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Operators of Toeplitz and Hankel type 

VLASTIMIL PTAK and PAVLA VRBOVA 

In the present note the authors investigate abstract analoga of classical Toeplitz 
and Hankel operators and extend to these more general classes some of the results 
known from the classical theory. The investigation is based on the use of isometric 
dilations of contractions and on the properties of their Wold decompositions. In 
particular the unitary part of the isometric dilation plays a decisive role. To explain 
the genesis and motivation of our investigation let us recall some of the classical facts 
which are essential for our considerations. 

We denote by T(cp) the Toeplitz operator on Я 2 defined for /€ H2. by the formula 
T(cp)f=P+<pf where P+ stands for the projection operator of L2 onto Я 2 and cp is 
an L°° function, the symbol of T(<p). The projection onto the orthogonal complement 
H2_ = L2QH2 will be denoted by . Since P+zP_=0 we have P+zP+(p(z)zf(z)= 
— P+(p{z)f(z) for every f£H2. If Sstands for the shift operator (multiplication by z) 
on Я 2 this relation may be restated in the form 

S*T(<p)S = T(q>) 

and it turns out that the relation S*AS=A is characteristic for Toeplitz operators 
on H2 . 

There is another important class of operators which may be characterized by a 
similar relation. Hyponormal operators are defined by the inequality TT*^T*T 
and may accordingly be characterized by the existence of a contraction С such that 
T*=CT. Hence 

CTC* = T*C* = (iCTf = T 

so that T satisfies a relation of the same type. 
In a paper on hyponormal operators [ 4 ] C . FOIAS andB. SZ.-NAGY used dilation 

theory to show that for each hyponormal operator T acting on a Hilbert space $ 
there exists a normal operator N on a suitable Hilbert space ©, a unitary operator 
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U on © and a contraction X: § - © such that T=X*NX while N*= UN and 
\\x*ug\mx*g\\ for all g€®. 

The relation T=X*NX is clearly an analogon of the formula T=P+q>\H2: X 
replaces the injection operator H2—L2, N replaces the symbol cp and X* plays the 
role of a projection of © onto Starting from this observation these two authors 
developed a theory of Toeplitz type operators [3] where the L°° function cp is replaced 
by an abstract symbol. 

It is interesting to note that the relation N*= UN implies N= UNU*. Indeed, 
N=(UN)*=N*U*=(UN)U*; it is one of the purposes of the present note to 
explain the importance of this relation. 

In the classical case there is a parallel theory for Hankel operators. Starting from 
a (p£LT we define H(<p): H2*H2_ by the formula H(<p)f= P_(pf. Since 
P_zP+ = 0 we have 

H(<p)zf = P. z<p(z)f(z) = P_ zP. <p(z)f(z) = P_ zH(<p)f 

so that 
H(<p)S = ZH((p) 

if Z denotes the operator g—P_zg on H i . Again, this relation turns out to be char-
acteristic for Hankel operators from H2 into Hi. 

In the present paper we intend to show that the class of Hankel operator also 
has an abstract analogon and propose to out line a theory of symbols for operators of 
Toeplitz and Hankel types. 

To obtain the symbol for an operator Aon H2 satisfying the relation S*AS=A 
we first use this relation to extend A to the whole of L2; it turns out that this extension 
commutes with the shift so that it coincides with the operator of multiplication by 
an L°° function (p. The operator A appears then as a compression to H2 of this mul-
tiplication operator M(<p). 

In the sequel we shall view the symbol of A as this multiplication operator rather 
than the function generating it — this is possible in view of the isometric isomorphism 
between L°° taken as an algebra and the corresponding algebra of multiplication 
operators. 

To obtain a symbol for an operator X: H2-*-H2_ satisfying XS=ZX we use 
first the theorem on intertwining dilations to obtain an operator from H2 into L2 

intertwining S and M(z); extending its domain of definition to the whole of L2 we 
obtain an operator which commutes with M(z) and which yields the original operator 
as a compression, this time from H 2 into H2_. 

Observe that Z= P_M(z)\Ht and that M(z) = M(z)* is the minimal iso-
metric dilation of S*. A similar situation obtains in the general case. 

In a manner of speaking the construction of symbols for generalized Toeplitz 
and Hankel operators proceeds —: in its early stages — along similar lines as in the 
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classical theory ; at a certain point, however, difficulties present themselves which have 
no counterpart in the classical case. In particular, a relation of the type XS=ZX 
alone is not sufficient to characterize a class with satisfactory properties. We intend to 
show that, in the general case of abstract Toeplitz and Hankel operators, it is also 
possible to construct a symbol which is characterized by a certain commutativity 
relation and as a compression of which the given operator may be reconstructed. 

The investigations of B. Sz.-Nagy and C. Foias indicate the important role played 
by the space 9Î, the unitary part of the Wold decomposition of the isometric dilation of 
the contraction T by means of which the abstract Toeplitz operator is defined. The 
results of the present note seem to confirm the hypothesis that this space forms the 
natural domain of definition for operators which should play the role of an abstract 
symbol both for Toeplitz and Hankel operators. The main difficulty seems to lie in 
the fact that the Wold decomposition is trivial in the classical case, the isometric 
dilation of S* being unitary, so that little help can be expected from immediate anal-
ogies. 

It turns out that the methods presented below work even in the more general 
case when a Toeplitz operator X is defined by the relation X= TtXT* where 7\ 
and T2 are two arbitrary contractions acting on the spaces and § 2 which may be 
different from each other in general. In this manner we hope to eliminate results 
whose validity is essentially based on the equality 7 \ = T2; at the same time, this 
generality does not seem to be excessive. We still obtain analoga of the Kronecker 
theorem as well as of the identity 

T(^)-T(cp)m) = H(<p*)*H№ 

In a paper on operator equations [1] R . G . DOUGLAS considered operators satis-
fying X— TxXT2. His investigations proceed along different lines; nevertheless, his 
ideas provided inspiration for some of our methods. 

The paper is divided into five sections. In the first section we list some technical 
facts from dilation theory which will be needed in the main text. 

