

Commutative GW^* -algebras

JÁNOS KRISTÓF

GW^* -algebras (i.e. generalized W^* -algebras) were introduced in [2]. In this paper the structure and the spectral properties of commutative GW^* -algebras will be examined in detail.

I. Preliminaries

Here we give a short summary of our former results concerning GW^* -algebras.

The vector space of the linear forms on the $*$ -algebra A will be denoted by A^* and the weak $\sigma(A^*, A)$ topology relates to the canonical duality between A^* and A .

If A is a unital $*$ -algebra (whose unit is denoted by 1 throughout this paper) and P is a set of positive linear forms on A then the set $\{f \in P \mid f(1) \leq 1\}$ will be denoted by the symbol $P(1)$. Further, assuming that $P(1)$ is non-void and bounded in the $\sigma(A^*, A)$ topology, $\|\cdot\|_P$ denotes the mapping from A into \mathbf{R}_+ defined by

$$\|x\|_P := \sup_{f \in P(1)} \sqrt{f(x^* x)}$$

for all $x \in A$. It is obvious that $\|\cdot\|_P$ is a seminorm on A ; the dual seminorm is denoted by $\|\cdot\|'_P$.

If S is a subset of A^* then the linear subspace of A^* spanned by S and the convex hull of S is denoted by $\text{sp}(S)$ and $\text{co}(S)$, respectively, while the $\sigma(A^*, A)$ -closed linear subspace of A^* spanned by S and the $\sigma(A^*, A)$ -closed convex hull of S is denoted by $\widetilde{\text{sp}}(S)$ and $\widetilde{\text{co}}(S)$, respectively. If the elements of S are $\|\cdot\|_P$ -continuous forms (where P is a set of positive linear forms on A such that $P(1)$ is non void and $\sigma(A^*, A)$ -bounded) then the $\|\cdot\|'_P$ -closed linear subspace of A^* spanned by S and the $\|\cdot\|'_P$ -closed convex hull of S is denoted by $\overline{\text{sp}}(S)$ and $\overline{\text{co}}(S)$, respectively, provided there is no danger of confusion as for P .

Received January 9, 1985.

If f is a linear form on the $*$ -algebra A then for every $x \in A$ we define the linear forms $x \cdot f$ and $f \cdot x$ on A as the mappings $y \mapsto f(xy)$ and $y \mapsto f(yx)$, respectively. If $f \in A^*$ and $x, y \in A$ then $x \cdot f \cdot y$ stands for $(x \cdot f) \cdot y$.

Definition. The pair (A, P) is called a *weak GW^* -algebra* if A is a unital $*$ -algebra and P is a separating set of positive linear forms on A satisfying:

- (I) $P(1)$ is non-void and $\sigma(A^*, A)$ -bounded;
- (II_w) $\mathbf{R}_+ P \subset P$ and $x^* \cdot P \cdot x \subset \overline{\text{co}}(P)$ for all $x \in A$;
- (III) $x \cdot P \subset \overline{\text{sp}}(P)$ for all $x \in A$;
- (IV) A is sequentially complete with respect to the uniform structure defined by the $\sigma(A, \text{sp}(P))$ topology.

The pair (A, P) is called a *GW^* -algebra* if it is a weak GW^* -algebra and instead of (II_w) satisfies the more restrictive condition:

- (II) $\mathbf{R}_+ P \subset P$ and $x^* \cdot P \cdot x \subset \overline{\text{co}}(P)$ for all $x \in A$.

Finally, the pair (A, P) is referred to as a *complete GW^* -algebra* if it satisfies:

- (IV_s) A is quasi complete with respect to the uniform structure defined by the $\sigma(A, \text{sp}(P))$ topology.

The most important elementary facts concerning weak GW^* -algebras are the following. If (A, P) is a weak GW^* -algebra then:

- A is a C^* -algebra whose C^* -norm coincides with $\|\cdot\|_P$, that is why we refer to $\|\cdot\|_P$ as the C^* -norm of A (cf. [1] and [2]);
- the $\sigma(A, \text{sp}(P))$ and $\sigma(A, \overline{\text{sp}}(P))$ topologies coincide in every C^* -norm bounded subset of A (cf. [1] Lemma 1);
- the multiplication of A is C^* -norm boundedly left and right continuous in the $\sigma(A, \text{sp}(P))$ topology (cf. [1] Lemma 2);
- the involution of A is proper and continuous in the $\sigma(A, \text{sp}(P))$ topology;
- the set of projections (i.e. self-adjoint idempotent elements) of A , equipped with the natural ordering: $g \leq h \Leftrightarrow g = hg$ and the orthocomplementation: $e^\perp := 1 - e$, is a σ -complete orthomodular lattice admitting a separating set of σ -additive states (cf. [2] Theorem 1);
- the partial isometries are countably summable in A and, consequently, the equivalence of projections is countably additive in A (cf. [2] Proposition 2).

Here we deduce an important auxiliary result for general (not necessarily commutative) weak GW^* -algebras.

Proposition 1. *Let (A, P) be a weak GW^* -algebra. Then the order in A defined as $x \leq y$ iff $f(y - x) \in \mathbf{R}_+$ ($f \in P$) coincides with the algebraic order of the C^* -algebra A .*

Proof. Since the elements of P are positive linear forms on A , we have obviously $x \geq 0$ with respect to the order defined by P , if $x \geq 0$ in the C^* -algebra A .

