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Commutative G ¥ *-algebras

JANOS KRISTOF

GW *-algebras (i-e. generalized W *-algebras) were introduced in [2]. In this paper
the structure and the spectral properties of commutative GI¥ *-algebras will be ex-
amined in detail.

1. Preliminaries

Here we give a short summary of our former results concerning GW *-algebras.

The vector space of the linear forms on the #-algebra 4 will be denoted by A*
and the weak o(A4*, 4) topology relates to the canonical duality between A* and 4.

If A4 is a unital *-algebra (whose unit is denoted by 1 throughout this paper) and
Pis a set of positive linear forms on 4 then the set {f€ P|f(1)=1} will be denoted by
the symbol P(1). Further, assuming that P(1) is non-void and bounded in the o (4*, A)
topology, |l - ||, denotes the mapping from 4 into R defined by

I¥lp = sup VF(x*%)

¢ SEPQ)
forall x€A. If is obvious that || - || p is 2 seminorm on A; the dual seminorm is denoted
byll - I3

If Sis a subset of 4* then the linear subspace of 4* spanned by S and the convex
hull of S is denoted by sp (S) and co (S), respectively, while the ¢(A4*, 4)-closed
linear subspace of 4* spanned by S and the o (4*, 4)-closed convex hull of S is de-
noted by §p(S) and &3 (S), respectively. If the elements of S are || - || ,-continuous
forms (where P is a set of positive linear forms on A such that P(1) is non void and
o(4*, A)-bounded) then the || - | -closed linear subspace of 4* spanned by S and the
|| -l p=closed convex hull of S is denoted by sp (S) and 6 (S), respectively, provided
there is no danger of confusion as for P.
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If fis a linear form on the % -algebra A then for every x€ 4 we define the linear

forms x-fand f- x on 4 as the mappings y—/(xy) and y—f(yx), respectively. If
f€A* and x, y€A then x-f-y stands for (x-f)-y.

Definition. The pair (4, P) is called a weak GW *-algebra if A is a unital
*-algebra and P is a separating set of positive linear forms on A satisfying:
(I) P(1) is non-void and o(A*, 4)-bounded;
(I1,) R,PcP and x*.P.xc¢c3(P) for all xc4;
(II) x- Pcsp(P) for all x€4;
(IV) A is sequentially complete with respect to the uniform structure defined by
the o(4, sp (P)) topology.

The pair (4, P) is called a GW *-algebra if it is a weak GW *-algebra and instead of

(I1,) satisfies the more restrictive condition :

(II) R, PcP and x*.P.xcco(P) for all x€A.

Finally, the pair (4, P) is referred to as a complete GW *-algebra if it satisfies:

(1Vy) 4 is quasi complete with respect to the uniform structure defined by the
(4, sp (P)) topology.

The most important elementary facts concerning weak GW *-algebras are the
following. If (4, P) is a weak GW *-algebra then:
— A is a C*-algebra whose C*-norm coincides with | - || p, that is why we refer to
I - Il p as the C*-norm of A (cf. [1] and [2]);
— the 6(4, sp (P)) and (4, 5p (P)) topologies coincide in every C *-norm bounded
subset of A (cf. [1] Lemma 1);
— the multiplication of 4 is C*-norm boundedly left and right continuous in the
(4, sp (P)) topology (cf. [1] Lemma 2);
— the involution of A is proper and continuous in the ¢ (4, sp (P)) topology;
— the set of projections (i.e. self-adjoint idempotent elements) of 4, equipped with
the natural ordering: g=h<g=hg and the orthocomplementation: el:=1—e¢,
is a o-complete orthomodular lattice admitting a separating set of g-additive states
(cf. [2] Theorem 1); '
— the partial isometries are countably summablein A and, consequently, the equiv-
alence of projections is countably additive in A4 (cf. [2] Proposition 2).

Here we deduce an important auxiliary result for general (not necessarily com-
mutative) weak GW *-algebras.

Proposition 1. Let (4, P) be a weak GW *-algebra. Then the order in A defined
as x=y Iff f(y—x)ER(f€P) coincides with the algebraic order of the C*-algebra A.

