The invariance principle for functionals of sums of martingale differences

I. SZYSZKOWSKI

1. Introduction. Let $\left\{\left(X_{n i}, F_{n i}\right), 1 \leqq i \leqq k_{n}\right\}, n \geqq 1$, be a double array of squareintegrable random variables whose rows are martingale difference sequences (MDS), i.e. for each $n \geqq 1$ the rv's $X_{n i}, 1 \leqq i \leqq k_{n}$, given on some probability space (Ω, \mathscr{A}, P) with sub- σ-fields $F_{n 0} \subset F_{n 1} \subset \ldots \subset F_{n k_{n}}$, are such that $X_{n i}$ is $F_{n i}$-measurable and $E\left(X_{n i} \mid F_{n, i-1}\right)=0$ a.s. for every $1 \leqq i \leqq k_{n}$. Define

$$
S_{n k}=\sum_{i=1}^{k} X_{n i}, \quad \sigma_{n i}^{2}=E\left(X_{n i}^{2} \mid F_{n, i-1}\right)
$$

$s_{n k}^{2}=E S_{n k}^{2}$ and $S_{n k}=s_{n k}^{2}=0$ if $k=0, n \geqq 1$. Let us observe that without loss of generality we may and do assume that for every $n \geqq 1, E X_{n i}^{2} \neq 0,1 \leqq i \leqq k_{n}, s_{n}^{2}=s_{n k_{n}}^{2}=1$, where $k_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Let $D[0,1]$ be the space of functions defined on $[0,1]$ that are right-continuous and have left hand limits, endowed with the Skorohod J_{1}-topology (cf. [1, §14]). By W we will denote the Wiener measure on $D[0,1]$ with the corresponding Wiener process $\{W(t): 0 \leqq t \leqq 1\}$.

Let F_{M} be the space of functions defined on $[0,1] \times(-\infty, \infty)$ satisfying the following condition : there exists an absolute constant M such that if $f \in F_{M}$, then f and its derivatives satisfy inequalities of the form

$$
\begin{equation*}
|D f(s, x)| \leqq M\left(1+|x|^{\alpha}\right) \tag{1}
\end{equation*}
$$

where D denotes either the identity operator or a first derivative and α is some positive constant.

Define a random function $W_{n}(t), 0 \leqq t \leqq 1$, by

$$
\begin{equation*}
W_{n}(t)=S_{n, m_{n}(t)}, \quad n \geqq 1 \tag{2}
\end{equation*}
$$

where $m_{n}(t)=\max \left\{i \leqq k_{n}: s_{n i}^{2} \leqq t\right\}, t \in[0,1]$.

Received November 27, 1984; and in revised form February 21, 1985.

We shall give sufficient conditions for the weak convergence of the process $\left\{Z_{n}(t)=\sum_{i=0}^{m_{n}(t)-1} f_{n}\left(s_{n i}^{2}, S_{n i}\right) X_{n, i+1}, 0 \leqq t \leqq 1\right\}$, in Skorohod's space $D[0,1]$, to the process $\left\{\int_{0}^{1} f(s, W(s)) d W(s): 0 \leqq t \leqq 1\right\}$ in $D[0,1]$, which we denote by $\{Z(t), 0 \leqq t \leqq 1\}$.

The results obtained are generalizations or extensions of those given in [1, Theorem 16.1], [3, p. 179], [2], [4] and [5].
2. Limit theorems. Suppose there exists a double array $\left\{C_{n i}, l \leqq i \leqq k_{n}, n \geqq 1\right\}$ of nonnegative numbers such that

$$
\begin{equation*}
\sigma_{n i}^{2} \leqq C_{n i}, \quad \text { a.s. } \quad 1 \leqq i \leqq k_{n}, \quad n \geqq 1 \tag{3}
\end{equation*}
$$

and set

$$
W_{n}^{*}=\sum_{i=0}^{m_{n}^{(t)}} C_{n i}, \quad t \in[0,1], \quad n \geqq 1 \quad\left(C_{n 0}=0\right)
$$