Conversely, suppose that $x \geq 0$ with respect to the order defined by P . Since the set of positive linear forms f on A satisfying $f(x) \in \mathbf{R}_+$ is $\sigma(A^*, A)$ -closed, we have $f(x) \geq 0$ for every $f \in \overline{\text{co}}(P)$. Since $f(x) \in \mathbf{R}_+$ ($f \in P$), we have $f(x^*) = \overline{f(x)} = f(x)$, hence $x = x^*$ since P separates the points of A . We know that A is a C^* -algebra thus we may write $x = x^+ - x^-$, where x^+ and x^- denotes the positive and negative part of the self-adjoint element x , respectively. Then the positive square root $\sqrt{x^-}$ of x^- exists in A and it is well known that the set $\{\sqrt{x^-}, x^+, x^-\}$ is commutative; moreover, $x^+ x^- = x^- x^+ = 0$. Fixed a linear form f in P , we have $(\sqrt{x^-}) \cdot f \cdot (\sqrt{x^-}) \in \overline{\text{co}}(P)$ thus

$$\begin{aligned} 0 &\leq ((\sqrt{x^-}) \cdot f \cdot (\sqrt{x^-}))(x) = f(\sqrt{x^-}(x^+ - x^-)\sqrt{x^-}) = \\ &= f(x^- x^+ - (x^-)^2) = -f((x^-)^2) \leq 0, \end{aligned}$$

i.e. $f((x^-)^* x^-) = 0$ ($f \in P$). Since P separates the points of A and the involution of A is proper, it follows that $x^- = 0$ thus $x = x^+$ is a positive element in the C^* -algebra A .

II. A type of commutative GW^* -algebras

If \mathcal{B} is a σ -algebra of subsets of the set T then $\mathcal{F}_C^b(T, \mathcal{B})$ will denote the set of bounded complex valued $\mathcal{B}-\mathcal{B}(\mathbf{C})$ measurable functions defined on T . The set $\mathcal{F}_C^b(T, \mathcal{B})$ will always be thought of equipped with the pointwise defined algebraic structure and the sup-norm on T (denoted by $|||\cdot|||_T$), thus $\mathcal{F}_C^b(T, \mathcal{B})$ will be regarded as a commutative unital C^* -algebra.

It is known that given a σ -algebra of subsets of the set T and a finitely additive mapping $\Theta: \mathcal{B} \rightarrow \mathbf{C}$, the following statements are equivalent:

- Θ is bounded, i.e. $\sup_{E \in \mathcal{B}} |\Theta(E)| < +\infty$;
- there is a unique continuous linear form $\hat{\Theta}$ on $\mathcal{F}_C^b(T, \mathcal{B})$ (called the integral on $\mathcal{F}_C^b(T, \mathcal{B})$ defined by Θ) such that $\hat{\Theta}(\chi_E) = \Theta(E)$ for all $E \in \mathcal{B}$.

Moreover, Θ is σ -additive if and only if the integral $\hat{\Theta}$ defined by Θ satisfies the condition:

(L) For every uniformly bounded sequence $(\varphi_n)_{n \in \mathbf{N}}$ of functions in $\mathcal{F}_C^b(T, \mathcal{B})$, if $\varphi_n \rightarrow 0$ pointwise on T then $\hat{\Theta}(\varphi_n) \rightarrow 0$.

Lemma. *Let \mathcal{B} be a σ -algebra of subsets of the set T and P the set of integrals on $\mathcal{F}_C^b(T, \mathcal{B})$ defined by positive σ -additive set functions on \mathcal{B} . Then P is a separating set of positive linear forms on the unital $*$ -algebra $A := \mathcal{F}_C^b(T, \mathcal{B})$, P satisfies (I) and $\text{sp}(P)$ is a $\|\cdot\|'_p$ -closed set.*

Proof. Since $\{\delta_t | t \in T\} \subset P$, the set P separates the points of A . On the other hand, $P(1) = \{\hat{\mu} | \mu: \mathcal{B} \rightarrow \mathbf{R}_+, \sigma\text{-additive and } \mu(T) = \hat{\mu}(1) \leq 1\}$, thus for every $\varphi \in A$

and $\hat{\mu} \in P$ we have the inequality $|\hat{\mu}(\varphi)| \leq \mu(T) \|\varphi\|_T$ showing that $P(1)$ is $\sigma(A^*, A)$ -bounded and non void.

Now we prove that $\|\cdot\|_P = \|\cdot\|_T$. Indeed, if $\varphi \in A$ then

$$\|\varphi\|_P := \sup_{\mu \in P(1)} \sqrt{\hat{\mu}(\varphi^* \varphi)} = \sup_{\mu \in P(1)} \sqrt{\hat{\mu}(|\varphi|^2)} \leq \sup_{\mu \in P(1)} \sqrt{\mu(T)} \|\varphi\|_T \leq \|\varphi\|_T,$$

i.e. $\|\cdot\|_P \leq \|\cdot\|_T$. Conversely, if $\varphi \in A$ and $c < \|\varphi\|_T$ then there is a point t in T such that $c < |\varphi(t)| = \sqrt{\hat{\delta}_t(\varphi^* \varphi)} \leq \|\varphi\|_P$, i.e. $\|\cdot\|_T \leq \|\cdot\|_P$.