Proof. Since the elements of P are positive linear forms on A, we have obviously
x=0 with respect to the order defined by P, if x=0 in the C*-algebra 4.
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Conversely, suppose that x=0 with respect to the order defined by P. Since the
set of positive linear forms f on A satisfying f(x)¢R, is o(4*, A)-closed, we have
f(x)=0 for every fcCo(P). Since f(x)ER, (f€P), we have f(x*)=f(x)=f(x),
hence x=x* since P separates the points of 4. We know that 4 is a C*-algebra
thus we may write x=x*"—x~, where x* and x~ denotes the positive and negative
part of the self-adjoint element x, respectively. Then the positive square root Yx—
of x~ exists in 4 and it is well known that the set {}/F, x*,x~} is commutative;
moreover, x*x~=x"x*=0. Fixeda linear form fin P, we have (x~)-f-(Yx~ )¢
€E6 (P) thus

0= (V> )L (V> ) = FI/x~(x+ —x)Yx7) =
=Gt =) = =f() =0,

ie. f((x7)*x~)=0 (f€P). Since P separates the points of 4 and the involution of 4
is proper, it follows that x~=0 thus x=x* isa positive element in the C *-algebra 4.

>

II. A type of commutative GW*-algebras

If # is a o-algebra of subsets of the set T then F2(T, %) will denote the set of
bounded complex valued #— % (C) measurable functions defined on 7. The set
F(T, #8) will always be thought of equipped with the pointwise defined algebraic
structure and the sup-norm on T (denoted by ||| - |||1), thus FZ (T, %) will be regarded
as a commutative unital C *-algebra.

It is known that given a o-algebra of subsets of the set T and a finitely additive
mapping ©: #—C, the following statements are equivalent:

'— © is bounded, i.e. :ugl@(E)|<+°°;
€

— there is a unique continuous linear form @ on FE(T, B) (called the integral on
FLE(T, B) defined by O) such that O (x;)=0O(E) for all EcA.

Moreover, @ is g-additive if and only if the integral @ defined by @ satisfies the con-
dition:

(L) For every uniformly bounded sequence (¢,),n of functions in ZZ2(T, %), if
@,~0 pointwise on T then &(p,)-0.

Lemma. Let B be a o-algebra of subsets of the set T and P the set of integrals on
F(T, B) defined by positive o-additive set functions on B. Then P is a separating set of
positive linear forms on the unital % -algebra A:=FL(T, B), P satisfies (1) and sp (P)
is a || - |p-closed set.

Proof. Since {5,|t€T}c P, the set P separates the points of 4. On the other
hand, P(1)={a|u: #—-R, c-additive and pu(T)=fi(1)=1}, thus for every ¢cA4
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and fic P we have the inequality |f(@)|=u(T)||i@||]; showing that P(1) is ¢ (A*, A)-
bounded and non void.
Now we prove that || -[|,=|||-|ll;. Indeed, if @€A then

lolle == sup Va(e*¢) = sup Va(lel) = sup Vu(D)llolllr = lllellir,
e PQ) pEPQ) AePQ)

i.e. |-l=|l-{lly. Conversely, if €A and c<l|||¢|||; then there is a point ¢ in T
such that c<lp()=Vé(o*@)=lolp, ie |lI-lllr=1"lp.

Let O¢sp (P) and choose a sequence (@,),.y in sp (P) with the property
|©,— 6] z—~0. We have to show that @¢sp (P). With regard to our former consider-
ations, it sufficies to prove that for every uniformly bounded sequence - (@,),cn
in 4, if ¢,~0 pointwise on T then O (¢,)—~0. If n, mEN then

If e=>0 is arbitrary then there is a number N, in N such that |0 -0y [z=¢/2(M+ 1)
where  M:=sup|||g,lil;. Since Oy €sp(P) we have O (¢,)>0 (m—~+<)
meN °

. thus there is a number N in N with the property that @ ((p,,,)|<s/2 for meN,
m=N. Then the above inequality implies that |@(¢,)|=¢ for mEN, m=N, ie.

0(,,)—0.

Theorem 1. Let & be a o-algebra of subsets of the set T, A:=%2(T, #) and P
the set of integrals on A defined by positive a-additive set functions on . Then (4, P)
is a commutative GW *-algebra.

Proof. With regard to our Lemma we have only to prove that the pair (4, P)
satisfies (II), (II1) and (IV). If p€A4 and A€ P then ¢*-f-p={p|?n where |p|2u
is the positive o-additive set function on % defined as: E—f(|@|%xz), thus
¢* fi-@¢P and, consequently, ¢-fcP—P+iP—iPcsp(P), ie. (4, P) verifies
1) and (I11).

