On the minimal ring containing the boundary of a convex body

IMRE BÁRÁNY

1. Let $K \subset \mathbf{R}^{2}$ be a convex compact set with boundary C. For each point $x \in K$ there exist a minimal circular disc $B(R(x), x)$ containing K and a maximal circular disc $B(r(x), x)$ contained in K, where $B(r, x)$ denotes the disc with radius r and center x.

The function $R(x)-r(x)$ attaines its minimal value in a unique point $x_{0} \in K$. This was shown by Bonnesen [1], Bonnesen and Fenchel [2]. So the circular ring around x_{0} with radii $R\left(x_{0}\right)$ and $r\left(x_{0}\right)$, respectively, is the minimal ring containing the boundary C of K.

This result was used by Bonnesen and Fenchel [2] to sharpen the isoperimetric inequality in $\mathbf{R}^{\mathbf{2}}$. Later I. Vincze [7] showed that

$$
\begin{equation*}
\frac{\min \{R(x): x \in K\}}{R\left(x_{0}\right)} \geqq \frac{\sqrt{3}}{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\max \{r(x): x \in K\}}{r\left(x_{0}\right)}<2 \tag{2}
\end{equation*}
$$

and these inequalities are sharp.
Answering a question due to I. Vincze we generalize the inequalities (1) and (2) to arbitrary dimension. To do so we need a theorem characterizing the minimal ring in \mathbf{R}^{d}. For $d=2$ and $d=3$ such a theorem was found by Bonnesen [1] and by Kriticos [4]. The main tool in the proof of our results is the use of convex analysis (see: Йоффе - Тихомиров [3] and Rockefellar [5]).
2. Again, let $K \subset \mathbf{R}^{d}$ be a convex compact set with boundary $C . B(r, x)$ stands for the ball with radius r and center x. For $x \in K$ we define

$$
\begin{aligned}
R(x) & =\min \{R: B(R, x) \supseteqq K\}, \\
r(x) & =\max \{r: B(r, x) \cong K\} .
\end{aligned}
$$

Received January 18, 1985.

It is easy to see that the maximum and minimum above exist, so the definition is correct. Moreover, this means that for each $x \in K$ there exist points p and q such that $p, q \in C$ and $\|x-p\|=R(x)$ and $\|x-q\|=r(x)$. In this case we say that p supports $R(x)$ and q supports $r(x)$.

Theorem 1. There exists a point $x_{0} \in K$ in which the function $R(x)-r(x)$ attaines its minimal value. This point x_{0} is unique.

The set $\left\{x \in \mathbf{R}^{\mathrm{d}}: r\left(x_{0}\right) \leqq\left\|x-x_{0}\right\| \leqq R\left(x_{0}\right)\right\}$ is called the minimal ring containing C. The characterization theorem for the minimal ring is this:

Theorem 2. The point $x_{0} \in K$ is the center of the minimal ring if and only if there are points $p_{1}, \ldots, p_{k} \in C$ supporting $R\left(x_{0}\right)$ and $q_{1}, \ldots, q_{1} \in C$ supporting $r\left(x_{0}\right)$ ($k, l \geqq 1$) such that

$$
\operatorname{conv}\left\{\frac{p_{i}-x_{0}}{R\left(x_{0}\right)}: i=1, \ldots, k\right\} \cap \operatorname{conv}\left\{\frac{q_{i}-x_{0}}{r\left(x_{0}\right)}: j=1, \ldots, l\right\} \neq \emptyset
$$

where conv denotes the convex hull.
There is a certain converse to this theorem. We describe it when $x_{0}=0$.
Theorem 3. Let $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l}$ be vectors in \mathbf{R}^{d} such that
(i) $\left\|p_{1}\right\|=\ldots=\left\|p_{k}\right\|=R \geqq r$,
(ii) $\left\|q_{1}\right\|=\ldots=\left\|q_{l}\right\|=r>0$,
(iii) $\left\{p_{i} / R: i=1, \ldots, k\right\} \cap \operatorname{conv}\left\{q_{j} / r: j=1, \ldots, l\right\} \neq \emptyset$,
(iv) each p_{i} is contained in the halfspaces

$$
\left\{x \in \mathbf{R}^{d}:\left\langle q_{j}, q_{j}-x\right\rangle \geqq 0\right\} \quad(j=1, \ldots, l) .
$$