Section two contains a short exposé of the theory of Toeplitz operators. In spite 
of the fact that the emphasis of this note is on Hankel operators it is, in our opin-
ion, useful to include this short section. Our approach differs in details from that of 
Sz.-Nagy and Foias, the differences being motivated by the necessity to prepare the 
ground for the theory of Hankel operators. Since we intend to represent Toeplitz 
and Hankel operators as compressions of their symbols (like in the classical case) we 
use the term symbol in a slightly different way — nevertheless there is a one-to-one 
correspondence between symbols in our sense and those used by Sz.-Nagy and Foias. 
This makes it possible to present a unified theory for both types of operators. 

Section 3 contains the definition and basic properties of Hankel opreators includ-
ing a generalization of the Nehari theorem. The last two chapters are devoted to an 
analogy of analytic symbols and to a generalization of the Kronecker theorem. 
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1. Preliminaries 

We start by recalling some of the properties of the minimal isometric dilation of 
a contraction. Let § be a Hilbert space, be a contraction. We denote by U 
the minimal isometric dilation of Ton the space i.e. an isometry U defined on a 
space satisfying 

Tn = P(§)C/" |5 for n = 0, 1, ... 
and = v Uk&. 

kso 

We shall denote by P(2) the orthogonal projection of onto a subspace 

Any two minimal isometric dilations of a given contraction are unitarily equiv-
alent. 

We shall frequently use the following facts: 
(1) TP®)=P(<D)U; 
(2) U*§>cz§> and U*\9>=T*i 
(3) the subspace = can be decomposed as follows 

= 2®u2®ui2®..., 

where 2=((U-T)Z>)~; 
(4) US}-1 cSt)1- and i / | § x is a unilateral shift of multiplicity d imf i ; 
(5) the sequence {i5(§±)C/+n} tends to zero in the strong operator topology; 
(6) T* is an isometry if and only if the minimal isometric dilation of T is a unitary 

operator; 
(7) let W be a unitary operator on a Hilbert space ©, let 9Jtcz© be a subspace 

invariant with 
respect to W; then the restriction of W * to the W* invariant 

subspace of © generated by 501 is the minimal isometric dilation of the operator 
The reader is referred to [2] for proofs of (1)—(4). 
For lack of space the proofs of the remaining results in this section have to be 

left to the reader. 

If S is an arbitrary isometry on a Hilbert space Si then the Wold decomposition 
applies. In other words, the space R can be decomposed into a direct sum of two sub-
spaces reducing with respect to S, 

it = ( n s ' , f t ) © ( ( f t e . s ' f t ) © 0 s f t e s , 2 « ) e . . . ) 

so that the restriction of S to the first subspace is a unitary operator and the restric-
tion to the second one is a unilateral shift. 
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Now, let 91 be the reducing subspace in the Wold decomposition of the minimal 
isometric dilation U on on which U is unitary, i.e. 91= p| U"S<+. Then we have 

nSO 
(see [2]): 
(8) UP(9l)=P(9l)U, [/*P(9l)=P(m)U*; 
(9) the sequence of projections {(/"(/*"}" is decreasing, 

P($R)s UnU*n for n= 0,1, ... 
and 
P(W)k=\mU"U*nk for all 

(10) P(«)/i=Tim VT*"h for all 

There are two subspaces of the space 91 which play an important role in our 
investigations, namely, (P(9t)§) - and §H9l. Denote by R the restriction of U 
onto the subspace 9t. 

1.1. Lemma (see also [3]). The operator U* maps P(9l)§ into itself and 
t/*|(P(9t)|>)- is an isometry. The sequence of linear manifolds {i?nP(9l)§}~M is 
increasing and 

91= ( U K"P(9i)§)-. Oi0 

If T is a contraction on a Hilbert space § then § can be uniquely decomposed 
into an orthogonal sum of two subspaces reducing T, § = § „ © § s such that T l ^ 
is unitary and J | § s is completely non-unitary. We have 

= 111**11 = \\T*"h\\ = ||A|| for all n ^ 0}. 
See [2]. 

1.2. Lemma. We have 

§ 0 9 1 = §DP(9?)§ = {A€$: \\T*nh\\ = Ml for all n ^ 0} = 

= [he&: TnT*"h = h for all n s 0}. 

The subspace § f l 9 t is invariant with respect to U* and U*DM is an iso-
metry whose Wold decomposition has the form 

§ n 9 t = $„e(9 i®t /*9i te t /* 2 9i©. . . ) 

where 9l=(§n<R)e£/*(Sn9t) . 
We close this section with two results of a different character which we shall use 

later. The first is a technical proposition based on the following observation. We have, 
for each complex number a, 

U(\ — O.T)—(\ — olU)T = U-T. 
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If | a | c l this relation implies 

(l-aUy^U-TXl-aT)-1 = (l-aU^U^-Til-oiT)-1. 

1.3. P r o p o s i t i o n . Let T be a contraction on a Hilbert space with the minimal 
isometric dilation U. Let alt a2, ..., a„ be complex numbers of modulus .less than 1. 
Then 

i / " ( l - a 1 C / ) - 1 . . . ( l - a n C / ) - 1 | § - r n ( l - a 1 r ) - 1 . . . ( l - a n r ) - 1 = 

= 2 t/*-1(l - - akU)~\U- T)Tn~k(l - atT)-1....^ - *nT)-\ 
k = 1 

1.4. P r o p o s i t i o n . Let § 2 , ^ 1 , ^ 2 be Hilbert spaces, §2), 
2,fl2). if ¡(Xh^hjmAM-UMl for all h ^ , 

h2(L?)2 then there exists a contraction operator C : (Ran y^) -—(Ran A2)~ for 
which X=A$CA1. 

2. Toeplitz operators and their symbols 

Consider two contractions T ^ ^ ^ ) , T2£ J?(fj2); denote by Ux and U2 their 
minimal isometric dilations acting on the spaces Stf, ft^ respectively. We denote by 

and 9?2 the subspaces of ^ and ftjj" which reduce U1 and U2 to their unitary 
parts Rx and R2. We denote by P(3) the orthogonal projection of onto a subspace 
3 c fit. 

2.1. P r o p o s i t i o n . Consider the set Tlt T2) of all operators H2, 
satisfying the condition 

ZR2= RiZ, 

and the set Sf'iT^ T2) of all operators satisfying 

Y = UiYUt 

If then the following four conditions are equivalent: 
1° YZWi, T2); 
2° YU2 = UXY and F=FP(<R2); 
3° YU*=U^Y and Y=P(%)Y; 

4° 7 = l i m C/J,P(§1)yP(52)C/2
n in the strong operator topology. 