In order to prove (IV), let (¢,),cn be a sequence in A such that (ﬁ((p,,))"eN is
convergent for every A€P. Since 5,6 P (t€T), there is a unique function ¢: T—C
with the property that ¢,— ¢ pointwise on 7. From this we infer that ¢-is necessar-
ily #—%(C) measurable. We intend to show that ¢€A4 and ¢,—¢ in the
o(4, sp (P)) topology. In order to prove this we first define for all n€N the linear
form @,: sp (P)~C; ©—0(g,). On account of our Lemma, sp (P) will be consid-
ered a Banach space whose norm equals | -||;. Then @, is a continuous linear form
on the Banach space sp (P) for every n€N and, by our assumption, the sequence
(@n)en is pointwise convergent in sp (P). Consequently, the theorem of Banach—
Steinhaus implies that :161113 [@all <+ eo. If nEN and c<]||{@,l||; then there is a

point 7 in T such that c¢=<|g,(1)|=|@,0)= 5151, =I@ll, since [3;=1 holds
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obviously, thus |||,|||;=/@,|| showing that the sequence (¢,),y is uniformly bound-
ed in T. From this we obtain that the mapping ¢ is bounded, i.e. p€A4.

Finally, if € P then the theorem of Lebesgue applied to the measure u and the
uniformly bounded, pointwise convergent sequence (@,),cn result in 2(@,)—~A(9),
ie. @,~¢ in the o(4, sp (P)) topology.

This theorem provides a great deal of commutative G *-algebras that are not
*-isomorphic to any W *-algebra.

II1. On the Gelfand representation of commutative GW*-algebras

If Tis a compact Hausdorff space then € (T") and #(T) will denote the vector
space of complex continuous functions defined on T and the vector space of complex
Radon measures on T, respectively. Then €, (T') and .# , (') denote the convex cone
of positive elements in €(T) and A (T), respectively. The complex vector space
%c(T) will always be thought of equipped with the pointwise defined multiplication
and conjugation, i.e. ¥c(T) will be considered a commutative unital %-algebra. It is
well known that €(T) is a C*-algebra whose C*-norm equals the sup-norm ||| - |||
on T.

Given a commutative unital C*-algebra A, the celebrated representation theo-
rem of Gelfand and Naimark assures that 4 and %(X(4)) are isometrically *-iso-
morphic C*-algebras, where X(A) denotes the compact Hausdorff space whose
underlying set is the set of non zero multiplicative linear forms on 4 and whose topo-
logy is the well known Gelfand topology (cf. [3] ch. I, §6, Theorem 1). The Gelfand
isomorphism between 4 and %.(X(4)) is denoted usually by ¥,; we have
(%,(®))@=x(x) for all x€A and xeX(A).

In this section the structure of the compact Hausdorff space X(4) will be ex-
amined in the case when (4, P) is a commutative GW *-algebra.

Proposition 2. Let T be a compact Hausdorff space, P .#,(T) and sup-
pose that (6c(T), P) is a weak GW *-algebra. Then
(i) T=( LGJP Supp u)~ and 5161? u(@=0 for every non-void open subset G of T.
(ii) The ;'lnterior of a closed uG,, -set in T is closed.
(iii) If F is a closed Gs-set in T and there is a measure p in P such that u(F)=0
then the interior F of F is non-void, i.e. F is not nowhere dense in T.

Proof. (i) Let G be a non-void open subset of T. Then there is a function
@€¥%.(T) such that 0=¢=1, Supp oG and ¢@0. Since P is a separating set,
there exists a measure p in P with-the property u(p)>0. Then we have u(G)=
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=u(p)=>0. This proves the second part of (i) and the first part of our assertion is an
easy consequence of the second part.