In this case there exists a convex compact set $K \subset \mathbf{R}^{d}$ for which $R(x)-r(x)$ attaines its minimal value at $x_{0}=0, R(0)=R, r(0)=r$ and $R(0)$ is supported by $p_{1}, \ldots, p_{k} \in C$ and $r(0)$ is supported by $q_{1}, \ldots, q_{l} \in C$.

Now we give the generalization of the inequalities (1) and (2).
Theorem 4. For $d \geqq 3, \max r(x) / r\left(x_{0}\right)$ is not bounded from above. On the other hand, for $d \geqq 3$,

$$
\min R(x) / R\left(x_{0}\right) \geqq \frac{1}{2}\left(\cos ^{2} \alpha_{0}+\cos \alpha_{0}-1+\frac{1}{\cos \alpha_{0}}\right) \approx 0.8054
$$

where $\alpha_{0} \in(0, \pi / 2)$ is the root of the equation $\sin ^{2} \alpha-2 \cos ^{3} \alpha=0$. This inequality is sharp.
3. This section contains the proofs. We start with some simple facts and observations.

Claim 1.

$$
\begin{aligned}
R(x) & =\max _{p \in K}\|x-p\|=\max _{p \in C}\|x-p\|, \\
r(x) & =\inf _{p ₫ K}\|x-p\|=\min _{p \in C}\|x-p\|,
\end{aligned}
$$

and the points in which the maximum (minimum) is attained support $R(x) / r(x)$, respectively).

Claim 2.
(a)

$$
R\left(\frac{x_{1}+x_{2}}{2}\right) \leqq \frac{1}{2}\left(R\left(x_{1}\right)+R\left(x_{2}\right)\right)
$$

and if equality holds here, then there is a unique $p \in C$ supporting $R\left(\left(x_{1}+x_{2}\right) / 2\right)$ and this point lies on the straight line through x_{1} and x_{2}, and p supports $R\left(x_{1}\right)$ and $R\left(x_{2}\right)$ as well.

$$
\begin{equation*}
r\left(\frac{x_{1}+x_{2}}{2}\right) \geqq \frac{1}{2}\left(r\left(x_{1}\right)+r\left(x_{2}\right)\right) \tag{b}
\end{equation*}
$$

Proof. (a) Let $p \in C$ be a point of support for $R\left(\left(x_{1}+x_{2}\right) / 2\right)$. Then $p \in B\left(R\left(x_{1}\right), x_{1}\right) \cap B\left(R\left(x_{2}\right), x_{2}\right)$ and the triangle-inequality proves the claim.
(b) Obviously conv $\left(B\left(r\left(x_{1}\right), x_{1}\right) \cup B\left(r\left(x_{2}\right), x_{2}\right)\right) \subseteq K$ and an easy calculation shows that

$$
B\left(\frac{r\left(x_{1}\right)+r\left(x_{2}\right)}{2}, \frac{x_{1}+x_{2}}{2}\right) \subseteq \operatorname{conv}\left(B\left(r\left(x_{1}\right), x_{1}\right) \cup B\left(r\left(x_{2}\right), x_{2}\right)\right)
$$

Proof of Theorem 1. By Claim 2, $R(x)$ is a convex, $r(x)$ is a concave function. So $R(x)-r(x)$ is convex and attaines its infimum. What we have to show is the uniqueness of the minimum. This will be done by showing that $x_{1}, x_{2} \in K, x_{1} \neq x_{2}$ and $R\left(x_{1}\right)-r\left(x_{1}\right)=R\left(x_{2}\right)-r\left(x_{2}\right)=h$ implies that $R\left(\left(x_{1}+x_{2}\right) / 2\right)-r\left(\left(x_{1}+x_{2}\right) / 2\right)<h$.