The main result of this paper is given in the following
Theorem 1. Let $\left\{\left(X_{n k}, F_{n k}\right)\right.$, $\left.1 \leqq k \leqq k_{n}\right\}$, $n \geqq 1$, be a double array of random variables whose rows are martingale difference sequences such that $s_{n}^{2}=1, n \geqq 1$. Assume
(4) the finite dimensional distributions of $\left\{W_{n}, n \geqq 1\right\}$ converge weakly, as $n \rightarrow \infty$, to those of $\{W(t), 0 \leqq t \leqq 1\}$,
(5) there exists an array of nonnegative numbers satisfying (3) such that for every $t_{1}, t_{2} \in[0,1], \quad t_{2}-t_{1} \geqq m(n), \quad n \geqq 1$,

$$
W_{n}^{*}\left(t_{2}\right)-W_{n}^{*}\left(t_{1}\right) \leqq\left[F\left(t_{2}\right)-F\left(t_{1}\right)\right]^{r},
$$

where $m(n)=\min \left\{E X_{n i}^{2}: 1 \leqq i \leqq k_{n}\right\}, F$ is a nondecreasing continuous function on $[0,1]$ and $r>1 / 2$ is some positive constant.

Then $Z_{n} \rightarrow Z$ as $n \rightarrow \infty$, in $D[0,1]$, provided that $f, f_{n} \in F_{M}, n \geqq 1$, and for every $s \in[0,1]$

$$
\begin{equation*}
D f_{n}(s, x) \rightarrow D f(s, x), \quad \text { as } \quad n \rightarrow \infty \tag{6}
\end{equation*}
$$

uniformly in x on every finite interval. Here, the stochastic integral in the definition of $Z(t)$ is taken in the L^{2}-sense.

From Theorem 1 we get the following
Theorem 2. Assume $\left\{\left(X_{i}, F_{i}\right), i \geqq 1\right\}$ is a square-integrable martingale difference sequence such that $E X_{i}^{2}=1, i \geqq 1$, and

$$
\begin{equation*}
\sup _{i} E\left(X_{i}^{2} \mid F_{i-1}\right) \leqq M, \quad \text { a.s. } \tag{7}
\end{equation*}
$$

for some positive constant M. If (4) holds with $W_{n}(t)=\sum_{i=0}^{[n]} X_{i} / \sqrt{n}$ then, in $D[0,1]$,

$$
\begin{equation*}
(1 / \sqrt{n}) \sum_{i=0}^{[n+1]-1} f_{n}\left(i / n, S_{i} / \sqrt{n}\right) X_{i+1} \xrightarrow{\mathscr{Q}} \int_{0}^{t} f(s, W(s)) d W(s), \quad \text { as } \quad n \rightarrow \infty, \tag{8}
\end{equation*}
$$

provided (6) holds as well.
To prove Theorem 2 we note that, in this case, (5) is satisfied with $X_{n k}=\left(X_{1}+\ldots\right.$ $\left.\ldots+X_{k}\right) / \sqrt{n}, C_{n k}=M / n, 1 \leqq k \leqq k_{n}=n, F(t)=2 t, r=1, m_{n}(t)=[n t]$. Thus Theorem 2 follows from Theorem 1. It is easy to see that Theorem 16.1 in [1] is a consequence of Theorem 2 (it is enough to put $f_{n}=f \equiv 1, n \geqq 1$).

We note that a necessary and sufficient condition for (4) to hold is given in Theorem 7.7 [1, p. 49]. Furthermore, if $W_{n}=\left\{W_{n}(t): 0 \leqq t \leqq 1\right\}$ converges weakly, in $D[0,1]$, to a standard Wiener process $W=\{W(t), 0 \leqq t \leqq 1\}$, then (4) also holds. On the other hand, the assertion of Theorem 1 implies the weak convergence of W_{n}, as $n \rightarrow \infty$, to W. Thus the assumption (4) is necessary for (6) to hold. For example, it is well known that if $\left\{\left(X_{n i}, F_{n i}\right), 1 \leqq i \leqq k_{n}\right\}, n \geqq 1$, is a double array of square-integrable random variables whose rows are martingale difference sequences satisfying the Lindeberg condition and $\sum_{i=1}^{k_{n}} \sigma_{n i}^{2} \xrightarrow{P} 1$, then (4) holds. Moreover, one can easily observe that every sequence $\left\{X_{n}, n \geqq 1\right\}$ of independent random variables, with $E X_{n}=0, E X_{n}^{2}=1, n \geqq 1$, satisfying the central limit theorem also satisfies the assumptions of Theorem 2. It should also be mentioned here that the assumptions (1) and (6) concerning the functions $f_{n}, n \geqq 1$, and f are very general. Some examples of such functions can be found in [3, Section 5].