(ii) Let F be a closed G,-set in T. Then there is a sequence of functions (¢,),
in €, (T) such that ¢,=¢,,, (NEN) and ¢,—~yr pointwise on T. If u€ P then
(;1((;;,,)),_GN is a decreasing sequence of positive real numbers thus the sequentially
completeness of €c(T) in the a(%(T), sp (P)) topology now gives the existence of
a function ¢ in ¥c(T) such that u(e,)—~u(p) for all ueP. Since u€P implies
u(@)=0 and pu(ep,)=p(p) (mMEN), by Proposition 1 we obtain that ¢,=¢=0
(n€N). From this we conclude that ¢=y,. If ¢’¢¥,(T) and ¢'=yp then ¢’'=
=¢, (n€N) thus u()=p(e,) and u(e)=lmp(p,)=u(p) for every ucP, ie.
applying again Proposition 1, we find that ¢’=¢. This means that

1) @ =sup{p’: ¢’€%.(T), ¢’ = 1z}

If neéN then inf(ng, )=y and inf(ne, )€€, (T) thus by (1) we obtain
inf (nep, 1)=¢. Then we have

Yio>0) = SUP (inf(np, 1)) = ¢ = x¢

showing that ¢=1 on the set [¢=>0] thus ¢=1 on the set Supp ¢=[@=0]" as
well. Since ¢=0 on T\Supp ¢ we deduce that g, ¢=¢E(€+°(T), i.e. Supp ¢
is an open-closed subset of T and Supp ¢ F thus Supp ¢ F. We claim that
F equals Supp ¢. On the contrary, suppose that Supp @=F. Then F \Supp ¢ is
a non-void open subset of T thus there is a mapping ¢’€%,(T) suchthat 0=¢'=1,
Supp q)'CI?'\Supp(p and ¢'#0. Then ¢+ ¢'€¥,(T) and ¢+ ¢ =y thus by (1)
we have @+ ¢’=¢ in contradiction to ¢’=0. This proves that Supp ¢= E ie.
the interior of the closed G,-set F is closed in T.

(iii) If Fis a closed Gs-set in T and p€ P is a measure such that p(F)>O then,
applying the notations introduced in the proof of (ii), we obtain

p(@) = lim p(@,) = p(xe) = n(F)

thus @0, ie. G=Supp p=F.

Corollary 1. Let T be a compact Hausdorff space and let Pc M, (T) be a set
such that (€c(T), P) is a weak GW *-algebra. Then the open-closed subsets of T form
a basis for the topology of T and the closure of every open F,-set isopenin T. Partic-
ularly, Supp ¢ is open-closed for all @B (T).

Proof. Let ¢ be an arbitrary point of T and G an open neighbourhood of ¢.
Then we can choose a function ¢@€%.(T) with the property that O=¢=1,
Supp ¢ G and tisin the interior of [¢p=1]. Since [p=1] is G;in T, by Proposition
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2 we deduce that the interior of [¢=1] is open-closed and contained in G. This means
that at every point of T there is a basis consisting of open-closed sets, or equivalently,
" the topology of T has a basis formed by open-closed sets.

The second part of our assertion is a simple reformulation of (ii) in Proposition 2.

Theorem 2. Let (A4, P) be a commutative weak GW *-algebra. Then A is a
C *-algebra whose underlying x-algebra is a Rickart «-algebra. Consequently, the set
of projectors in A is total in the topology defined by the C*-norm of A.

Proof. Compare Corollary 1 with Theorems 1, ch. I, § 6. in [3] and 1.8 in [4].

IV. Spectral theorem for commutative GW*-algebras

If T is a compact Hausdorff space then %,(T") denotes the o-algebra in T gen-
erated by the closed G; subsets of T'; %,(T) is usually referred to as the Baire g-algebra
of T. On the other hand, a mapping ¢: T—C is called a Baire function if ¢ ~2(E)¢
€48,(T) for every Borel set £ in C. It can be shown without difficulty that %,(T)
coincides with the least g-algebra in T with respect to which every continuous complex
valued function defined on T is measurable.

Let T be a compact Hausdorff space; for every countable ordinal number o we
define by w,-induction the function space %&(T) as follows:

— GUT)=%(T),
— if O<a<w, then @€%¥E(T) if and only if ¢ is a function T—C such that there
is a sequence (@,),(n in ﬂga %&(T) which is uniformly bounded and pointwise

converges to ¢ in T.
Then we define 4 (T):= L J (gc(T) It is easy to show that ¥g(T)=

=F2(T, B,(T)), i.e. 65 (T) cons15ts of the bounded complex valued Baire functions
defined on T and a subset E of T belongs to %,(7T) if and only if y;€%Z(T). In the
sequel the sequence of function spaces (4¢& (T))Ma,l will be referred to as the standard
graduation of 4g (T).

