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The invariance principle for functionals of sums 
of martingale différences 

I. SZYSZKOWSKI 

1. Introduction. Let {(Xnl, Fnl), « s i , be a double array of square-
integrable random variables whose rows are martingale difference sequences (MDS), 
i.e. for each n S 1 the rv's Xni, 1 ̂  i=k„, given on some probability space (Q, si, P) 
with sub-cr-fields F„ 0 cF„ 1 c . . . cF J ! l , are such that Xni is Fni-measurable and 
E(Xni\F„j_1)=0 a.s. for every 1 Define 

k 

Snk = 2 *ni, = EmF^.J, 
i= l 

s^k=ES%k and Snk—slk=0 if k=0, n S l . Let us observe that without loss of gen-
erality we may and do assume that for every n s l , E X ^ O , 1 sl=s2

k =1, 
where as n->-

Let D[0, 1] be the space of functions defined on [0, 1] that are right-continuous 
and have left hand limits, endowed with the Skorohod Jx-topology (cf. [1, §14]). 
By W we will denote the Wiener measure on D[0,1] with the corresponding Wiener 
process {W(t): O ^ i ^ l } . 

Let FM be the space of functions defined on [0, 1]X(—«>, satisfying the 
following condition: there exists an absolute constant M such that if / £ F M , then f 
and its derivatives satisfy inequalities of the form 

(1) \Df(s,x)\^M(l + \x\"), 
where D denotes either the identity operator or a first derivative and a is some positive 
constant. 

Define a random function W„(t), by 

(2) m(o = Sn,mM, «Si, 

where mn(t)=max {i^kn: s^t}, /€[0,1]. 
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We shall give sufficient conditions for the weak convergence of the process 
m„(t)-l 

{Zn(t)= 2 Sni)X„J+1, OS/S i} , in Skorohod's space D[0, 1], to 
i=0 t 

the process | j" f(s, W(s))dW{s)\ O S f S l } in D[0, 1], which we denote by 

{Z(0, 0 ^ 1 } . 
The results obtained are generalizations or extensions of those given in [1, 

Theorem 16.1], [3, p. 179], [2], [4] and [5]. 
2. Limit theorems. Suppose there exists a double array {Cni, 1 n S l } 

of nonnegative numbers such that 

(3) a% == Cni, a.s. l s / s t , , n s 1. 

and set 

K* = 2 Cni, 0, 1], n s 1 (C„o = 0). 
i=0 

The main result of this paper is given in the following 

Theorem 1. Let {(Xnk, Fnk), l^ksk„}, n S 1, be a double array of random 
variables whose rows are martingale difference sequences such that s^= 1, nsl. 
Assume 

(4) the finite dimensional distributions of {lVn,. n s 1} converge weakly, as 
n-oo, to those of {W(t), 

(5) there exists an array of nonnegative numbers satisfying (3) such that for every 
*i,fi€[0, 1], U - t ^ m i n ) , a s l , 

W*(t2)-W*{h) =s [FCtJ-FOJY, 

where m (n)—min {EX^: 1 S i ̂  kn}, F is a nondecreasing continuous function on [0, 1] 
and r > 1/2 is some positive constant. 

Then Z„—Z as n—/« Z)[0, 1], provided that f f„^FM, n s 1, and for every 
s€[0, 1] 

(6) *) - *)> iw " 

uniformly in x on every finite interval. Here, the stochastic integral in the definition of 
Z(t) is taken in the L2-sense. 

From Theorem 1 we get the following 

Theorem 2. Assume {(Xt, FJ, i s l ) is a square-integrable martingale dif-
ference sequence such that EXf = 1, /Si, and 

(7) supE(Xf\F,.J o x 
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/ — for some positive constant M. If (4) holds with W„(t)= 2 XJyn then, in D[0, 1], 
i=0 

(8) (I ¡fa) /„('/". Jf(s,W(s))dW(s), as 
1 = 0 0 

provided (6) holds as well. 

To prove Theorem 2 we note that, in this case, (5) is satisfied with Xnk= (Xx +... 
...+Xk)/Yn, C„k=M/n, lsk^k„=n, F(t)=2t, r=\, m„(t)=[nt]. ThusTheorem2 
follows from Theorem 1. It is easy to see that Theorem 16.1 in [1] is a consequence of 
Theorem 2 (it is enough to put / „ = / = 1 , n s l ) . 