Furthermore 
5° if Z<LSf{Tx,T^ then Z P ^ ) ^ ' ^ , T2)\ 
6° if Y£Sr'(Tlt T2) then YW^yiT^T,). 
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Proof . If satisfies Y= U^YU^ then YU2= UXY. Also, for 
each 

yi>(5R2)* = lim YUlUfx -

= lim U^YUfx = lim Yx = Yx. 

On the other hand, YU2=U1Y and rP (9 l 2 )=F implies 

U^YUt = YUM = YP(<Si2)U2Ut = Y 

since U2U2^P(SR2). This proves the equivalence of 1° and 2°. 
YtST'iT^TJ if and only if Y*e.9"(T2, TJ. The last inclusion is equivalent to 

Y*Ux= U2Y* and Y*= Y*P(9t1). Taking adjoints we obtain the equivalence of 1° 
and 3°. 

The implication 4°=>1° is obvious. On the other hand, if Y=U{YU% then, for 
n s 0, 

Y = U"YU2
n = 

= UiPiZJYP®,) U? + i / f ( l - P(^))YUt"+ 

+ C/1"P(§1)y(l-P(§2))t/2*B = 
= c / r p ^ m ^ ^ + ^ C i 

+ t / 1
n P(S 1 )y( i -P(S 2 ) ) t / r . 

Both (1-P(§1)){7*n and (l-P(§2))C/*n tend to zero in the strong operator 
topology. 

Now suppose (9*2,9^) satisfies ZR2=R^Z. Then Y=ZP(9t2) satisfies 
FC/2=ZP(9l2)C/2=Z£/2P(9i2)= {71ZP(9i2)=i/1y and FP(9i2)=y. It follows from 
2° that Y t & ' i T ^ T J . 

If we have, for each n and each x£S{+, Yx= WJU^xd 
so that the range of Y is contained in 9tx. Since Y= UXYU* we have YU2~UiY 
and, in view of the inclusion F^Stx for each x, this implies 

(7|9i2)tf2 = R1(Y\3l2) 

as asserted. The proof is complete. 

2.2. Remark. The correspondence between elements of sets Sp and 9 " described 
in 5° and 6° is contractive in both directions and so it is an isometric linear mapping. 

2.3. Def in i t ion . An element of the set T2) will be called a symbol 
with respect to 7\ , T2. 

2.4. P ropos i t ion . Let Y=SP\T1, T2) be a symbol. Denote by 

A = P(Z1)Y\§>i, B = P(<ot)Y\%2. 
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Then 

(12) A — TXAT2, 

(13) (U^TB = BT2*. 

Moreover, there exists a positive K such that A satisfies the estimate 

(14) \\Ah2\\ s K• ||P(H2)/Y 

for all /I2€§2 and similarly, B satisfies 

(15) (Bh2, hi) ^ K• | |P(9?2)FC2 | |: | |P(SRI)AI-|| 

for /I2€§2, 

P r o o f . Using the relation 7T
1P(§1)=P($1)C/'i we have, for /z2£§2, 

T^&JYTfh, = P^U^Uth = P(?>i)Yh2 

which proves (12). Similarly, using the inclusion U f S ) ^ ^ , 

BT*h2 = P(<bi)YU*2h2 = P(§>i)U*Yh2 = 

= P(ibi) UtP&t)Yh2 + P(U) UtP(^)Yh2 = 

= P ( § I " ) U*P(§>i)Yh2 = P(§>i)U*Bh2 = 

= {UAUfBK. 

The estimates (14) and (15) with K—|| Y|| are immediate consequences of the relation 

Y = FP(<R2) = /»(SyiTiM,) . 

It is interesting to observe that the estimate (14) is a consequence of (12). On the 
other hand, we shall see that condition (13) alone does not imply (15). 

2.5. R e m a r k . If A—TXAT2 then 

\\Ah2\\ ^ |M||||P(3?2)/y 
for each /I2€§2. 

P r o o f . For each ft2€§2 and each natural number n, 

Ah2 = T f A T f h 

so that \\Ah2№\A\\\\TZnh2\\ = \\A\\ -\\UZTi,h2\\. Since P(5?2)/j2=lim Un
2T*"h2 the 

assertion follows. 

2.6. Example . Let $ l s § 2 be Hilbert spaces, T^gS&J be such that T* is 
a nonunitary isometry. Then the minimal isometric dilation Ux of 7\ is a unitary 
operator acting on the space Stf, and the operator P^*=(i/j )* has a 
nontrivial kernel. 
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The operator T2= 0 on § 2 is a contraction whose isometric dilation U2 is a 
unilateral shift on the space The subspace 9i2 reduces to {0} and the operator 
Vl=(JU2\$)2)* again has a nontrivial kernel. 

Take an arbitrary nonzero operator such that Ran X c K e r V*. 
Then obviously V*X=0=XT* and \\X*h£|| 11**11| | = | !X* | | | |PWJhf | | for 
all Since 3?2= {0} the operator X does not satisfy \\Xh2\\mk • ||P(9?2)/I2|| 
for all h2£ § 2 with any positive k. 

Similarly, let Y be any nonzero operator from which is zero on 
(T*&)~ and with values in Ker V*. Then V*Y=0=YT*, || FA J || F | P J = II • 
•IIPWAxll for all h ^ ^ , but Y* does not satisfy l i y ^ N ^ I I ^ W ^ I I on & 

with any positive k. 

2.7. D e f i n i t i o n . Denote by 

r(TltT2) = A = T1AT2*}. 

Operators from the set T2) will be called Toeplitz operators with respect to 
T\, T2. 

Further, operators S^ ) satisfying (13), i.e. (U1\§>^)*B=BT* and 

11(5^,^)11 S y | | P ( 9 y № ( « i ) A i l l 

for all /I2€§2, and a suitable constant y will be called Hankel operators 
with respect to 7\ , T2. Similarly, the family of all Hankel operators will be denoted by 
*(Tlt T2). 

2.8. Lemma. Suppose X£@l($j>2, satisfies the relation 

X = TxXT2.. 

Then there exists exactly one operator X: with the following three properties: 
1° 2 = T x X U t , 
2° X=X\&, 
3C 11̂ 11 = 11̂ 11. 