Convexity implies that $R\left(\left(x_{1}+x_{2}\right) / 2\right)-r\left(\left(x_{1}+x_{2}\right) / 2\right) \leqq h$, so assume, by way of contradiction, that $R\left(\left(x_{1}+x_{2}\right) / 2\right)-r\left(\left(x_{1}+x_{2}\right) / 2\right)=h$. Then by Claim 2 , we have $R\left(\left(x_{1}+x_{2}\right) / 2\right)=1 / 2\left(R\left(x_{1}\right)+R\left(x_{2}\right)\right)$ and a unique point $p \in C$ supporting $R\left(x_{1}\right)$, $R\left(x_{2}\right)$ and $R\left(\left(x_{1}+x_{2}\right) / 2\right)$ and p lies on the straight line through x_{1} and x_{2}. Without loss of generality we suppose that x_{2} lies between x_{1} and p on this line. By our assumption $R\left(x_{1}\right)-r\left(x_{1}\right)=R\left(x_{2}\right)-r\left(x_{2}\right)$, so $B\left(r\left(x_{2}\right), x_{2}\right) \subseteq B\left(r\left(x_{1}\right), x_{1}\right)$, and then there is a unique point $q \in C$ supporting $r\left(x_{2}\right)$ and this point lies on the line segment joining x_{2} and p. But K contains the set $\operatorname{conv}\left(B\left(r\left(x_{1}\right), x_{1}\right) \cup\{p\}\right)$ and this set contains q in its interior. This contradicts the assumption

$$
R\left(\frac{x_{1}+x_{2}}{2}\right)-r\left(\frac{x_{1}+x_{2}}{2}\right)=h
$$

For fixed $p \in C$ define $Z(p)$ as the set of unit outer normals to K at p, i.e.,

$$
Z(p)=\left\{z \in R^{d}:\|z\|=1,\langle z, p\rangle=\max _{x \in K}\langle z, x\rangle\right\}
$$

Define now

$$
\Gamma=\left\{(p, z) \in R^{d} \times R^{d}: z \in Z(p)\right\}
$$

It is clear that Γ is compact.
Claim 3. (a) $R(x)=\max \{\langle z, p-x\rangle:(p, z) \in \Gamma\}$,

$$
\text { (b) } r(x)=\min \{\langle z, p-x\rangle:(p, z) \in \Gamma\} .
$$

Proof. (a) Clearly for each $(p, z) \in \Gamma$

$$
\langle z, p-x\rangle \leqq\|z\| \cdot\|p-x\|=\|p-x\| \leqq R(x)
$$

If p_{0} supports $R(x)$, then $\left(p_{0},\left(\left(p_{0}-x\right) /\left\|p_{0}-x\right\|\right) \in \Gamma\right.$ and

$$
\left\langle\frac{p_{0}-x}{\left\|p_{0}-x\right\|}, p_{0}-x\right\rangle=R(x)
$$

(b) Trivially $\langle z, p-x\rangle \geqq r(x)$ for each $(p, z) \in \Gamma$. On the other hand it is easy to check that if p_{0} supports $r(x)$, then $Z\left(p_{0}\right)=\left\{p_{0}-x /\left\|p_{0}-x\right\|\right\}$ and

$$
\left\langle\frac{p_{0}-x}{\left\|p_{0}-x\right\|}, p_{0}-x\right\rangle=r(x)
$$

Using Claim 3 the function $r: K \rightarrow R^{1}$ can be extended over the whole space \mathbf{R}^{d}. It is again easy to see that the extended $r(x)$ is concave, and so the function $R(x)-r(x)\left(x \in \mathbf{R}^{d}\right)$ attaines its minimal value at $x_{0} \in K$ only.