Let $\Theta \in \overline{\text{sp}}(P)$ and choose a sequence $(\Theta_n)_{n \in \mathbb{N}}$ in $\text{sp}(P)$ with the property $\|\Theta_n - \Theta\|'_P \rightarrow 0$. We have to show that $\Theta \in \text{sp}(P)$. With regard to our former considerations, it suffices to prove that for every uniformly bounded sequence $(\varphi_n)_{n \in \mathbb{N}}$ in A , if $\varphi_n \rightarrow 0$ pointwise on T then $\Theta(\varphi_n) \rightarrow 0$. If $n, m \in \mathbb{N}$ then

$$|\Theta(\varphi_m)| \leq |\Theta(\varphi_m) - \Theta_n(\varphi_m)| + |\Theta_n(\varphi_m)| \leq \|\Theta - \Theta_n\|'_P \|\varphi_m\|_T + |\Theta_n(\varphi_m)|.$$

If $\varepsilon > 0$ is arbitrary then there is a number N_0 in \mathbb{N} such that $\|\Theta - \Theta_{N_0}\|'_P \leq \varepsilon/2(M+1)$ where $M := \sup_{m \in \mathbb{N}} \|\varphi_m\|_T$. Since $\Theta_{N_0} \in \text{sp}(P)$ we have $\Theta_{N_0}(\varphi_m) \rightarrow 0$ ($m \rightarrow +\infty$) thus there is a number N in \mathbb{N} with the property that $|\Theta_{N_0}(\varphi_m)| \leq \varepsilon/2$ for $m \in \mathbb{N}$, $m \geq N$. Then the above inequality implies that $|\Theta(\varphi_m)| \leq \varepsilon$ for $m \in \mathbb{N}$, $m \geq N$, i.e. $\Theta(\varphi_m) \rightarrow 0$.

Theorem 1. *Let \mathcal{B} be a σ -algebra of subsets of the set T , $A := \mathcal{F}_C^b(T, \mathcal{B})$ and P the set of integrals on A defined by positive σ -additive set functions on \mathcal{B} . Then (A, P) is a commutative GW^* -algebra.*

Proof. With regard to our Lemma we have only to prove that the pair (A, P) satisfies (II), (III) and (IV). If $\varphi \in A$ and $\hat{\mu} \in P$ then $\varphi^* \cdot \hat{\mu} \cdot \varphi = |\varphi|^2 \mu$ where $|\varphi|^2 \mu$ is the positive σ -additive set function on \mathcal{B} defined as: $E \mapsto \hat{\mu}(|\varphi|^2 \chi_E)$, thus $\varphi^* \cdot \hat{\mu} \cdot \varphi \in P$ and, consequently, $\varphi \cdot \hat{\mu} \in P - P + iP - iP \subset \text{sp}(P)$, i.e. (A, P) verifies (II) and (III).

In order to prove (IV), let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence in A such that $(\hat{\mu}(\varphi_n))_{n \in \mathbb{N}}$ is convergent for every $\hat{\mu} \in P$. Since $\hat{\delta}_t \in P$ ($t \in T$), there is a unique function $\varphi: T \rightarrow \mathbb{C}$ with the property that $\varphi_n \rightarrow \varphi$ pointwise on T . From this we infer that φ is necessarily $\mathcal{B}-\mathcal{B}(\mathbb{C})$ measurable. We intend to show that $\varphi \in A$ and $\varphi_n \rightarrow \varphi$ in the $\sigma(A, \text{sp}(P))$ topology. In order to prove this we first define for all $n \in \mathbb{N}$ the linear form $\tilde{\varphi}_n: \text{sp}(P) \rightarrow \mathbb{C}; \Theta \mapsto \Theta(\varphi_n)$. On account of our Lemma, $\text{sp}(P)$ will be considered a Banach space whose norm equals $\|\cdot\|'_P$. Then $\tilde{\varphi}_n$ is a continuous linear form on the Banach space $\text{sp}(P)$ for every $n \in \mathbb{N}$ and, by our assumption, the sequence $(\tilde{\varphi}_n)_{n \in \mathbb{N}}$ is pointwise convergent in $\text{sp}(P)$. Consequently, the theorem of Banach—Steinhaus implies that $\sup_{n \in \mathbb{N}} \|\tilde{\varphi}_n\| < +\infty$. If $n \in \mathbb{N}$ and $c < \|\varphi_n\|_T$ then there is a point t in T such that $c < |\varphi_n(t)| = |\tilde{\varphi}_n(\hat{\delta}_t)| \leq \|\hat{\delta}_t\|'_P \|\tilde{\varphi}_n\| = \|\tilde{\varphi}_n\|$, since $\|\hat{\delta}_t\|'_P = 1$ holds

obviously, thus $|||\varphi_n|||_T \leq \|\tilde{\varphi}_n\|$ showing that the sequence $(\varphi_n)_{n \in \mathbb{N}}$ is uniformly bounded in T . From this we obtain that the mapping φ is bounded, i.e. $\varphi \in A$.

Finally, if $\hat{\mu} \in P$ then the theorem of Lebesgue applied to the measure μ and the uniformly bounded, pointwise convergent sequence $(\varphi_n)_{n \in \mathbb{N}}$ result in $\hat{\mu}(\varphi_n) \rightarrow \hat{\mu}(\varphi)$, i.e. $\varphi_n \rightarrow \varphi$ in the $\sigma(A, \text{sp}(P))$ topology.