Conversely, if satisfies 1° and if X is defined by 2° then X=TlXT* 
and priMM. ' 

P r o o f . Suppose first that 2 satisfies 1° and X is defined by 2°. Then, for § 2 , 

Xh2 = Xh2 = T^Uth2 = T^T2*h2 = TxXT%h2. 

It follows that X=T±XT*. 
Further, given n^O, h2d%>2, we have 

XUSh2 = TiXU?UZh2 = T?Xh2 = T?Xh2. 
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This together with = span U%h2 proves that there is at most one ^satisfying 1° 
nso 

and 2° for a given X. 
Now, suppose X£38(!b2, satisfies X=T1XT*. To prove the existence of X 

it would be sufficient to define it for finite sums of elements Ukh (/cSO, /i£§2) which 
form a dense subset in ftj. Let m^k , h£9)2, then 

TkXh = Tt(Tr~lXT2*m-k)h = T?XUim-kh = T?XUZm-k(U!;kU£)h = 

= TZ>XUImU£h 
and consequently, 

m m 

2 Tfxhk = T1
mxu*m{2 

0 0 
for each M ^ m and hk£$j2. In particular, 

m m 

m m 

It follows that the operator X defined on Hm Uk§>2 by 2 2 U % h k = 2 TxXhk 

is well defined, Xh=Xh for h£%2 and ||JF||==||X|| so that | |£| | = ||An|. Moreover, 

T^u*(2 ukhk) = T J 2 v^K+T^utK = 
0 1 

m m 
= T12T1

k-1xhk+T1xT2*h0 = 2T1
kxhk+T1XT*h0 = 

1 1 

= 2 TfXhk + Xh0 = X 2 U£hk. 1 0 

The proof is complete. 

2.9. R e m a r k . The preceding lemma can be reformulated in a dual version. 
Namely, if A ^ ( S 2 , S 0 satisfies X=TxXT* then * * € ^ ( S i , S 0 satisfies 
X*=T2X*T*. It follows that there exists exactly one operator W* SO 
such that 

W* = T2W*Ut, X* =W* |S i , 11**11 = P H , 

' or equivalently, 

x=p(&>w, i m ^ p n i . 

2.10. Theorem. Suppose X£&8(&2, SO satisfies 

X=T1XT2*. 
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Then there exists exactly one operator with the following proper-
ties 

1° Y is a symbol with respect to 7i, T2, 
' 2° X=P(<odY\?,.,, . 

3° ||Z|| =1711. 

The operator Y will be called the symbol of * . 

P roof . According to 2.8 there exists an §i) such that * = Tx*t/*, 
* = * | § 2 and | |*| | = ||*||. Again, according to 2.9 there exists a «+) 
such that 

Y = UjYUi, P (S 1 )F |$ 2 = * | § 2 = * 
and 

¡|F|| = ||*|| = ||*||. 

The rest of the proof is straightforward. 

Proposition 2.1 and Theorem 2.10 show that there is a one-to-one correspondence 
between T2), T2) and T2). Summing up, we have the following 

2.11. Theorem. Let Si) be defined by 

/SF = P(§ 1 )F |§ 2 for Y ^ m , 

Then p maps 9"(J\,T2) isometrically onto ST(7\, T2). 
The inverse mapping a of the restriction of p to 9"(Tly T2) assigns to a Toeplitz 

operator T2) its symbol and 

a * = lim U! XP(§>2) U2" 

in the strong operator topology. 

Proof . Suppose * belongs to 2T{T1, T2) and that * is generated by a symbol 
F(E^ ' ( r i , T2) so that * = P ( § 1 ) F | § 2 . Since F=l im U"1P(?>1)YP(?>2)Uln and 
P(§!)FP(§ 2 )=*P(§ 2 ) we have Y=lim U^XP^Uf. 

3. Hankel operators 

In this section we intend to develop an analogous theory for generalized Hankel 
operators. To obtain a symbol for operators of this type we shall apply Lemma 2.8 
again, this time to a certain operator of Toeplitz type which we shall construct using 
the theorem on intertwining dilations; as a consequence of the nonuniqueness of 
the intertwining dilation a situation analogous to the classical case presents itself: 
a Hankel operator has more than one symbol in general. 
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The theory is based on the following lemma, a particular case of which is already 
contained in [5]. 

3.1. Lemma. Let 93il5 9ft2 be two Hilbert spaces, Gx, G2 isometries on 9Kls 3ft2 

respectively. Denote by W^^CUl¡) the minimal isometric dilation of G* so that the Wt 

are unitary ( / = 1, 2). 
Suppose SDlj) satisfies the relation G*C=CG2. Then there exists an 

operator D: 9l2-»9l1 such that 

D = Wl*DWi\ ||Z)|| = ||C[| 
and 

c = PM;£>iaK2. 

Proo f . The operator G2 is its own minimal isometric dilation. By the 
theorem on intertwining dilations [2] there exists a D: 3 J t 2 — s u c h that 
W1D=I)G2, P%\D=C and ||5|| = ||C||. Since Wx is unitary we may write 
D=WlDG2=W*D{G*2f. 

Now apply Lemma 2.8 in the situation TX=W*X, T2=G*, § 2 =2R 2 . 
It follows that there exists a D: « ¡ ¡ - S ^ such that D=W*DW*, z5=D|9Jt2 and 
l|5|| = ||D||. Hence C=P*}3=P*}D\<m 2 and ||Z)|| = ||C||. 

A linear transformation A from § 2 into is said to be SR-bounded if there 
exists a constant a such that 

\(Ah,k)\s a ||P($R2)fc|| H P i W H 

for all /I£§2 and all The minimum of all a for which the above inequality 
holds will be called the SR-norm of A and will be denoted by MHj,. Clearly every SR-
bounded operator A is norm bounded and its norm does not exceed the SR-norm. 

3.2. T h e o r e m . Suppose ¡r^) satisfies 

Vj*X = XT2*, 

where Vx is the restriction of Ux to Sjj1- and the domination condition 

holds for all h2€§>2 and 6 . 
Then there exists an operator with the following properties 

Y=U,YU*, ||F|| = |№ 
and 

X = P(&)Y |§2. 