To prove Theorem 2 we need some definitions and theorem from convex analysis.
Definition. Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a convex function. The set

$$
\left.\partial f(x)=\left\{x^{*} \in \mathbf{R}^{d}:\left\langle x^{*}, z-x\right\rangle \leqq f(z)-f(x) \text { (for every } z \in \mathbf{R}^{d}\right)\right\}
$$

is the subgradient of f at x.
It is well-known that the subgradient of a finite convex function is nonempty, convex and compact.

Theorem A (Fenchel, Rockafellar-Moreau, see [5]). Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ be convex, $g: \mathbf{R}^{d} \rightarrow \mathbf{R}$ concave functions, finite over the whole space. Then $f(x)-g(x)$ attains its minimum at x_{0} if and only if

$$
0 \in \partial f\left(x_{0}\right)+\partial(-g)\left(x_{0}\right)
$$

Here the last addition is meant in the Minkowski sense; $(-g)$ is a convex function so $\partial(-g)\left(x_{0}\right)$ is its subgradient at x_{0}.

Theorem B (Йоффе - Тихомиров [3]). Assume Γ is compact and the map $\gamma \mapsto\left(x_{\gamma}^{*}, a_{\gamma}\right) \in \mathbf{R}^{d} \times \mathbf{R}$ is continuous. Let $f(x)=\sup \left\{\left\langle x_{\gamma}^{*}, x\right\rangle+a_{\gamma}: \gamma \in \Gamma\right\}$. Then $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ is a finite convex function and $\partial f\left(x_{0}\right)=\operatorname{conv}\left\{x_{\gamma}^{*}: \gamma \in \Gamma\right.$ and $\left.\left\langle x_{\gamma}^{*}, x_{0}\right\rangle+a_{\gamma}=f\left(x_{0}\right)\right\}$.

Now we are ready to prove Theorem 2.
Proof of Theorem 2. First by Theorem B

$$
\begin{aligned}
& \partial R\left(x_{0}\right)=\operatorname{conv}\left\{-z:(p, z) \in \Gamma,\left\langle z, p-x_{0}\right\rangle=R\left(x_{0}\right)\right\}, \\
& \partial(-r)\left(x_{0}\right)=\operatorname{conv}\left\{z:(p, z) \in \Gamma,\left\langle z, p-x_{0}\right\rangle=r\left(x_{0}\right)\right\}
\end{aligned}
$$

By Theorem A, $R(x)-r(x)$ is minimal at x_{0} if and only if for some $x^{*} \in \mathbf{R}^{d}, x^{*} \in \partial R\left(x_{0}\right)$ and $-x^{*} \in \partial(-r)\left(x_{0}\right)$. But $x^{*} \in \partial R\left(x_{0}\right)$ is the same as $x^{*}=-\sum_{i=1}^{k} \alpha_{i} z_{i}$ for some $\alpha_{i} \geqq 0, \sum_{1}^{k} \alpha_{i}=1$ and z_{i} with $\left(p_{i}, z_{i}\right) \in \Gamma,\left\langle z_{i}, p_{i}-x_{0}\right\rangle=R\left(x_{0}\right)$.

This is true if and only if $z_{i}=p_{i}-x_{0} /\left\|p_{i}-x_{0}\right\|$, i.e., if p_{i} supports $R\left(x_{0}\right)$. Similarly $-x^{*} \in \partial(-r)\left(x_{0}\right)$ is equivalent to $-x^{*}=\sum_{j=1}^{l} \beta_{j} w_{j}$ for some $\beta_{j} \geqq 0, \sum_{1}^{l} \beta_{j}=1$ and w_{j} with $\left(q_{j}, w_{j}\right) \in \Gamma,\left\langle w_{j}, q_{j}-x_{0}\right\rangle=r\left(x_{0}\right)$. In this case, again $w_{j}=\left(q_{j}-x_{0}\right) /\left\|q_{j}-x_{0}\right\|$ and q_{j} supports $r\left(x_{0}\right)$. These conditions imply that $R(x)-r(x)$ is minimal at x_{0} if and only if there exist points $p_{1}, \ldots, p_{k} \in C$ supporting $R\left(x_{0}\right)$ and $q_{1}, \ldots, q_{l} \in C$ supporting $r\left(x_{0}\right)$ such that