This theorem provides a great deal of commutative GW^* -algebras that are not $*$ -isomorphic to any W^* -algebra.

III. On the Gelfand representation of commutative GW^* -algebras

If T is a compact Hausdorff space then $\mathcal{C}_c(T)$ and $\mathcal{M}_c(T)$ will denote the vector space of complex continuous functions defined on T and the vector space of complex Radon measures on T , respectively. Then $\mathcal{C}_+(T)$ and $\mathcal{M}_+(T)$ denote the convex cone of positive elements in $\mathcal{C}_c(T)$ and $\mathcal{M}_c(T)$, respectively. The complex vector space $\mathcal{C}_c(T)$ will always be thought of equipped with the pointwise defined multiplication and conjugation, i.e. $\mathcal{C}_c(T)$ will be considered a commutative unital $*$ -algebra. It is well known that $\mathcal{C}_c(T)$ is a C^* -algebra whose C^* -norm equals the sup-norm $|||\cdot|||_T$ on T .

Given a commutative unital C^* -algebra A , the celebrated representation theorem of Gelfand and Naimark assures that A and $\mathcal{C}_c(X(A))$ are isometrically $*$ -isomorphic C^* -algebras, where $X(A)$ denotes the compact Hausdorff space whose underlying set is the set of non zero multiplicative linear forms on A and whose topology is the well known Gelfand topology (cf. [3] ch. I, §6, Theorem 1). The Gelfand isomorphism between A and $\mathcal{C}_c(X(A))$ is denoted usually by \mathcal{G}_A ; we have $(\mathcal{G}_A(x))(\chi) = \chi(x)$ for all $x \in A$ and $\chi \in X(A)$.

In this section the structure of the compact Hausdorff space $X(A)$ will be examined in the case when (A, P) is a commutative GW^* -algebra.

Proposition 2. *Let T be a compact Hausdorff space, $P \subset \mathcal{M}_+(T)$ and suppose that $(\mathcal{C}_c(T), P)$ is a weak GW^* -algebra. Then*

- (i) $T = (\bigcup_{\mu \in P} \text{Supp } \mu)^-$ and $\sup_{\mu \in P} \mu(G) > 0$ for every non-void open subset G of T .
- (ii) *The interior of a closed G_δ -set in T is closed.*
- (iii) *If F is a closed G_δ -set in T and there is a measure μ in P such that $\mu(F) > 0$ then the interior \mathring{F} of F is non-void, i.e. F is not nowhere dense in T .*

Proof. (i) Let G be a non-void open subset of T . Then there is a function $\varphi \in \mathcal{C}_+(T)$ such that $0 \leq \varphi \leq 1$, $\text{Supp } \varphi \subset G$ and $\varphi \neq 0$. Since P is a separating set, there exists a measure μ in P with the property $\mu(\varphi) > 0$. Then we have $\mu(G) \geq \mu(\varphi) > 0$.

$\geq \mu(\varphi) > 0$. This proves the second part of (i) and the first part of our assertion is an easy consequence of the second part.

(ii) Let F be a closed G_δ -set in T . Then there is a sequence of functions $(\varphi_n)_{n \in \mathbb{N}}$ in $\mathcal{C}_+(T)$ such that $\varphi_n \geq \varphi_{n+1}$ ($n \in \mathbb{N}$) and $\varphi_n \rightarrow \chi_F$ pointwise on T . If $\mu \in P$ then $(\mu(\varphi_n))_{n \in \mathbb{N}}$ is a decreasing sequence of positive real numbers thus the sequentially completeness of $\mathcal{C}_C(T)$ in the $\sigma(\mathcal{C}_C(T), \text{sp}(P))$ topology now gives the existence of a function φ in $\mathcal{C}_C(T)$ such that $\mu(\varphi_n) \rightarrow \mu(\varphi)$ for all $\mu \in P$. Since $\mu \in P$ implies $\mu(\varphi) \geq 0$ and $\mu(\varphi_n) \geq \mu(\varphi)$ ($n \in \mathbb{N}$), by Proposition 1 we obtain that $\varphi_n \geq \varphi \geq 0$ ($n \in \mathbb{N}$). From this we conclude that $\varphi \leq \chi_F$. If $\varphi' \in \mathcal{C}_+(T)$ and $\varphi' \leq \chi_F$ then $\varphi' \leq \varphi_n$ ($n \in \mathbb{N}$) thus $\mu(\varphi') \leq \mu(\varphi_n)$ and $\mu(\varphi') \leq \lim_n \mu(\varphi_n) = \mu(\varphi)$ for every $\mu \in P$, i.e. applying again Proposition 1, we find that $\varphi' \leq \varphi$. This means that

$$(1) \quad \varphi = \sup \{ \varphi' : \varphi' \in \mathcal{C}_+(T), \varphi' \leq \chi_F \}.$$