P r o o f . Introduce the abbreviations ^ ^ P W I S i 1 , y42=P(SR2)|§2, 9 ^ = 
= 9W2=(P($R2)S2)-. According to Proposition 1.4 there exists an 
operator C£;0(9H2, 9)1,) such that UCUHI*!!,, and X=A*CA2. Thus V*A*CA2= 
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=A*CA2T*. Consider first the product V*A*. We have ^1F1=P(5H1)i/1 |§ i
L = 

= (C/i№)P(9i1)|§ i
L = (i71|'!Dt|)A so that V*A*=A*(U!\Wti)*- Furthermore, for 

A2T*h2 = P(<R2)i/*fc2 = U2P(9i2)h2 = U*A2h2. 
Thus 

AiiU^fCA.h, = V*A*CA2h2 = AtCA2T2*h2 = AtCU*A2h2. 

Since A* is injective on 9^=(Ran Ax)~ we have 

, , ( f ^ i l V C = C(i/2*|9Jt2). 

The minimal isometric dilation of the coisometry (C/jISRi)* is unitary. Since 
9Ji2c9i2 the operator (f72|99i2) is an isometry. 

Now apply Lemma 3.1 with Gi=l71|9M1, G2= £/2*|9Jt2. Since G2*=P(2R2)£/2|SDi2, 
its minimal isometric dilation is U2 on the smallest U2 invariant subspace of 
containing 9Jl2: this is 3?2. Thus W2~ i/2[9i2, 9i2=5R2. 

Since Gi=P(9K1)i71*p i we have Wx= U* on the smallest V* invariant sub-
space of containing P(9i1)§1

±: thus ^ c S R i but the inclusion may be a strict 
one. By Lemma 3.1 there exists a D: SRa-S?! such that D^U^DU*^, ||Z)|| = ||C|| 
and 

Finally, set Y=DP(?i2). Then 

Y = DP(iR2) = UiDUZPCHJ = UiYUt, 

liril = m = lie II = 11*11« 
and 

X = A*CA2 = A?CP(iR2)|§2 = ¿iP«;Z)P(9?2)|§2 = AtP^Y\§2. 

To complete the proof it suffices to show that ^ P U ^ P ^ ^ ) ! ? ? ! . Indeed, for 
r i e W i . A ^ f t S 

(AtP^r,, hir) = ( P f a , PWJht) = ( n , Pmht) = 

Notation: Suppose T2). We shall denote by T(Y) and H(Y) the 
corresponding Toeplitz and Hankel operators, i.e. 

TOO = ^(SO^I 
and 

H(Y) = P(§iL)I ' |§ 2 . 

The well-known identity for products of Toeplitz operators extends to the ab-
stract case without any change. 
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3.3. P ropos i t i on . Let Tlt T2, T3 be contractions acting on spaces §2, 
respectively. If Y£Sr'(Tlt T2), Zi&"(T3, 7\) then ZY£9"(T3, T2) and 

T(ZY)-T{Z)T(Y) = H(Z*)*H(Y). 

Proof . Consider Y£@(K+,K+), Z£@(K+,K+) satisfying Y=U1YU%, 
Z = U3ZU*. Then 

ZY = U3ZUtUxYUt = U3ZYU£ 
and 

P(Z>s)ZY\Z>2 = P($)3)ZP($)1)Y\§2 + P(<b3)ZP(Zi)Y\§2 = 

= T(Z)T(Y) + H(Z*)*H(Y). 

3.4. Def in i t ion . The operators T2) for which the corresponding 
Hankel operator H(Y) is zero will be called analytic symbols. Thus Y is analytic if 
and only if Y maps § 2 into . The set of all analytic symbols with respect to 7\ , T2 

will be denoted by T2). 
Obviously 

^ f f i , T2) = T2)/st(T,, Tt) 

in the sense of isomorphism of linear spaces. 
The classical theorem of Z . NEHARI may be formulated as follows. We denote 

by {ej} the natural basis of L2 and consider a linear operator A defined on the alge-
braic linear span of the {Cj} with nonnegative indices taking its values in H2_. Further-
more, we assume the existence of a sequence of complex numbers a0, alt ... such 
that 

(Aek, ej) = ak+j 

for k^O and 0. Then the Nehari theorem asserts that the operator A is the 
Hankel operator corresponding to some q>£L°° if and only if A is bounded. 

We intend to show that the Nehari theorem has an analogon in the general situa-
tion described in the preceding sections. In the abstract theory, however, the bound-
edness condition has to be replaced by a stronger one — this boundedness condition 
reduces to ordinary boundedness in the classical case but is different from it in gen-
eral. It is only in the present generality that the role played by the spaces 91 as well as 
their meaning for the theory manifests itself; since = 91 in the scalar case, it is 
not so easy to see the essential features of the classical results which make the theory 
work. 

Using the notion of 9i-boundedness it is possible to formulate the following 
extension of the Nehari theorem. 

3.5. Theorem. Suppose 9Jic§2 is such that the linear span §0 of all elements 
of the form T2

km, k^O, m£9Ji is dense in 9>2. Let X: §0—5jL be a linear trans-
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formation which satisfies 
Vx*Xh = XT2*h 

for all h£9)0. 
Then the following assertions are equivalent: 
1° X is <R-bounded; 
2° X is a Hankel operator. 

Moreover, if X satisfies 1° or 2° and X=H(Y) with a Y£9"{TX, T2) then 

||ff(F)||* = d i s t ( r , ^ ( r 1 , 7 » ) 

and the infimum is attained. 

Proof . If 1° is satisfied then X can be regarded as an operator acting on the 
whole space § 2 . Thus X is a Hankel operator and according to Theorem 3.2 there 
exists a symbol Y such that X=H(Y) and 11*11̂ =11 i l - To complete the proof it 
is sufficient to observe that H(Y+A)=H(Y) for all T2). 

4. Symbols 

One of the interesting questions to be asked in the context of the abstract theory 
is a more detailed description of the set of all symbols. We can only give partial 
results in this direction: we do give, however, a complete characterization of those 
pairs TX,T2, for which nonzero Toeplitz operators exist. This question is equivalent 
to that of the existence of non zero symbols and will be given in terms of the spaces 
9?! and 9?2, the unitary parts in the Wold decomposition of the minimal isometric 
dilations of Tx and T2. The answer is particularly interesting in the case 7 \ = T2= T. 
The nonzero Toeplitz operators exist if and only if SR ̂  {0}. The situation is consi-
derably more complicated in the case of analytic symbols. More delicate considera-
tions are necessary this time; we show that it is possible to reformulate conditions 
for the existence of nontrivial analytic symbols in a form which may not be much 
easier to verify but which provides, in principle, a complete description of the set of 
all analytic symbols. 