$$
\operatorname{conv}\left\{\frac{p_{i}-x_{0}}{R\left(x_{0}\right)}: i=1, \ldots, k\right\} \cap \operatorname{conv}\left\{\frac{q_{j}-x_{0}}{r\left(x_{0}\right)}: j=1, \ldots, l\right\} \neq \emptyset
$$

So we are finished with the proof. We mention that $k=1$ (or $l=1$) implies that K is a ball. Further, it can be shown that if $\operatorname{conv} P \cap \operatorname{conv} Q \neq \emptyset$ for some $P, Q \in \mathbf{R}^{d}$, then there are subsets $P^{\prime} \subseteq P$ and $Q^{\prime} \subseteq Q$ such that conv $P^{\prime} \cap \operatorname{conv} Q^{\prime} \neq \emptyset$ and $\left|P^{\prime}\right|+|Q|^{\prime} \leqq d+2$. This means that we can suppose $k+l \leqq d+2$ in Theorem 2.

I mention here that the "only if" part of Theorem 2 can be proved in a simpler way: Set $P=\left\{\left(p_{i}-x_{0}\right) / R\left(x_{0}\right): i=1, \ldots, k\right\}$ and $Q=\left\{\left(q_{j}-x_{0}\right) / r\left(x_{0}\right): j=1, \ldots, l\right\}$. If conv $P \cap \operatorname{conv} Q=\emptyset$, then there is a hyperplane separating P and Q with normal $a \in \mathbf{R}^{d}$, say. One can easily see that $R\left(x_{0}\right)>R\left(x_{0}+a\right)$ and $r\left(x_{0}\right)<r\left(x_{0}+a\right)$ which shows that $R(x)-r(x)$ cannot attain its minimal value at x_{0}.

Proof of Theorem 3. Set

$$
\begin{gathered}
K_{\min }=\operatorname{conv}\left(B(r, 0) \cup\left\{p_{1}, \ldots, p_{k}\right\}\right) \\
K_{\max }=B(R, 0) \cap \bigcap_{j=1}^{l}\left\{x:\left\langle q_{j}, q_{J}-x\right\rangle \geqq 0\right\} .
\end{gathered}
$$

It is easy to see that both $K_{\min }$ and $K_{\max }$ satisfy the conditions of Theorem 2 with $x_{0}=0$ and $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{t}$. Moreover, any convex compact set K with $K_{\min } \subseteq$ $\subseteq K \subseteq K_{\text {max }}$ will do the same.

Proof of Theorem 4. First part. We construct a convex compact set $K \subset \mathbf{R}^{d}$ for each $d \geqq 3$ such that $\max r(x) / r\left(x_{0}\right)$ is "large".

Let $\bar{p}_{1}, \bar{p}_{2}, q_{1}, q_{2}$ be the vertices of a square such that $\left\|\bar{p}_{1}\right\|=\left\|\bar{p}_{2}\right\|=\left\|q_{1}\right\|=\left\|q_{2}\right\|=1$ and the length of the diagonals $\bar{p}_{1} \bar{p}_{2}$ and $q_{1} q_{2}$ is $2-\varepsilon$ (where $\varepsilon>0$ is small). The hyperplanes $\left\langle q_{1}, q_{1}-x\right\rangle=0$ and $\left\langle q_{2}, q_{2}-x\right\rangle=0$ meet in an affine flat A. The halflines starting from the origin in directions \bar{p}_{1} and \bar{p}_{2} meet A in the points $p_{1}=R \bar{p}_{1}$ and $p_{2}=R \bar{p}_{2}$. Consider the set $K_{\max }$ from Theorem 3 with p_{1}, p_{2} and q_{1}, q_{2}. A simple calculation shows that