If $n \in \mathbb{N}$ then $\inf(n\varphi, 1) \leq \chi_F$ and $\inf(n\varphi, 1) \in \mathcal{C}_+(T)$ thus by (1) we obtain $\inf(n\varphi, 1) \leq \varphi$. Then we have

$$\chi_{[\varphi > 0]} = \sup_{n \in \mathbb{N}} (\inf(n\varphi, 1)) \leq \varphi \leq \chi_F$$

showing that $\varphi = 1$ on the set $[\varphi > 0]$ thus $\varphi = 1$ on the set $\text{Supp } \varphi = [\varphi > 0]^-$ as well. Since $\varphi = 0$ on $T \setminus \text{Supp } \varphi$ we deduce that $\chi_{\text{Supp } \varphi} = \varphi \in \mathcal{C}_+(T)$, i.e. $\text{Supp } \varphi$ is an open-closed subset of T and $\text{Supp } \varphi \subset F$ thus $\text{Supp } \varphi \subset \overset{\circ}{F}$. We claim that $\overset{\circ}{F}$ equals $\text{Supp } \varphi$. On the contrary, suppose that $\text{Supp } \varphi \neq \overset{\circ}{F}$. Then $\overset{\circ}{F} \setminus \text{Supp } \varphi$ is a non-void open subset of T thus there is a mapping $\varphi' \in \mathcal{C}_+(T)$ such that $0 \leq \varphi' \leq 1$, $\text{Supp } \varphi' \subset \overset{\circ}{F} \setminus \text{Supp } \varphi$ and $\varphi' \neq 0$. Then $\varphi + \varphi' \in \mathcal{C}_+(T)$ and $\varphi + \varphi' \leq \chi_F$ thus by (1) we have $\varphi + \varphi' \leq \varphi$ in contradiction to $\varphi' \neq 0$. This proves that $\text{Supp } \varphi = \overset{\circ}{F}$, i.e. the interior of the closed G_δ -set F is closed in T .

(iii) If F is a closed G_δ -set in T and $\mu \in P$ is a measure such that $\mu(F) > 0$ then, applying the notations introduced in the proof of (ii), we obtain

$$\mu(\varphi) = \lim_n \mu(\varphi_n) = \mu(\chi_F) = \mu(F)$$

thus $\varphi \neq 0$, i.e. $\emptyset \neq \text{Supp } \varphi = \overset{\circ}{F}$.

Corollary 1. *Let T be a compact Hausdorff space and let $P \subset \mathcal{M}_+(T)$ be a set such that $(\mathcal{C}_C(T), P)$ is a weak GW^* -algebra. Then the open-closed subsets of T form a basis for the topology of T and the closure of every open F_σ -set is open in T . Particularly, $\text{Supp } \varphi$ is open-closed for all $\varphi \in \mathcal{C}_C(T)$.*

Proof. Let t be an arbitrary point of T and G an open neighbourhood of t . Then we can choose a function $\varphi \in \mathcal{C}_+(T)$ with the property that $0 \leq \varphi \leq 1$, $\text{Supp } \varphi \subset G$ and t is in the interior of $[\varphi = 1]$. Since $[\varphi = 1]$ is G_δ in T , by Proposition

2 we deduce that the interior of $[\varphi=1]$ is open-closed and contained in G . This means that at every point of T there is a basis consisting of open-closed sets, or equivalently, the topology of T has a basis formed by open-closed sets.

The second part of our assertion is a simple reformulation of (ii) in Proposition 2.

Theorem 2. *Let (A, P) be a commutative weak GW^* -algebra. Then A is a C^* -algebra whose underlying $*$ -algebra is a Rickart $*$ -algebra. Consequently, the set of projectors in A is total in the topology defined by the C^* -norm of A .*

Proof. Compare Corollary 1 with Theorems 1, ch. I, § 6. in [3] and 1.8 in [4].

IV. Spectral theorem for commutative GW^* -algebras

If T is a compact Hausdorff space then $\mathcal{B}_0(T)$ denotes the σ -algebra in T generated by the closed G_δ subsets of T ; $\mathcal{B}_0(T)$ is usually referred to as the Baire σ -algebra of T . On the other hand, a mapping $\varphi: T \rightarrow \mathbb{C}$ is called a Baire function if $\varphi^{-1}(E) \in \mathcal{B}_0(T)$ for every Borel set E in \mathbb{C} . It can be shown without difficulty that $\mathcal{B}_0(T)$ coincides with the least σ -algebra in T with respect to which every continuous complex valued function defined on T is measurable.

Let T be a compact Hausdorff space; for every countable ordinal number α we define by ω_1 -induction the function space $\mathcal{C}_C^\alpha(T)$ as follows:

- $\mathcal{C}_C^0(T) := \mathcal{C}_C(T)$,
- if $0 < \alpha < \omega_1$ then $\varphi \in \mathcal{C}_C^\alpha(T)$ if and only if φ is a function $T \rightarrow \mathbb{C}$ such that there is a sequence $(\varphi_n)_{n \in \mathbb{N}}$ in $\bigcup_{\beta < \alpha} \mathcal{C}_C^\beta(T)$ which is uniformly bounded and pointwise converges to φ in T .

Then we define $\mathcal{C}_C^\infty(T) := \bigcup_{\alpha < \omega_1} \mathcal{C}_C^\alpha(T)$. It is easy to show that $\mathcal{C}_C^\infty(T) = \mathcal{F}_C^b(T, \mathcal{B}_0(T))$, i.e. $\mathcal{C}_C^\infty(T)$ consists of the bounded complex valued Baire functions defined on T and a subset E of T belongs to $\mathcal{B}_0(T)$ if and only if $\chi_E \in \mathcal{C}_C^\infty(T)$. In the sequel the sequence of function spaces $(\mathcal{C}_C^\alpha(T))_{\alpha < \omega_1}$ will be referred to as the *standard graduation* of $\mathcal{C}_C^\infty(T)$.