We note that a necessary and sufficient condition for (4) to hold is given in Theo-
rem 7.7 fl, p. 49]. Furthermore, if W„={W„(f): 1} converges weakly, in 
D[0, 1], to a standard Wiener process fV-{W(t), O s i ^ l } , then (4) also holds. 
On the other hand, the assertion of Theorem 1 implies the weak convergence of 
W„, as /2—°°, to W. Thus the assumption (4) is necessary for (6) to hold. For exam-
ple, it is well known that if {(*„,-, Fni), 1 n ^ l , is a double array of 
square-integrable random variables whose rows are martingale difference sequences 

K 
satisfying the Lindeberg condition and 2 a2m then (4) holds. Moreover, one 

i=l 
can easily observe that every sequence {X„, n £ l } of independent random variables, 
with EXn=0, EXl= 1, n^ 1, satisfying the central limit theorem also satisfies 
the assumptions of Theorem 2. It should also be mentioned here that the assumptions 
(1) and (6) concerning the functions^, n ^ 1, and /a re very general. Some examples 
of such functions can be found in [3, Section 5]. 

To give a better illustration of the meaning of Theorem 1, let us note that from a 
very special case of it we immediately obtain the following assertions. If {(X{, 
/ S i } is a sequence of random variables with EXt=i, /= 1, and satisfy (4) and 
(7), then in D[0, 1], 

{n-1 2 XiXj. 0 ^ t 1} ^ { / W(s)dW(s), 0 ^ t s 1} 
isi<;s[ni] V 

and 
[ill] a r r ^ 

{"-3/2 2 0 ' - 0 ^ ' = I}-5* { / sdW{s), 0 ^ t s 1} 
/=1 0 

as «—oo. The first assertion follows from Theorem 2 with f„(t, x)=f(t, x)=x, and 
the second one with f„(t, x)=f(t, x)=t. The distributions of the integrals 

t i 
/ W(s)dW(s) and / .v dW{s) 
0 0 
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are well known. For example, 
t 

/ dW{s) = (W2(t)-1)/2 
o 

Remark. We note that condition (5) implies 

(9) S K, n s 1, for some constant K. 

Moreover, by (5), 

max Ctti ^ sup QF(tJ-F(tJY: ti-t1 = m(ri)}, n s 1, 

and, by (3), EXh ^ Cni, and lim m(n) = 0, so that n~*~00 

(10) max EX%i — 0, as n — 
1=S>S*„ 

because the function F is uniformly continuous. 

3. Auxiliary lemmas. Let for every function /€F M 

fc(s, x) = /(*, *)/([- C , q ) ( x ) , jg [0, 1], 

where C is a positive constant and I(A)( •) denotes the indicator function of the set A, 
and set 

11(^,7)112 = (x2+y2)1/2, (x,y)dR2. 
Lemma 1. Let [f„, n s l } be a sequence of functions such that f„£FM, n= 1, 

andlet 0=/70</j1< ... </>,= /, (=i0<i1<...</1=j, be partitions of the 
intervals [0, /] and [t, $], respectively. Assume that for each n the MDS {(Xn{, Fnl), 
1 satisfies the assumptions of Theorem 1. Then, for every e=-0 and each 
C > 0, 

(11) lim lim ii(e, y, n, C) = 0, 
where 

y = max (pi-pi-1)+ max: (tt-t,-0 
lSlSr l^lSb 

and 
m„( 0 r-1 

?! «, C) = P ( | | ( 2 fnC(sZ,Sni)Xn,i+1- 2 fnC(Pj,Wn(pj))(Wn(pj+1)-Wn(pj)), 
¡=o j=o 

m„(s) 6—1 

'=«„(0+1 >=o 

= i ( P ( B , y, 0, 0 , V , i ) ) | | . > e) = P( | | (*i , X2)\\2 > a). 

Proof . To prove Lemma 1 it is enough to show that 

(12) lim lim EX2(n, y, t, s) = 0, 
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because, in the same way, we can prove that (12) holds with X(n, y, 0, t) and then 
Pi(e, y, n, C)*sr\EX*+EX*). 

Let, for every / (mn(tj)^i^mn(tJ+1)), Sni)-fn
c(tj, Wn(tj)). 

Then we have„ 
, »-1 mn('j + l> 

P&, y, n, C) = P( 2 2 WtJXnii+1\ > e). 
j=0 i=mn(tj)+l 

On the other hand, for every i < f (m„(iJ)Si<w„(iJ+1), m n( t r)^i '<m„(t j ,+ 1)) 

EWljX^W.yX^.+x = EWijX„ii+1 Wi'j- E (X„t f+i\ Fni-) = 0. 
Thus 

6-1 ">n(fJ + 1) 6-1 m„(fJ + 1) 
EXl = 2 2 m2-ijXZi= 2 2 W i . j W i K f - i ) s 

j=0 ¡=m„(tj)+l j~0 i=m„(tj)+l 

^ s u p 2 Cm.) W*{\)suVEWl 
i,j •=">„(<) I, J 

Hence, by (9), 

(13) EXl = KsapEWij. 
I, J 

Let us observe that, by (1), for every f£FM and (s, x), (¿i, ;q)€[0, 1]XP, 

(14) | fc(s, x) - / c ( * , Xl)\ s Kc(\s - +1* -

where Kc is an absolute positive constant which depends only on C. Thus, for every 
mn(tj)^ismn(tj+1), 

EWJ S 2Kc {\4i ~ Ol2 + E(Sni - 5Bmn(0))2} 
S 2KI {(i,+1 - tj + max E X f f + (0+1 -1} + m w EX2)}. 