To give a better illustration of the meaning of Theorem 1, let us note that from a very special case of it we immediately obtain the following assertions. If $\left\{\left(X_{i}, F_{i}\right)\right.$, $i \geqq 1\}$ is a sequence of random variables with $E X_{i}=1, i \geqq 1$, and satisfy (4) and (7), then in $D[0,1]$,

$$
\left\{n^{-1} \sum_{1 \leqq i<j \leqq[n t]} X_{i} X_{j}, 0 \leqq t \leqq 1\right\} \mathscr{Q}\left\{\int_{0}^{t} W(s) d W(s), 0 \leqq t \leqq 1\right\}
$$

and

$$
\left\{n^{-3 / 2} \sum_{i=1}^{[n]]}(i-1) X_{i}, 0 \leqq t \leqq 1\right\} \xrightarrow{\mathscr{D}}\left\{\int_{0}^{t} s d W(s), 0 \leqq t \leqq 1\right\}
$$

as $n \rightarrow \infty$. The first assertion follows from Theorem 2 with $f_{n}(t, x)=f(t, x)=x$, and the second one with $f_{n}(t, x)=f(t, x)=t$. The distributions of the integrals

$$
\int_{0}^{t} W(s) d W(s) \text { and } \int_{0}^{t} s d W(s)
$$

are well known. For example,

$$
\int_{0}^{t} W(s) d W(s)=\left(W^{2}(t)-t\right) / 2
$$

Remark. We note that condition (5) implies

$$
\begin{equation*}
W_{n}^{*}(1) \leqq K, n \geqq 1, \quad \text { for some constant } K . \tag{9}
\end{equation*}
$$

Moreover, by (5),

$$
\max _{1 \leqq i \leq k_{n}} C_{n i} \leqq \sup \left\{\left[F\left(t_{2}\right)-F\left(t_{1}\right)\right]^{r}: t_{2}-t_{1}=m(n)\right\}, n \geqq 1
$$

and, by (3), $E X_{n i}^{2} \leqq C_{n i}$, and $\lim _{n \rightarrow \infty} m(n)=0$, so that

$$
\begin{equation*}
\max _{1 \leqq i \leq k_{n}} E X_{n i}^{2} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty, \tag{10}
\end{equation*}
$$

because the function F is uniformly continuous.
3. Auxiliary lemmas. Let for every function $f \in F_{M}$

$$
f^{c}(s, x)=f(s, x) I([-C, C])(x), \quad s \in[0,1]
$$

where C is a positive constant and $I(A)(\cdot)$ denotes the indicator function of the set A, and set

$$
\|(x, y)\|_{2}=\left(x^{2}+y^{2}\right)^{1 / 2}, \quad(x, y) \in R^{2}
$$

Lemma 1. Let $\left\{f_{n}, n \geqq 1\right\}$ be a sequence of functions such that $f_{n} \in F_{M}, n \geqq 1$, and let $0=p_{0}<p_{1}<\ldots<p_{r}=t, t=t_{0}<t_{1}<\ldots<t_{b}=s, 0 \leqq t<s \leqq 1$, be partitions of the intervals $[0, t]$ and $[t, s]$, respectively. Assume that for each n the MDS $\left\{\left(X_{n i}, F_{n i}\right)\right.$, $\left.1 \leqq i \leqq k_{n}\right\}$ satisfies the assumptions of Theorem 1. Then, for every $\varepsilon>0$ and each $C>0$,

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0} \lim _{n \rightarrow \infty} P_{1}(\varepsilon, \gamma, n, C)=0, \tag{11}
\end{equation*}
$$

where

$$
\gamma=\max _{1 \leqq i \leqq r}\left(p_{i}-p_{i-1}\right)+\max _{1 \leqq i \leqq b}\left(t_{i}-t_{i-1}\right)
$$

