algebras with minimal spectrum, Algebra Universalis, 10 (1980), 117-129.
- [6] W. TAYLOR, Uniformity of congruences, Algebra Universalis, 4 (1974), 342-360.
- [7] H. WERNER, Discriminator algebras, Studien zur Algebra und ihre Anwendungen, Band 6, Akademie-Verlag (Berlin, 1979).

TŘÍDA LIDOVÝCH MILICÍ 22 750 00 PŘEROV, CZECHOSLOVAKIA