$$
R(0)=\left(\varepsilon-\frac{\varepsilon^{2}}{4}\right)^{-1}, \quad r(0)=1, \quad \text { and } \max r(x)=\left(\varepsilon-\frac{\varepsilon^{2}}{4}\right)^{-1 / 2}
$$

So we have

$$
\frac{\max r(x)}{r\left(x_{0}\right)}=\left(\varepsilon-\frac{\varepsilon^{2}}{4}\right)^{-1 / 2}
$$

which indeed tends to infinity as $\varepsilon \rightarrow 0$.
Second part. Let $K \subset \mathbf{R}^{d}(d \geqq 3)$ be convex compact body and suppose that $R(x)-r(x)$ attaines its minimal value at $x_{0}=0$ and $r\left(x_{0}\right)=1, R\left(x_{0}\right)=R$. By Theorem 2 there exist points p_{1}, \ldots, p_{l} supporting $R\left(x_{0}\right)$ and q_{1}, \ldots, q_{l} supporting $r\left(x_{0}\right)$ with

$$
\operatorname{conv}\left\{p_{i} / R: i=1, \ldots, k\right\} \cap \operatorname{conv}\left\{q_{j}: j=1, \ldots, l\right\} \neq \emptyset
$$

and we may assume $k, l \geqq 2, k+l \leqq d+2$. Then conv $\left\{p_{1}, \ldots, p_{k}\right\}$ is a simplex whose nearest point to the origin is p_{0} say. Clearly $\left\|p_{1}-p_{0}\right\|=\ldots=\left\|p_{k}-p_{0}\right\|$ and the angle between the vectors p_{i} and p_{0} is the same for each i. Denote this angle by α.

Now the halfspaces $\left\langle q_{j}, q_{j}-x\right\rangle \geqq 0(j=1, \ldots, l)$ have to contain the simplex $\operatorname{conv}\left\{p_{1}, \ldots, p_{k}\right\}$ and so the point p_{0} as well. On the other hand, for some $j=1, \ldots, l$ the angle between the vectors q_{j} and p_{0} is not larger than α for otherwise

$$
\operatorname{conv}\left\{p_{i} / R: i=1, \ldots, k\right\} \cap \operatorname{conv}\left\{q_{j}: j=1, \ldots, l\right\}=\emptyset
$$

This implies that

$$
\begin{gathered}
0 \leqq\left\langle q_{j}, q_{j}-p_{0}\right\rangle=1-\left\langle q_{j}, p_{0}\right\rangle= \\
=1-\left\|q_{j}\right\| \cdot\left\|p_{0}\right\| \cos \left(\varangle q_{j} 0 p_{0}\right) \leqq 1-R \cos ^{2} \alpha .
\end{gathered}
$$

Consider now $\min _{x} R(x)=\varrho$ and set $R(\bar{x})=\varrho, \bar{x} \in K$. Then $B(\varrho, \bar{x})$ contains the points p_{1}, \ldots, p_{k} and the ball $B(1,0)$, so it contains the point $\bar{p}_{0}=-p_{0} /\left\|p_{0}\right\|$ as well. We are going to give an estimation from below for the radius of the smallest ball containing the points $\bar{p}_{0}, p_{1}, \ldots, p_{k}$. It is clear that the smallest ball containing
p_{1}, \ldots, p_{k} is $B\left(R \sin \alpha, p_{0}\right)$ and so $R \sin \alpha \leqq \varrho$. However if $\left\|\bar{p}_{0}-p_{0}\right\|=R \cos \alpha+1>$ $>R \sin \alpha$, then $B\left(R \sin \alpha, p_{0}\right)$ does not contain \bar{p}_{0}. In this case, using some elementary geometry, we get the estimation