According to Theorem 1 and the fact that $\mathcal{C}_C^\infty(T) = \mathcal{F}_C^b(T, \mathcal{B}_0(T))$, the pair $(\mathcal{C}_C^\infty(T), P)$ is a commutative GW^* -algebra, where P is the set of integrals on $\mathcal{C}_C^\infty(T)$ defined by positive σ -additive set functions on $\mathcal{B}_0(T)$.

Lemma 2. *If T is a compact Hausdorff space, $P \subset \mathcal{M}_C(T)$ and φ is a universally integrable complex valued function defined on T then the relation $\int_T \varphi d\mu = 0$ ($\mu \in P$) implies that $\int_T \varphi d\mu = 0$ for all $\mu \in \overline{\text{sp}}(P)$, where $\overline{\text{sp}}(P)$ is the closure of $\text{sp}(P)$ in $\mathcal{M}_C(T)$ in the measure norm topology.*

Proof. Since the mapping $\mathcal{M}_C(T) \rightarrow \mathbb{C}$, $\Theta \mapsto \int_T \varphi \, d\Theta$ is a measure-norm continuous linear form on $\mathcal{M}_C(T)$, the assertion is obviously true.

Lemma 3. *Let T be a compact Hausdorff space and let $P \subset \mathcal{M}_+(T)$ be a set such that $(\mathcal{C}_C(T), P)$ is a GW^* -algebra. If $\varphi \in \mathcal{C}_C^\infty(T)$, $\varphi^b \in \mathcal{C}_C(T)$ and $\int_T \varphi \, d\mu = \mu(\varphi^b)$ for all $\mu \in P$ then we have $\|\varphi^b\|_T \leq \|\varphi\|_T$.*

Proof. Let t be a fixed point of T and \mathcal{B}_t denote the basis at t of T consisting of open-closed subsets of T (see Proposition 2, Corollary 1). With regard to (i) in Proposition 2, to every $E \in \mathcal{B}_t$ there is a measure μ_E in P such that $\mu_E(E) > 0$. Let μ_E be such a measure and put $\lambda_E := \chi_E \mu_E / \mu_E(E)$ for every $E \in \mathcal{B}_t$. Then $\lambda_E \in \overline{\text{sp}}(P)$ by (III), and it is easy to see that the continuity of φ^b in t implies that $\lim_{E \in \mathcal{B}_t} \lambda_E(\varphi^b) = \varphi^b(t)$. Now Lemma 2 yields that $\int_T \varphi \, d\lambda_E = \lambda_E(\varphi^b)$ for all $E \in \mathcal{B}_t$, since the measure-norm closure of $\text{sp}(P)$ in $\mathcal{M}_C(T)$ equals $\overline{\text{sp}}(P)$ (viz. $\|\cdot\|_T = \|\cdot\|_P$). From this we infer that

$$|\varphi^b(t)| = \lim_{E \in \mathcal{B}_t} |\lambda_E(\varphi^b)| = \lim_{E \in \mathcal{B}_t} \left| \int_T \varphi \, d\lambda_E \right| \leq \|\varphi\|_T,$$

i.e. $\|\varphi^b\|_T \leq \|\varphi\|_T$.

Proposition 3. *Let T be a compact Hausdorff space, $P \subset \mathcal{M}_+(T)$ and suppose that $(\mathcal{C}_C(T), P)$ is a GW^* -algebra. Then to every bounded complex valued Baire function φ defined on T there is a unique continuous function φ^b defined on T with the property that $\varphi = \varphi^b$ a.e. for all $\mu \in P$.*

Proof. Since P separates the points of $\mathcal{C}_C(T)$, the uniqueness of φ^b is obvious. The existence of φ^b will be shown by the use of the standard graduation of $\mathcal{C}_C^\infty(T)$. Assume that $\varphi \in \mathcal{C}_C^\infty(T)$ and by ω_1 -induction we show that for every $\alpha < \omega_1$, if $\varphi \in \mathcal{C}_C^\alpha(T)$ then there is a function $\varphi^b \in \mathcal{C}_C(T)$ such that $\varphi = \varphi^b$ a.e., for all $\mu \in P$.

The assertion holds for $\alpha = 0$, evidently. Suppose that $0 < \alpha < \omega_1$ and the assertion is true for every $\beta < \alpha$. Since $\varphi \in \mathcal{C}_C^\alpha(T)$, there is a uniformly bounded sequence $(\varphi_n)_{n \in \mathbb{N}}$ in $\bigcup_{\beta < \alpha} \mathcal{C}_C^\beta(T)$ such that $\varphi_n \rightarrow \varphi$ pointwise on T . With regard to our induction hypothesis, for every $n \in \mathbb{N}$ we can define a function φ_n^b in $\mathcal{C}_C(T)$ such that $\varphi_n = \varphi_n^b$ a.e., for all $\mu \in P$. Now Lemma 3 gives that $\|\varphi_n^b\|_T \leq \|\varphi_n\|_T$ ($n \in \mathbb{N}$) so the sequence $(\varphi_n^b)_{n \in \mathbb{N}}$ in $\mathcal{C}_C(T)$ is also uniformly bounded.