According to Theorem 1 and the fact that €3 (T)=%2(T, B,(T)), the pair
(%2 (T), P) is a commutative GW*-algebra, where P is the set of integrals on € (T)
defined by positive o-additive set functions on Zy(T).

Lemma 2. If T is a compact Hausdorff space, PC M (T) and ¢ is a univer-
sally integrable complex valued function defined on T then the relation f o du=0
T

(u€ P) implies that f @ du=0 for all pcsp (P), where sp(P) is the closure of

T
sp (P) in Mc(T) in the measure norm topology.



152 J. Kristof

Proof. Since the mapping #-(T)—+C, O— f ¢ dO is a measure-norm conti-
T

nuous linear form on . (T), the assertion is obviously true.

Lemma 3. Let T be a compact Hausdorff space and let Pc 4. (T) be a set
such that (€c(T), P) is a GW *-algebra. If ¢€%g(T), ¢*€%c(T) and [ o du=
T

=u(@®) for all p€P then we have |ll¢%llIr=l1ollly-

Proof. Let ¢ be a fixed point of T and &, denote the basis at ¢ of T consisting
of open-closed subsets of T (see Proposition 2, Corollary 1). With regard to (i) in
Proposition 2, to every E¢ %, there is a measure ug in P such that pg(E)=>0. Let
U be such a measure and put Ap:=yzpug/ug(E) for every Ec%,. Then Az€sp(P)
by (III), and it is easy to see that the continuity of ¢® in ¢ implies that éig lg(e®)=

=¢®(t). Now Lemma 2 yields that f @ dig=Az(¢® for all E€4,, since the meas-

T
ure-norm closure of sp (P) in #(T) equals 5p (P) (viz. ||| - |[|;=Il - |l p). From this
we infer that

b . by — 17 =
lo*(tl = lim 25(e)| = lim | [ ¢ 42| = llellir.
ie. [llotlllz=llellly-

Proposition 3. Let T be a compact Hausdorff space, P # . (T) and suppose
that (fgC(T ), P) is a GW *-algebra. Then to every bounded complex valued Baire
function ¢ defined on T there is a unique continuous function ¢® defined on T with the
property that ¢=¢" a.e. for all pcP.

Proof. Since P separates the points of 4c(T), the uniqueness of ¢® is obvious.
The existence of ¢ will be shown by the use of the standard graduation of €g(T).
Assume that @€%g(T) and by w,-induction we show that for every a<aw,;, if
@€FE(T) then there is a function ¢’€%(T) such that p=¢® a.e., for all ucP.

The assertion holds for «=0, evidently. Suppose that O<wa<w, and the
assertion is true for every B<a. Since @€%E(T), there is a uniformly bounded
sequence (@,),cn iN ,,U %E(T) such that ¢,—~¢ pointwise on T. With regard to our

<a

induction hypothesis, for every néN we can define a function ¢? in €-(T’) such that
¢,=¢> ae., for all ueP. Now Lemma 3 gives that |||Z]||={||@.l|l; (#€N) so the
sequence (@), in %c(T) is also uniformly bounded.
If pcP then the theorem of Lebesgue applied to x and the sequence (¢,),(n
implies f @, dp—~ f @ du. On the other hand, f @, du=p(¢2) (n€N) thus we obtain
T T T

@ limp(pd) = [odu (ueP).
T
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The sequentially completeness of €.(T) in the (4 (T), sp (P)) topology now results
in the existence of a function ¢*¢%.(T) such that

(3) lim p(gp) = p(e®) (REP).

Comparing (2) and (3) we deduce that pu(e®)= f ¢ du for every u€ P. According to
T .
Lemma 3, @(¢%= f(p doe for all @¢sp(P). If ucP and Ye%(T) then by (11I)
T
we have Yuesp(P) thus (eW)@)= [ @ d¥m=Ww(@)=@* W), ie. ou=0"s
T
for all ucP. This shows that ¢=¢° a.e., for every ucP.

We call the attention to the fact that Proposition 3 holds only for commutative
GW *-algebras and not for commutative weak GW *-algebras.

Theorem 3. Let (4, P) be a commutative GW *-algebra. Then there is a unique
x -homomorphism OF: €Z(X(A))—~A preserving the unit elements satisfying

“) 10%@) = [od(fo¥i")

X(4)

for all feP and @c%g(X(4)).
Remark. Note that fo%;*c.#,(X(A)) for every positive linear form f on A.