Taking into account (10) and (15) we obtain (12). 

Lemma 2. Let f,fn,n^\, be functions satisfying the assumptions of Theorem I. 
If the assumptions of Lemma 1 are also satisfied, then for every C > 0 

(16) lim lim P2(e, y,n,Q = 0, 

where 

P2(e, y, n, C) = P(\\(r2{fn(Pj, W n ( p j j ) - f c ( p j , Wn(pj))}(jvn(pj+1)-Wn(pj)), 
o 

"2{fnC(tj, Wn(tj))-fc(tj, Wn(tj))}(Wn(tj+J-Wn(tj))) ||, => e) = 

= P(ll(*i, > £), 

11 
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Proof . Again, it is enough to show that 

. . . lim lim E{X£f = 0. 

Let, for every 0 m j m b , V„J(x)=fn
c(tJ, x ) - f c ( t j , x). We have 

E(X{f = ZE{(FnjWn(0)r """I"' CWnnJ'j))}-
j=0 ¿ = mn(tj)+l 

Let i?„=o jnax t sup Vn
2j(x). Then, by (6), /?„—0 as n— 

Thus 
6-1 m„('j+i) 

EX? 2 EX»> = Rn{EWn\s)~EW*(t)) S Rn - 0, as it — . 
j=o i=mn(rJ)+l 

Lemma 3. Let the assumptions of Lemma 1 and Theorem 1 be satisfied. Then 
for any given C > 0, 

{Zfc{Pj,K(Pj))mPj+i)-wn(Pj)), b 2 f c { t j , 
i=o y=o 

(17) ' 

. - - ( r 2 f c ( P j , W(PJ))WPJ+1)-W(Pj)), b2 fc{tj,w(tj)){w(tj^)-w(tj))) 
j=0 j=0 

as n 

.where {W(t): 0 = 7 ^ 1} is a standard Wiener process in D[0,1]. 

The assertion of Lemma 3 follows from (4) and Theorem 5.1 [1]. 

Lemma 4. If fCFM,,, then for every E>0 and any given C > 0 

^(||( > - - //C(*> W(xj)dW(x), 
J—0 o 

(18) 

' |VC(0. mtj)){W(tj+x)- *F(0)) - / / c ( x , TO) > e) - o 

as 

where 0=p0<p1< ...<pr=t, ...<tb=s, are partitions of the 
intervals [0, t] and [t,s], respectively. , • •, 

The proof of Lemma 4 is essentialy the same that is given in [4], 

4. Proof of Theorem 1; Let us observe that 

(19) P( max |Sni| > C) ^ C~2. 
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Furthermore 

(20) i>( sup \W(t)\ > C) - 0 as C -«,. 
osrsi 

Thus, taking into account (11) and (16)—(20) we get 

(21) (Z„(0, Zn(s)- Z„(t)) (Z(t), Z(s)- Z(t)) as n , 

for every 0 s 1. Clearly, using this method we may prove that the finite dimen-
sional distributions of { Z „ , h S 1 } converge weakly, as n — ° o , to those of {Z(t): 
O^tSl}. 

To complete the proof, we have to verify the tightness condition. We use Theorem 
15.6 in [1]. From this theorem and (19) we infer that it suffices to show 

( 2 2 ) E(Zc
n(t)-Zc

n(h)f ( Z „ C ( R 2 ) - Z „ C ( 0 ) 2 S [ F I ^ - I ^ R , 

for any tx-&t^t2, « S i , C>0 , where 

m„( o- i 
Z f ( 0 = • 2 fn(4i, Sni)X„,!+1, /€[0, 1]. i=0 

We first note that, by (3) and (1), 

£ ( Z „ C ( I ) - Z S ( H ) ) \ Z Z { T J - Z Z { T ) F S 

where is some positive constant which depends only on C. Hence, by assump- > 
tion (5) condition (22) holds, because in the case t2— ̂ cmin), Z%(t)=Z%(t1) or 
Zc

n(t)=Zc
n(t2). 
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