and

$$
\begin{gathered}
P_{1}(\varepsilon, \gamma, n, C)=P\left(\|\left(\sum_{i=0}^{m_{n}(t)} f_{n}^{C}\left(s_{n i}^{2}, S_{n i}\right) X_{n, i+1}-\sum_{j=0}^{r-1} f_{n}^{C}\left(p_{j}, W_{n}\left(p_{j}\right)\right)\left(W_{n}\left(p_{j+1}\right)-W_{n}\left(p_{j}\right)\right),\right.\right. \\
\left.\left.\sum_{i=m_{n}(t)+1}^{m_{n}(s)} f_{n}^{C}\left(s_{n i}^{2}, S_{n i}\right) X_{n, i+1}-\sum_{j=0}^{b-1} f_{n}^{C}\left(t_{j}, W_{n}\left(t_{j}\right)\right)\left(W_{n}\left(t_{j+1}\right)-W_{n}\left(t_{j}\right)\right)\right) \|_{2}>\varepsilon\right)= \\
=P\left(\|\left(X(n, \gamma, 0, t), X(n, \gamma, t, s) \|_{2}>\varepsilon\right)=P\left(\left\|\left(X_{1}, X_{2}\right)\right\|_{2}>\varepsilon\right)\right.
\end{gathered}
$$

Proof. To prove Lemma 1 it is enough to show that

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0} \lim _{n \rightarrow \infty} E X^{2}(n, \gamma ; t, s)=0 \tag{12}
\end{equation*}
$$

because, in the same way, we can prove that (12) holds with $X(n, \gamma, 0, t)$ and then $P_{1}(\varepsilon, \gamma, n, C) \leqq \varepsilon^{-2}\left(E X_{1}^{2}+E X_{2}^{2}\right)$.

Let, for every $i\left(m_{n}\left(t_{j}\right)<i \leqq m_{n}\left(t_{j+1}\right)\right), W_{i j}=W_{i j}^{(n)}=f_{n}^{C}\left(s_{n i}^{2}, S_{n i}\right)-f_{n}^{C}\left(t_{j}, W_{n}\left(t_{j}\right)\right)$. Then we have,

$$
P_{1}(\varepsilon, \gamma, n, C)=P\left(\left|\sum_{j=0}^{b-1} m_{i=m_{n}\left(t_{j}\right)+1}^{m_{n}\left(f_{t+1}\right)} W_{i j} X_{n, i+1}\right|>\varepsilon\right) .
$$

On the other hand, for every $i<i^{\prime}\left(m_{n}\left(t_{j}\right) \leqq i<m_{n}\left(t_{j+1}\right), m_{n}\left(t_{j^{\prime}}\right) \leqq i^{\prime}<m_{n}\left(t_{j^{\prime}+1}\right)\right)$

Thus

$$
E W_{i j} X_{n, i+1} W_{i^{\prime} j^{\prime}} X_{n, i^{\prime}+1}=E W_{i j} X_{n, i+1} W_{i^{\prime} j^{\prime}} E\left(X_{n, i^{\prime}+1} \mid F_{n i}\right)=0 .
$$

$$
\begin{gathered}
E X_{2}^{2}=\sum_{j=0}^{b-1} \sum_{i=m_{n}(t)+1}^{m_{n}\left(t_{j}\right)} \text {) } E W_{i-1, j}^{2} X_{n i}^{2}=\sum_{j=0}^{b-1} \sum_{i=m_{n}(t, j)+1}^{m_{n}\left(t_{j+1}\right)} E W_{i-1, j}^{2} E\left(X_{n i}^{2} \mid F_{n, i-1}\right) \leqq \\
\leqq \sup _{i, j} E W_{i j}^{2}\left(\sum_{i=m_{n}(t)}^{m_{n}(s)} C_{n i}\right) \leqq W_{n}^{*}(1) \sup _{i, j} E W_{i j}^{2} .
\end{gathered}
$$

Hence, by (9),

$$
\begin{equation*}
E X_{2}^{2} \leqq K \sup _{i, j} E W_{i j}^{2} . \tag{13}
\end{equation*}
$$

Let us observe that, by (1), for every $f \in F_{M}$ and $(s, x),\left(s_{1}, x_{1}\right) \in[0,1] \times R$,

$$
\begin{equation*}
\left|f^{c}(s, x)-f^{c}\left(s_{1}, x_{1}\right)\right| \leqq K_{C}\left(\left|s-s_{1}\right|+\left|x-x_{1}\right|\right), \tag{14}
\end{equation*}
$$

where K_{C} is an absolute positive constant which depends only on C. Thus, for every $m_{n}\left(t_{j}\right)<i \leqq m_{n}\left(t_{j+1}\right), \quad 0 \leqq j \leqq b-1$,

$$
\begin{gather*}
E W_{i j}^{2} \leqq 2 K_{C}^{2}\left\{\left|s_{n i}^{2}-t_{j}\right|^{2}+E\left(S_{n i}-S_{n m_{n}\left(t_{j}\right)}\right)^{2}\right\} \leqq \\
\leqq 2 K_{C}^{2}\left\{\left(t_{j+1}-t_{j}+\max _{1 \equiv i \leq k_{n}} E X_{n i}^{2}\right)^{2}+\left(t_{j+1}-t_{j}+\max _{1 \equiv i \leq k_{n}} E X_{n i}^{2}\right)\right\} . \tag{15}
\end{gather*}
$$