If $\mu \in P$ then the theorem of Lebesgue applied to μ and the sequence $(\varphi_n)_{n \in \mathbb{N}}$ implies $\int_T \varphi_n \, d\mu \rightarrow \int_T \varphi \, d\mu$. On the other hand, $\int_T \varphi_n \, d\mu = \mu(\varphi_n^b)$ ($n \in \mathbb{N}$) thus we obtain

$$(2) \quad \lim_n \mu(\varphi_n^b) = \int_T \varphi \, d\mu \quad (\mu \in P).$$

The sequentially completeness of $\mathcal{C}_C(T)$ in the $\sigma(\mathcal{C}_C(T), \text{sp}(P))$ topology now results in the existence of a function $\varphi^b \in \mathcal{C}_C(T)$ such that

$$(3) \quad \lim_n \mu(\varphi_n^b) = \mu(\varphi^b) \quad (\mu \in P).$$

Comparing (2) and (3) we deduce that $\mu(\varphi^b) = \int_T \varphi d\mu$ for every $\mu \in P$. According to Lemma 3, $\Theta(\varphi^b) = \int_T \varphi d\Theta$ for all $\Theta \in \overline{\text{sp}}(P)$. If $\mu \in P$ and $\psi \in \mathcal{C}_C(T)$ then by (III) we have $\psi\mu \in \overline{\text{sp}}(P)$ thus $(\varphi\mu)(\psi) = \int_T \varphi d(\psi\mu) = (\psi\mu)(\varphi^b) = (\varphi^b\mu)(\psi)$, i.e. $\varphi\mu = \varphi^b\mu$ for all $\mu \in P$. This shows that $\varphi = \varphi^b$ a.e., for every $\mu \in P$.

We call the attention to the fact that Proposition 3 holds only for commutative GW^* -algebras and not for commutative *weak* GW^* -algebras.

Theorem 3. *Let (A, P) be a commutative GW^* -algebra. Then there is a unique $*$ -homomorphism $\Theta^P: \mathcal{C}_C^\infty(X(A)) \rightarrow A$ preserving the unit elements satisfying*

$$(4) \quad f(\Theta^P(\varphi)) = \int_{X(A)} \varphi d(f \circ \mathcal{G}_A^{-1})$$

for all $f \in P$ and $\varphi \in \mathcal{C}_C^\infty(X(A))$.

Remark. Note that $f \circ \mathcal{G}_A^{-1} \in \mathcal{M}_+(X(A))$ for every positive linear form f on A .

Proof. The uniqueness of Θ^P follows from (4) and the fact that P separates the points of A . In order to prove the existence of Θ^P we first mention that the pair $(\mathcal{C}_C(X(A)), P \circ \mathcal{G}_A^{-1})$ is a commutative GW^* -algebra. Then, by Proposition 3, we can define the mapping

$$\mathcal{C}_C^\infty(X(A)) \rightarrow \mathcal{C}_C(X(A)), \quad \varphi \mapsto \varphi^b$$

satisfying $\varphi = \varphi^b$ a.e., for every $\mu \in P \circ \mathcal{G}_A^{-1}$ and $\varphi \in \mathcal{C}_C^\infty(X(A))$. It is routine to check that this mapping is a $*$ -homomorphism between $\mathcal{C}_C^\infty(X(A))$ and $\mathcal{C}_C(X(A))$ preserving the unit elements. For every $\varphi \in \mathcal{C}_C^\infty(X(A))$ we define $\Theta^P(\varphi) := \mathcal{G}_A^{-1}(\varphi^b)$. Then Θ^P is a unit preserving $*$ -homomorphism between $\mathcal{C}_C^\infty(X(A))$ and A , evidently. If $f \in P$ and $\varphi \in \mathcal{C}_C^\infty(X(A))$ then $f \circ \mathcal{G}_A^{-1} \in P \circ \mathcal{G}_A^{-1}$ thus $\varphi = \varphi^b$ a.e., for $f \circ \mathcal{G}_A^{-1}$, showing that the equality holds for φ and f .

Of course, Theorem 3 can be appreciated as the global (or better to say, collective) spectral theorem for commutative GW^* -algebras. In order to formulate an individual version of the spectral theorem, we note that the spectrum of an element x in a unital algebra A is usually denoted by $\text{Sp}_A(x)$, or, if no confusion arises as for the algebra, the letter A is omitted. It is well known that given a unital C^* -algebra A , to every normal element x of A there is a unique unit preserving $*$ -homomorphism $\Theta_x: \mathcal{C}_C(\text{Sp}(x)) \rightarrow A$ such that $\Theta_x(\text{id}_{\text{Sp}(x)}) = x$ and Θ_x is an isometry whose range

equals the C^* -subalgebra of A generated by the set $\{1, x, x^*\}$ (cf. [3] ch. I, § 6, Proposition 5).

