A note on optimal interpolation with rational functions

THEODORE KILGORE

Introduction. This note provides a further application of results derived in [7], which dealt with polynomial interpolation.

Let Y be the space of rational functions whose numerators are of degree n or less, with denominator

$$Q(t) = (t - t_{n+1})...(t - t_{n+m}).$$

If nodes of interpolation $t_0, ..., t_n$ are chosen on an interval, [a, b] such that

$$a = t_0 < t_1 < \ldots < t_n = b,$$

and such that

$$t_{n+k} \notin [t_0, t_n]$$
 for $k \in \{1, ..., n\}$,

it is possible to construct fundamental functions $y_0, ..., y_n$ such that $y_i(t_j) = \delta_{ij}$ (Kronecker delta) for $i \in \{0, ..., n\}$ and for $j \in \{0, ..., n\}$, by means of the formula

$$y_i(t) = \frac{Q(t_i)}{Q(t)} \prod_{\substack{j=0\\j\neq i}}^n \frac{(t-t_j)}{(t_i-t_j)}.$$

One defines an interpolating projection $L: C[a, b] \rightarrow Y$ by

$$Lf = \sum_{i=0}^{n} f(t_i) y_i \quad \text{for} \quad f \in C[a, b].$$

Clearly, L is bounded, and

$$||L|| = ||\sum_{i=0}^{n} |y_i|||.$$

Our purpose here is to minimize ||L||.

Notation. We define, for $i \in \{1, ..., n\}$, X_i to be the function (in Y) which agrees with $\sum_{j=0}^{n} |y_j|$ on the interval $[t_{i-1}, t_i]$, $\lambda_i = X_i(T_i)$, and T_i as the point in (t_{i-1}, t_i)

Received March 11, 1985.

at which λ_i is attained. We note that

$$X'_i(T_i) = 0$$
, for $i \in \{1, ..., n\}$.

Results.

Theorem. If interpolation is done on an interval [a, b] with rational functions having denominator

$$Q(t) = (t - t_{n+1})...(t - t_{n+m})$$

and nodes of interpolation $t_0, ..., t_n$, such that

$$a = t_0 < \ldots < t_n = b < t_{n+1} < \ldots < t_{n+m},$$

then

(i) interpolation of minimal norm is characterized by the Bernstein condition [1] that $\lambda_1 = ... = \lambda_n$, which is produced by a unique choice of nodes;

(ii) the quantities $\lambda_1, ..., \lambda_n$ obey the Erdős condition [3] that if one of them is greater than the common value given in (i), another is less;

(iii) the norm of interpolation is governed by the ratio $(b-a)/(t_{n+1}-b)$. Specifically, the norm increases without bound as $b \mapsto t_{n+1}$ and decreases as $b \to a$, with lower limit equal to the norm of optimal Lagrange interpolation with polynomials of degree n or less.

Corollary 1. The above theorem also holds when the space of interpolation consists of all multiples of the function

$$(t-t_{n+1})^{k_1}...(t-t_{n+m})^{k_m}$$

by a polynomial of degree n or less, with $k_i < 0$ for $j \in \{1, ..., n\}$.

Corollary 2. Some or all of the points $t_{n+1}, ..., t_{n+m}$ can be to the left of t_0 as well as to the right of t_n , and the above results are still valid.

Proof of Theorem. One notes that the functions

$$\partial \lambda_i / \partial t_j = -y_j(T_i) X_i'(t_j), \quad i \in \{1, \dots, n\}, \quad j \in \{0, \dots, n\}$$

exist and are continuous in $t_0, ..., t_n$. The points $T_0, ..., T_n$, of course, depend in an analytic fashion upon the nodes.

All of our results will follow from properties of various submatrices of

$$A = (\partial \lambda_i / \partial t_j)_{i, j=1}^n,$$

which represents the derivative of the function

$$(t_1, \ldots, t_n) \mapsto (\lambda_1, \ldots, \lambda_n).$$

We define A_i for $i \in \{1, ..., n\}$ to be the matrix obtained by deleting the i^{th} column and n^{th} row of A. To prove (i) and (ii) of the theorem, it suffices to show (1) det $A_i \neq 0$ for $i \in \{1, ..., n\}$ for arbitrary $t_0, ..., t_{n+m}$,

(1) det $A_i \neq 0$ for $i \in \{1, ..., n\}$ for arbitrary $i_0, ..., i_{n+1}$ and

(2) det A_i alternates' in sign on $\{1, ..., n\}$.

To prove (iii), it is enough to prove

(3) det $A \neq 0$.