$$
\varrho \geqq \frac{1+2 R \cos \alpha+R^{2}}{2(1+R \cos \alpha)}
$$

Define now

$$
f(R, \alpha)= \begin{cases}\sin \alpha \text { if } R \sin \alpha \geqq R \cos \alpha+1 \\ \frac{1+2 R \cos \alpha+R^{2}}{2 R(1+R \cos \alpha)} & \text { otherwise }\end{cases}
$$

where $R \geqq 1, \quad 0 \leqq \alpha \leqq \pi / 2$ and $R \cos ^{2} \alpha \leqq 1$.
What we have to do is to find the minimum of f in the domain determined by these inequalities. This is a routine calculation. The main steps are:

1) for R fixed $f(R, \alpha)$ is monotone non-decreasing, so the minimum is attained on the curve $R \cos ^{2} \alpha=1$;
2) on this curve the minimum of f is equal to

$$
\frac{1}{2}\left(\cos ^{2} \alpha_{0}+\cos \alpha_{0}-1+\cos ^{-1} \alpha_{0}\right)
$$

where α_{0} is the solution of the equation $\sin ^{2} \alpha-2 \cos ^{3} \alpha=0$ with $0 \leqq \alpha_{0} \leqq \pi / 2$.
This proves that

$$
\begin{equation*}
\frac{\min R(x)}{R\left(x_{0}\right)} \geqq \frac{1}{2}\left(\cos ^{2} \alpha_{0}+\cos \alpha_{0}-1+\frac{1}{\cos \alpha_{0}}\right) \tag{4}
\end{equation*}
$$

Finally we give an example showing that equality can occur here for $d=3,4, \ldots$. Again, let $\bar{p}_{1}, \bar{p}_{2}, q_{1}, q_{2}$ be the vertices of a square such that the diagonals \bar{p}_{1}, \bar{p}_{2} and q_{1}, q_{2} meet in a point q and the angle between q and $\bar{p}_{1}, \bar{p}_{2}, q_{1}, q_{2}$ equals α_{0}. Now set $p=\cos ^{-2} \alpha_{0} \bar{p}_{1}$ and $p_{2}=\cos ^{-2} \alpha_{0} \bar{p}_{2}$ and apply Theorem 3 with the vectors $p_{1}, p_{2}, q_{1}, q_{2}$ to get the convex compact set $K_{\text {min }}$. An easy calculation shows that for $K_{\min }$ (4) holds with equality.

Acknowledgement. The author is indebted to professor I. Vincze for raising the problem and for fruitful discussions.

References

[1] T. Bonnesen, Über das isoperimetrische Defizit ebener Figuren, Math. Ann., 91 (1924), 252-268.
[2] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, de Gruyter (Berlin, 1956).
[3] А. Д. Йоффе, В. М. Тихомиров, Теория экстремальных задач, Наука (Москва, 1974).
[4] N. Kritikos, Über konvexe Flachen und einschließende Kugeln, Math. Ann. 96 (1927), 583586.
[5] T. R. Rockafellar, Convex Analysis, Princeton (1970).
[6] J. Szörefalvi-Nagy, Konvexe Kurven und einschließende Kreisringe, Acta. Sci. Math. (Szeged). 10 (1941-1943), 174—184.
[7] St. Vincze, Über den Minimalkreisring einer Eilinie, Acta Sci. Math. (Szeged), 11 (1947), 133138.
[8] I. Vincze, Über Kreisringe, die eine eilinien einschließen, Studia Sci. Math. Hungar, 9 (1974), 155-159.

INSTITUTE OF MATHEMATICS OF THE
HUNGARIAN ACADEMY OF SCIENCES
REÁLTANODA U. 13-15
1053 BUDAPEST, HUNGARY