Theorem 4. *Let (A, P) be a commutative GW^* -algebra and $x \in A$. Then there exists a unique unit preserving $*$ -homomorphism $\Theta_x^P: \mathcal{F}_C^b(\text{Sp}(x), \mathcal{B}(\text{Sp}(x))) \rightarrow A$ which is an extension of Θ_x and satisfies*

$$(5) \quad f(\Theta_x^P(\varphi)) = \int_{\text{Sp}(x)} \varphi d(f \circ \Theta_x) \quad (f \in P),$$

for every bounded complex valued Borel function φ defined on $\text{Sp}(x)$.

Remark. Note that $f \circ \Theta_x \in \mathcal{M}_+(\text{Sp}(x))$ for every positive linear form on A .

Proof. The set P separates the points of A , thus the uniqueness of Θ_x^P follows from (5), evidently.

Since $\text{Sp}(x)$ is a metrisable compact topological space, the σ -algebra $\mathcal{B}(\text{Sp}(x))$ of Borel sets in $\text{Sp}(x)$ coincides with the σ -algebra $\mathcal{B}_0(\text{Sp}(x))$ of Baire sets in $\text{Sp}(x)$. Consequently, we have $\mathcal{F}_C^b(\text{Sp}(x), \mathcal{B}(\text{Sp}(x))) = \mathcal{C}_C^\infty(\text{Sp}(x))$. Since the mapping $\mathcal{G}_A(x)$ is a continuous function from $X(A)$ onto $\text{Sp}(x)$, the operator

$$\mathcal{G}_A(x)^*: \mathcal{C}_C^\infty(\text{Sp}(x)) \rightarrow \mathcal{C}_C^\infty(X(A)), \quad \varphi \mapsto \varphi \circ \mathcal{G}_A(x)$$

is an injective unit preserving $*$ -homomorphism between the C^* -algebras $\mathcal{C}_C^\infty(\text{Sp}(x))$ and $\mathcal{C}_C^\infty(X(A))$. Then we put

$$\Theta_x^P := \Theta^P \circ \mathcal{G}_A(x)^*,$$

where Θ^P denotes the $*$ -homomorphism between $\mathcal{C}_C^\infty(X(A))$ and A , introduced in Theorem 3. Thus Θ_x^P is a unit preserving $*$ -homomorphism between $\mathcal{C}_C^\infty(\text{Sp}(x))$ and A . It remained to prove the equality (5). Let there be given a linear form $f \in P$ and a function $\varphi \in \mathcal{C}_C^\infty(\text{Sp}(x))$. Then, by the definition of Θ_x^P , we have

$$(6) \quad \begin{aligned} f(\Theta_x^P(\varphi)) &= f(\Theta^P(\mathcal{G}_A(x)^*(\varphi))) = f(\Theta^P(\varphi \circ \mathcal{G}_A(x))) = \\ &= \int_{X(A)} \varphi \circ \mathcal{G}_A(x) d(f \circ \mathcal{G}_A^{-1}) = \int_{X(A)} \varphi d(\mathcal{G}_A(x)(f \circ \mathcal{G}_A^{-1})), \end{aligned}$$

where $\mathcal{G}_A(x)(f \circ \mathcal{G}_A^{-1})$ denotes the Radon measure on $\text{Sp}(x)$, which is the image of the measure $f \circ \mathcal{G}_A^{-1} \in \mathcal{M}_+(X(A))$ established by the continuous function $\mathcal{G}_A(x)$. It is obvious that the mapping

$$\mathcal{C}_C(\text{Sp}(x)) \rightarrow A, \quad \psi \mapsto \mathcal{G}_A^{-1}(\psi \circ \mathcal{G}_A(x))$$

is a unit preserving $*$ -homomorphism between $\mathcal{C}_C(\text{Sp}(x))$ and A which assigns x to $\text{id}_{\text{Sp}(x)}$, so the uniqueness of Θ_x results in $\Theta_x(\psi) = \mathcal{G}_A^{-1}(\psi \circ \mathcal{G}_A(x))$ for all $\psi \in \mathcal{C}_C(\text{Sp}(x))$. Thus we obtain $(f \circ \Theta_x)(\psi) = (f \circ \mathcal{G}_A^{-1})(\psi \circ \mathcal{G}_A(x))$ for every

$\psi \in \mathcal{C}_C(\text{Sp}(x))$ showing that $f \circ \Theta_x = \mathcal{G}_A(x)(f \circ \mathcal{G}_A^{-1})$. Comparing this equality with (6), we finally deduce that (5) holds for every $f \in P$ and $\varphi \in \mathcal{C}_C^\infty(\text{Sp}(x))$.

At last we mention that both the $*$ -homomorphisms Θ^P and Θ_x^P introduced in Theorem 3 and Theorem 4, respectively, depend essentially on P .

References

- [1] J. KRISTÓF, C^* -norms defined by positive linear forms, *Acta Sci. Math. (Szeged)*, **50** (1986), 427—432.
- [2] J. KRISTÓF, On the projection lattice of GW^* -algebras, *Studia Sci. Math. Hungar.*, (to appear).
- [3] N. BOURBAKI, *Éléments de Mathématique, Théories Spectrales*, Hermann (Paris, 1967).
- [4] S. BERBERIAN, *Baer $*$ -rings*, Springer-Verlag (Berlin—Heidelberg—New York, 1972).

DEPARTMENT OF APPLIED ANALYSIS
ÉÖTVÖS LORÁND UNIVERSITY
MÚZEUM KRT. 6—8
1088 BUDAPEST, HUNGARY