To show (1) and (2), we first perform some row and column cancellations. For $j \in \{1, ..., n\}$, the jth row of A is given by •

$$-y_i(T_1)X'_1(t_j)...-y_j(T_n)X'_n(t_j)$$

It is possible therefore to multiply the j^{th} row by the "denominator" of y_j , namely by

$$\frac{1}{Q(t_j)}\sum_{\substack{l=0\\l\neq j}}^{n+m} (t_j-t_l).$$

When this procedure has been completed, the i^{th} column, for $i \in \{1, ..., n+m\}$ is of the form

$$\frac{1}{\mathcal{Q}(T_i)}\prod_{\substack{j=0\\j\neq 1}}^n (T_i-t_j)X'_i(t_1)$$

$$\frac{1}{\mathcal{Q}(T_i)}\prod_{\substack{j=0\\j\neq n}}^n (T_i-t_j)X'_i(t_n),$$

and the non-zero quantity $\prod_{j=0}^{n} (T_i - t_j)$ may be divided from the i^{th} column. Following this operation by multiplication of the i^{th} column by $Q(T_i)$, the matrix is left in the form

$$B = \frac{\begin{vmatrix} X_1'(t_1) \\ t_1 - T_1 \\ \cdots \\ X_1'(t_n) \\ \hline t_n - T_1 \\ \cdots \\ \hline X_n'(t_n) \\ \hline t_n - T_n \\ \end{vmatrix}} \cdot \frac{X_n'(t_1)}{t_n - T_n} \end{vmatrix}.$$

Now, it is possible to multiply the j^{th} row by $(Q(t_i))^2$, and the expression

$$q_i(t) = \frac{X'_i(t)}{t - T_i} (Q(t))^2, \quad i \in \{1, ..., n + m\}$$

is a polynomial of degree n+m-2 or less which is evaluated at the successive points $t_1, ..., t_n$ down the *i*th column of the matrix.

8*

Clearly, the roots of the polynomials $(t-T_i)q_i(t)$ will strictly interlace on the interval $[T_1, \infty]$, and it is possible to choose points T_{n+1}, \ldots, T_{n+m} with

$$T_n < t_n < T_{n+1} < \ldots < T_{n+m}$$

such that the following conditions are satisfied by $q_1, ..., q_n$.

(i) Each polynomial q_i has exactly one root in each of the subintervals $(T_j, T_{j+1}), j \in \{1, ..., n+m-1\}$ of the interval $[T_1, T_{n+m}]$, except that q_i has no root in (T_i, T_{i+1}) for $i \in \{1, ..., n+m-1\}$, nor in (T_{i-1}, T_i) for $i \in \{2, ..., n+m\}$.

(ii) $q_i(T_j) \neq 0$ for $i, j \in \{1, ..., n_{e} \neq m\}$.

Proposition. Let polynomials $q_1, ..., q_{n+m}$ and points $T_1, ..., T_{n+m}$ satisfy (i) and (ii), and let points $t_1, ..., t_{n-1}$ be situated so that

$$T_1 < t_1 < T_2 < \ldots < T_{n-1} < t_{n-1} < T_n$$

Then, for $k \in \{1, ..., n\}$,

$$\det(q_i(t_j))_{\substack{1\leq i\leq n,\ 1\leq j\leq n-1\\i\neq k}}\neq 0.$$

A proof of this Proposition appears in [7].

At this point, (1) and (2) follow. To prove (3), we need only to note that, in the present context, n-1 may be replaced by n in the above Proposition, with k=n+1 and the proposition still holds, permitting one to analyse what occurs as $t_n \rightarrow t_0$ or $t_n \rightarrow t_{n+1}$, subject to the condition $\lambda_1 = ... = \lambda_n$.

This completes the proof of the Theorem. Corollary 1 is now established by a reexamination of the steps of matrix cancellation, leading to a similar system of polynomials $q_1, ..., q_n$. Details of a similar argument appear in [7]. Corollary 3 can clearly be obtained by a slight modification of the above Proposition.

References

- [1] S. BERNSTEIN, Sur la limitation des valeurs d'un polynome $P_n(x)$ de degre *n* sur tout un segment par ses valeurs en n+1 points du segment, *Isv. Akad. Nauk. SSSR*, 7 (1931), 1025—1050.
- [2] C. DE BOOR and A. PINKUS, Proof of the conjectures of Bernstein and Erdős concerning polynomial interpolation, J. Approx. Theory, 24 (1978), 289-303.
- [3] P. Erdős, Some remarks on polynomials, Bull. Amer. Math. Soc., 53 (1947), 1169-1176.
- [4] T. A. KILGORE, Optimization of the Lagrange interpolation operator, Bull. Amer. Math. Soc., 83 (1977), 1069–1071.
- [5] T. A. KILGORE, A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory, 24 (1978), 273-288.
- [6] T. A. KILGORE, Optimal interpolation with incomplete polynomials, J. Approx. Theory, 41 (1984), 279-290.
- [7] T. A. KILGORE, Optimal interpolation with polynomials having fixed roots, J. Approx. Theory, submitted for publication.

THE OHIO STATE UNIVERSITY MARION, OHIO, USA