Consider now the particular case where TX=T2; it is interesting to characterize 
those contractions Tior which the corresponding set of Toeplitz operators consists of 
the zero operator only. In other words, to characterize those contractions i) 
for which X£®(9)) and X= TXT* implies X=0. 

4.1. P ropos i t ion . Let T be a contraction on a Hilbert space Then these are 
equivalent: 

1° the only operator X satisfying X= TXT* is the zero operator; 
2° lim T*nh=0 for each 

9* 
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3e P ( 9 î ) § = 0 ; 
4° P ( § ) 9 i = 0 ; 
5° P(§)P(<R)P(§)=0; 
6° 5R=0. 

P r o o f . Assume 1°. According to 2.1 the projection P(9Î) is a symbol so that 
X= P(§)P(9Î) |§ is a Toeplitz operator. Since X=0 we have also P(§)P(5R)P(§)= 
=0 . Since P(§)P(<R)P(§)=P(§)P(9l)(P(S)P(9l))* the condition 5° implies 4°. 
If 4° is satisfied we have P(SR)P(§)=0 as well. Now assume 3°. According to Lemma 
1.1 we have 9 Î = ( U £/"P(9l)5)_ so that 91=0. The implication 6° =>2° follows 

nso 
from (10) and the implication 2° =>1° is obvious. 

Let us remark that condition 5° appears implicitly in the paper of R . G . DOUG-
LAS [1]. The ideas used in the proof of Theorem 3 in [1] may be used to describe 
existence conditions even in the case of operators Toeplitz with respect to possibly 
different Tx and T2. To this end it will be convenient to recall a definition. 

Consider two unitary operators and £/2£^(§2) with spectral meas-
ures Ex and E2 respectively. Following R. G. Douglas we shall say that the operators 
Ui and U2 are relatively singular if, for each h1Ç§>1 and /I2£§2, the measures 
(Ex(-)h 1,h1) and (E2( • )h2, h2) are mutually singular. 

According to R. G. Douglas [1] the set of operators intertwining UX and U2 is 
trivial if and only if Ux and U2 are relatively singular. 

Using this notion it is possible to formulate conditions for the existence of 
Toeplitz operators. 

4.2. P r o p o s i t i o n . The following assertions are equivalent: 
1° the only operator satisfying X=TxXT* is the zero operator; 
2° either one of the subspaces 9î l5 9Î2 is trivial or the unitary operators Rx and R2 

are relatively singular. 

P r o o f . In view of what has been said above it suffices to observe that, according 
to 2.11 and Remark 2.2 condition 1° is satisfied if and only if the only operator inter-
twining Rx and R2 is the zero operator. 

In the classical theory analytic Toeplitz operators may be characterized by the 
relation XS=SX. The corresponding relation T*X= XT* does not guarantee, in 
general, that X is (Tl9 T2) Toeplitz; we list below some supplementary condition 
which, together with the above relation, make X Toeplitz in which case the corre-
sponding symbol is analytic. 

4.3. P r o p o s i t i o n . Suppose X£38($2, SjJ satisfies 

(16) XT* = T*X. 



Operators of Toeplitz arid Hankel type 133 

Then the operator P^P^iiJX belongs to ST (Tx, T2) and the following four 
conditions are equivalent: 

1° X t S T ^ T J , 
2° X=P(f>1)P(9l1)X, 
3° X=P(%1f)W1)X, 
4° Ran J f c ^DSRi. 

Moreover, if X satisfies (16) and one of the conditions 2°, 3°, 4° then X is a Toeplitz 
operator whose symbol is analytic. 

On the other hand, if T2) is analytic then the corresponding Toeplitz 
operator X satisfies (16) and the conditions 2°, 3°, 4°. 

Proof . Consider an Xe^(§>2,§>i) satisfying XT*=T*X. Then 

T.P^P^XT* = P®1)U1P(M1)T1*X = PCojUiPWjutx = 

= P(&JP(*0X 

so that the operator P & J P C H J X is Toeplitz. 
Now, assume (16) and 1°. Then, for h2d§>2 and each natural number n, 

Xh2 = T^XT2*"h2 = T?T?»Xh2 = Pi^UZTfXh,— *(&)/>(« l)Xht. 

This proves the implication 1°=>2°. 
If 2° is satisfied then 

* = ( P ( § 0 P ( S 1 N 9 L 1 ) I R 

so that 3° is satisfied. The equivalence of 3° and 4° is obvious as well as the implica-
tions 4°=>2°^1°. 

Again, assume 4° and (16). Let Y be a symbol corresponding to X. Then, accord-
ing to 2.1 

Yh2 = lim U"XT2 "h2 = lim U?TfnXh2 = P(%)Xh2 = Xh2€§>x 

for all h2£§>2, so that Y is an analytic symbol. 
It remains to show that the Toeplitz operator X corresponding to an analytic 

symbol Y satisfies (16). Since X=Y|§2 we have Ran X=Ran F ^ c ^ n S ? ! and 

XT2*h2 = XU2h2 = YU2h2 = U}Yh2 = T*Xh2 

for h2€§2- The proof is complete. 
The following example shows that the condition (16) alone does not imply 2°. 

4.4. Example. Let us take T~0 on a Hilbert space ( i= l , 2). Then any 
X £ & ( & 2 9 S I ) satisfies (16). Since both and 3J2 are trivial, the only Toeplitz oper-
ator with respect to 7\ , T2 is the zero operator. 
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Now let us turn to existence conditions for analytic symbols. To this end we 
introduce some notation. The space SjflS?! is invariant with respect to U* and the 
restriction of U* to it is an isometry. Let us denote by 9Jli and 9tx the unitary part 
and the wandering subspace respectively in the Wold decomposition of C/*|§1 f l . 
Similarly, U2 maps the subspace P(9i2)§7 into itself and the restriction of U2 to 
it is an isometry; we denote by 9Jl2 and 9t2 the analogous subspaces for the Wold de-
composition of t / 2 |P(9i 2)§7. Using this notation, we intend to prove the following 

4.5. T h e o r e m . Nontrivial analytic symbols with respect to and T2 exist if 
and only if the following three conditions are satisfied: 

1° 93?! and 9JJ2 are both nontrivial and the unitary operators and U2|9J?3 

are not relatively singular; 
2° and 9t2 are both nontrivial; 
3° 93?! and 9l2 are both nontrivial and the spectral measure E of t/j^JJ^ is not 

concentrated on a set of Lebesgue measure zero. 