Proof. The uniqueness of OF follows from (4) and the fact that P separates the
points of 4. In order to prove the existence of ®F we first mention that the pair
(6c(X(A)), Po%;") is a commutative GW *-algebra. Then, by Proposition 3, we can
define the mapping

éc (X() ~ Cc(X(4)), o=

satisfying @=¢" a.e., for every p€Po%;' and @€¥Z(X(4)). It is routine to
check that this mapping is a %-homomorphism between 4Z(X(4)) and €(X(4))
preserving the unit elements. For every ¢€%g(X(4)) we define 07(p):=%7(¢").
Then @F is a unit preserving % -homomorphism between g (X(4)) and 4, evidently.
If fcP and ¢c%S(X(4)) then fo¥%'cPo%' thus ¢=¢° ae., for fo¥,?,
showing that the equality holds for ¢ and f.

Of course, Theorem 3 can be appreciated as the global (or better to say, collec-
tive) spectral theorem for commutative GW *-algebras. In order to formulate an indi-
vidual version of the spectral theorem, we note that the spectrum of an element x
in a unital algebra A4 is usually denoted by Sp, (x), or, if no confusion arises as for
the algebra, the letter A4 is omitted. It is well known that given a unital C *-algebra 4,
to every normal element x of A4 there is a unique unit preserving * -homomorphism
6,: €-(Sp (x))~A such that O, (idg,,)=x and O, is an isometry whose range
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equals the C*-subalgebra of A generated by the set {1, x, x*} (cf. [3] ch. I, § 6, Propo-
sition 5).

Theorem 4. Let (A4, P) be a commutative GW *-algebra and x€A. Then there
exists a unique unit preserving %-homomorphism OF: Z2(Sp (x), Z(Sp (x)))—~4
which is an extension of ©, and satisfies

) f@E@) = [ 0d(fo8,) (feP),

Sp(x)

for every bounded complex valued Borel function ¢ defined on Sp (x).
Remark. Note that fo@®.€.4, (Sp(x)) for every positive linear form on 4.

Proof. The set P separates the points of 4, thus the uniqueness of @F follows
from (5), evidently.

Since Sp (x) is a metrisable compact topological space, the o-algebra % (Sp (x))
of Borel sets in Sp (x) coincides with the s-algebra %,(Sp (x)) of Baire sets in Sp (x).
Consequently, we have ZZ(Sp (x), Z(Sp (x)))=%c(Sp (x)). Since the mapping
% ,(x) is a continuous function from X(A) onto Sp (x), the operator

Gu(x)*: 6c (Sp(x)) ~ 6c(X(4), @ @oF,4(x)

is an injective unit preserving % -homomorphism between the C *-algebras €& (Sp (x))
and 4g(X(4)). Then we put :

Oi’ = @POgA(x)#5

where ©F denotes the %-homomorphism between ¢Z(X(4)) and 4, introduced in
Theorem 3. Thus @F is a unit preserving * -homomorphism between €& (Sp (x))and 4.
It remained to prove the equality (5). Let there be given a linear form f€P and a
function @€%Z(Sp (x)). Then, by the definition of ©F, we have

©6) F(OE(9) = F(OF(G4(x)*(9)) = f(OF (9o%4(x)) =
= [0o%u®d(fo%:Y) = [ed(Gu(x)(fo%:),
X(4) X(A)

where 9,(x)(fo%;") denotes the Radon measure on Sp (x), which is the image of
the measure fo%;'€.#,(X(A)) established by the continuous function %,(x).
It is obvious that the mapping

G (SP(x) ~ 4, ¥ G (YoF,(x))

is a unit preserving %-homomorphism between %(Sp (x)) and 4 which assigns x
to idg,,y, so the uniqueness of @, results in O, (Y)=9; (Yo%, (x) for all
Y€Gs(Sp(x)). Thus we obtain (fo@)Y)=(fo% (Yo% ,(x)) for every
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Y€%:(Sp (x)) showing that fo®,=%,(x)(fo¥;"). Comparing this equality with
(6), we finally deduce that (5) holds for every f€P and @€%¢& (Sp (%)

At last we mention that both the x-homomorphisms ©@f and ©F introduced in
Theorem 3 and Theorem 4, respectively, depend essentially on P.
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