P r o o f . In view of the one-to-one correspondence between the set of all 
symbols and the set of all Toeplitz operators, the set si(Tx, T2) will be nontrivial if 
and only if the corresponding set ^""{Ty, T2) of Toeplitz operators is nontrivial. 
According to 4.3 this set consists of all X£3S($>2, S iDS^) satisfying XT*—T*X. 
We shall establish a one-to-one linear correspondence between elements of the 
set &~a(Tx, T2) and certain triangular matrices. To simplify the notation we shall 
write £ i = (§i H 9i1)Q93i], £2=(P(9i2)91,)-Q2R2 . TO each X£2Ta{T^ T2) we 
assign a matrix 

defined by the following relations 

where YÇ.Sf'(7\, T2) is the symbol corresponding to X. 
Now denote by M the set of all matrices of the form 

\Mn M12\ 
I 0 M22J 

with M n ^ a m ^ m ù , M1 2Ç^(fi2 , I J , M 2 2 Ç^(£ 2 , £ 0 such that the following 
relations are satisfied 

ru = f № ) r i m Y12 = Pm^Yl 22, Y22 = P(21)Y\ 2. 

(17) 

(18) 

(19) 

(Utm^Mn = Mu(£/2*|2n2), 

(Un^)M12 = M12(U*\22), 

(Ut\2,)M22 = M22{U*\22). 
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We intend to show that 9 is an injective mapping of the set ¿Ta(T1, T2) onto JL 
Let us consider an with the corresponding symbol Y. Since 

Y= 7P(9?2) we have 

YP(%)§>2 = Yij2 = X.$2 c &D 

Furthermore, the relation UXY=YU% implies that 3X£Jt. 
Consider now the operators Z=P(£ 1 ) r |9K 2 and S ^ t / * ^ . Using U*Y= 

= YU* again we have also 51Z=Z(t^ |9Ji2) so that Z*St"={Ut\m2)*nZ* for 
every natural number n. Given m£9Jl2 we have 

\\Z*m\\ = ||(*72*|9K2)*"Z*m|| = 

= \\Z*S?m\\^ ||Z*||||5i"/«|| - 0 , 

so that Z * = 0 and Z = 0 as well. Thus, for each /z2£§2, X can be decomposed as 
follows 

Xh2 = YP(W2)h2 = YnP(m2)P(ft2)h2 + 

+ Y12P(22)P(M2)h2 + F22P(£2)P(9?2)/i2. 

Hence 9X=0 implies X—0 and 5 is injective. 
On the other hand, each Jl defines an operator from P(9i2)§2" into 

SiflSRj. The relations (17), (18), (19) imply that 

0 1[mu M12i = [Mu M12\\u*2\m2 0 l 
I 0 C / i l f i J L 0 M22\ I 0 A f j l 0 £/2*|£2J' 

so that U*M=MU*\P(^2)9>2. If we set Xh2=MP(%)h2 for h2£9>2 then 
X££ra(T1, T2) and 9X=M. 

In view of the isomorphism between 3~a(Tx, T2) and Jl our problem is equival-
ent to that of describing conditions for Jl to be nontrivial. An element M^Jl is 
nonzero if and only if at least one of its entries is nonzero. 

If M n ^ 0 then clearly both and 9Ji2 must be nontrivial subspaces; at the 
same time M n is a nonzero operator intertwining the unitary operators |9Jii and 
U2 |9Jt2 and this yields condition 1°. On the other hand, if condition 1° is satisfied, 
there exists a nonzero operator Z€ ^(®i2 , 90^) for which 

W W j z = z(y$\m2y, 
then 

[o 

If M2 2j±0 both its domain and range must be nontrivial, hence condition 2°. 
Conversely, if condition 2° holds, take a vector and a vector It is 
easy to see that {(U^g, U\g)=0 for all integers p^q. The sequence U\h, k(iZ 
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possesses the same property so that it is possible to define an operator 5*+) 
by the formula 

Yx= 2 (x, Uig)U!th-
— oo 

clearly Y= U^U*. If fcisl we have 

(U2
kg, §2) = (g, U?%2) = (g, P(m2)UZk%2) = 

= (g, U*kP(K2)?>2) = 0, 

so that Yx= 2(x,U%g)U*h<^?> 1 for xe%2. Thus Y£si(Tx, T2). 
kSO 

Consider the case M12^0; it follows that £2^{0}. The operator S2= U2\Q2 

is a unilateral shift so that the minimal isometric dilation of S2 is a unitary operator 
W with the following properties (see [2], Ch. 2, Theorem 6.4): 

(i) the spectral measure Ew( •) of W is equivalent to Lebesgue measure, 
(ii) for each nonzero z€Q2, the measure (Ew( • )z, z) is equivalent to Lebesgue 

measure. 
Since M12 satisfies (18) we have M*2= S*M*2(U*^) so that M*2£Sr(S*, 

(C/^Pi)*). The corresponding symbol G satisfies G=WG(U*\mi) so that 
G(U*[Mi)=W*G and this implies condition 3°. 

On the other hand, if condition 3° holds there exists a nonzero vector xCSDij 
and a set M of positive Lebesgue measure for which (E(M)x, Furthermore, 
if z is an arbitary vector in 9i2 the measure [Ew ( • ) z, z) is equivalent to Lebesgue meas-
ure. It follows that there exists a nonzero operator K defined on SOî  which inter-
twines W and (£/*№), KiU^m^WK. Hence K=WK{U*\mi)* so that 
K££T(St, U*^) and the corresponding Toeplitz operator T(K) satisfies (18). 
Accordingly, 

K TV-
The proof is complete. 

4.6. Coro l la ry . If Tx is completely nonunitary then si(7\, T2) is nontrivial if 
and only if both 9ti and 3i2 are nontrivial. 

Proof . It follows from Lemma 1.2 that ®i1=§1J(7,
1). If Tx is completely non-

unitary then 5Dii=Su(7'1)={0}. It follows from the preceding theorem that s4(Tx, T2) 
is nontrivial if and only if 2° is satisfied. 

Of course it is possible to reformulate the existence conditions for analytic 
symbols in a manner analogous to Proposition 4.2 The problem does not become 
any easier in this reformulation; nevertheless, it provides some more insight into the 
structure of these symbols. 
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4.7. P ropos i t i on . Let T T 2 £ i % ( § 2 ) be two contractions. Let us 
denote by ©i the smallest Ux reducing subspace containing fl SRj.. Then these are 
equivalent: 

1° sf(Tlt T2)={0}, 
2° the unitary operators R2 and C/x| are relatively singular. 

Proof . If Y is an analytic symbol then Y— UyYU^ and Y maps 
9?2= V P(9l2)i72"§2 into V ^iCSinSRi) which is nothing more than the smallest 

NS0 NSO 
reducing subspace ©x for Ux containing fl Slj. Thus 

5. Rational symbols and the theorem of Kronecker 

It might seem that there is little hope that a reasonable extension to this general-
ity of the algebraic notion of rational function would be possible. We intend to show 
in this section that such an extension does exist and that it may be used to obtain a 
generalization of the theorem of Kronecker. 

We shall use an abbreviation: if p is a polynomial of degree n, we shall write px 

for the polynomial defined by the relation p1(x)=xnp(l/x). 

5.1. P ropos i t i on . Suppose YZsfiT^T^ and let q be a polynomial of degree 
n with roots of modulus less then 1, q(x)=(x— aj)...^— a„). 

Then q(R^)~1Y is a symbol and the corresponding Hankel operator may be expres-
sed as follows 

k=1 

or in an equivalent form 

2 (c/i - **+i)...(i/i - «MUJ-Wr1^ - 71) • *=1 

• T r W J - ' Y i T * - a/t-i)...(T2* - «0. 

Proof . Since Y=P('M1)Y we have 

U1q(R*)~1YU£ = RMRlr'YUl = qiRfi^RiYU* = qCR^Y 

so that q(R*)~xY is a symbol. 
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Since R t is unitary we have 

?(*i)_1 = ¿(Rr1-^)-1 = Ri(l — cc1R1)~1...(l — ccnR1)~1 = 

= R l q M - 1 

and 

= Uiqi(U1)-1r\&-P®1)U;ql(U1)-1Y\$2 = Ulq^U^Y^-

- T i W i ) - 1 ! ^ . 
Now, it suffices to apply Proposition 1.3. 

5.2. Theorem. Let H be a Hankel operator, T2). Then the following 
assertions are equivalent: 

1° the range of H is finite dimensional; 
2° there exists a polynomial q with roots of modulus less than 1 and an analytic 

symbol Ye , T2) such that 

2.1° H = HfaiRfi-iY) 

and one of the two following equivalent conditions is satisfied 

2.2° dj=&m (U1-T1)Ti(l-OL1T1)-\..{l-aj+1T1)-iYZ>^~ for j= 0, . . . , « - 1 

where a l s ..., a„ are the roots of q, deg q—n, 

2.3° dim ( U 1 - T 1 ) T l - \ \ - x 1 T J - \ . . { \ - o i n T i r i Y ^ ~ > . 

If these conditions are satisfied then 

dim Ran H ^ + ••• +4,-1-

Proof . The range of H is invariant with respect to V*. If it is finite-dimensio-
nal there exists a polynomial q such that g(F*|Ran H)=0 so that q(V*)H—Q. 

Since Vx is a unilateral shift both Vx and V* have no eigenvalues on the unit 
circle. Hence we can assume that all the roots of q lie inside the unit disc. If Z is any 
symbol for H, i.e. / / = P ( § i

L ) Z | § 2 , T,) we have 

0 = qiV^H = Hq(T*) = P(%i)Zq(U?) |$„ = P{$t)q(Ut)Z\%2. 

Hence q(U*)Z%2<^$)i- Since the range of Z is contained'in 9?! it follows that 
Y=q(U*)Z is an analytic symbol and Y=q(R*)Z whence which 
proves 2.1°. 

The range of the operator P(£i)?i(£/i)// is also finite dimensional and it follows 
from Proposition 5.1 that it is equal to the space (C/1-7 ,

1)7 ,
1

n-1^1(T'1)- iy§2. Thus 
condition 2.3° is satisfied. 
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Let us show now, that, for any polynomial q with roots inside the unit disc and 
any analytic symbol Y, condition 2.3° implies 2.2°. Since Y is an analytic symbol 
we have Y ^ c S ^ n ^ . On the other hand T* is an isometry on SiflSRi and 
T^T^h—h for all fl9ix. Using these facts we can write, for | a |< l , 

Y§>2 = (l-aT1)-1(l-ar1)Y$2 = 

= (1 - a T O - W i * - «71 № = (1 •- a T J - ^ T ? - a ) Y§2 = 

= 7 1 ( 1 - a T l ) - 1 } ^ * - « ) ^ g 71(1 - a T ^ Y ^ . 

It is easy to deduce from the just established relation that 2.3° implies 2.2°. 
Assume that 2.2° is satisfied for a polynomial q with roots inside the unit disc 

and some analytic symbol Y. Then, according to Proposition 5.1, the Hankel oper-
ator H(q(Rl)~1Y) is finite dimensional and dim Ran H(q(R%)-1Y)^d0+d1+... 
... + dn_1. 

The proof is complete. 

5.3. Coro l la ry . Suppose dimfix^oo. Given a symbol of the form 

qiRlr'Y, 

where q is a polynomial of degree n (with roots inside the unit disc) and Yd si (7\, T2), 
condition 2.2° is automatically satisfied and 

dim Ran H(q(R*1)~1 Y) =s n dim £x . 

The corollary applies in particular in the case where dim £x = 1. Furthermore, 
for classical Hankel operators it is more natural to view the symbol as an equivalence 
class in L°°jH°° rather than as an individual function; in conformity with this point of 
view it seems natural to define a rational symbol as a class which contains a rational 
function, or equivalently, a class which contains a quotient h/q, h£H°°, q a poly-
nomial. In view of this it is not unnatural to use the name rational symbol for opera-
tors of the form q(R*)~xY, Y analytic. 

Theorem 5.2 appears thus as an extension of the well-known theorem of Kronec-
ker. It is natural to ask whether the assumption 2.2° in Theorem 5.2 is essential for 
the validity of the generalized Kronecker theorem. We limit ourselves to stating that 
there exist examples which show that ranges of Hankel operators with rational 
symbols may be both finite and infinite dimensional if dim £x is infinite. 
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