Taking into account (10) and (15) we obtain (12).
Lemma 2. Let $f, f_{n}, n \geqq 1$, be functions satisfying the assumptions of Theorem 1 . If the assumptions of Lemma 1 are also satisfied, then for every $C>0$

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0} \lim _{n \rightarrow \infty} P_{2}(\varepsilon, \gamma, n, C)=0, \tag{16}
\end{equation*}
$$

where

$$
\begin{gathered}
P_{2}(\varepsilon, \gamma, n, C)=P\left(\|\left(\sum_{j=0}^{r-1}\left\{f_{n}^{c}\left(p_{j}, W_{n}\left(p_{j}\right)\right)-f^{c}\left(p_{j}, W_{n}\left(p_{j}\right)\right)\right\}\left(W_{n}\left(p_{j+1}\right)-W_{n}\left(p_{j}\right)\right),\right.\right. \\
\left.\left.\sum_{j=0}^{b-1}\left\{f_{n}^{C}\left(t_{j}, W_{n}\left(t_{j}\right)\right)-f^{c}\left(t_{j}, W_{n}\left(t_{j}\right)\right)\right\}\left(W_{n}\left(t_{j+1}\right)-W_{n}\left(t_{j}\right)\right)\right) \|_{2}>\varepsilon\right)= \\
=P\left(\left\|\left(X_{1}^{\prime}, X_{2}^{\prime}\right)\right\|_{2}>\varepsilon\right) ; \text { say. }
\end{gathered}
$$

Proof. Again, it is enough to show that

$$
\lim _{\gamma \rightarrow 0} \lim _{n \rightarrow \infty} E\left(X_{2}^{\prime}\right)^{2}=0
$$

Let, for every $0 \leqq j \leqq b, V_{n j}(x)=f_{n}^{C}\left(t_{j}, x\right)-f^{C}\left(t_{j}, x\right)$. We have

$$
E\left(X_{1}^{\prime}\right)^{2}=\sum_{j=0}^{b-1} E\left\{\left(V_{n j}\left(W_{n}\left(t_{j}\right)\right)\right)^{2} \sum_{i=m_{n}\left(t_{j}\right)+1}^{m_{n}\left(t_{j+1}\right)} E\left(X_{n i}^{2} \mid F_{n m_{n}}\left(t_{j}\right)\right)\right\}
$$

Let $\cdot R_{n}=\max _{0 \leqq j \leqq b-1} \sup _{x} V_{n j}^{2}(x)$. Then, by (6), $R_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Thus

$$
\left.E X_{1}^{\prime 2} \leqq R_{n} \sum_{j=0}^{b-1} \sum_{i=m_{n}\left(t_{j}\right)+1}^{m_{n}\left(t_{j}+1\right.}\right) E X_{n i}^{2}=R_{n}\left(E W_{n}^{2}(s)-E W_{n}^{2}(t)\right) \leqq R_{n} \rightarrow 0, \text { as } \quad n \rightarrow \infty
$$

Lemma 3. Let the assumptions of Lemma 1 and Theorem 1 be satisfied. Then for any given $C>0$,

$$
\left(\sum_{j=0}^{r-1} f^{c}\left(p_{j}, W_{n}\left(p_{j}\right)\right)\left(W_{n}\left(p_{j+1}\right)-W_{n}\left(p_{j}\right)\right), \sum_{j=0}^{b-1} f^{c}\left(t_{j}, W_{n}\left(t_{j}\right)\right)\left(W_{n}\left(t_{j+1}\right)-W_{n}\left(t_{j}\right)\right)\right) \xrightarrow{\mathscr{Q}}
$$

$$
\begin{gather*}
\xrightarrow{\mathscr{Q}}\left(\sum_{j=0}^{r-1} f^{c}\left(p_{j}, W\left(p_{j}\right)\right)\left(W\left(p_{j+1}\right)-W\left(p_{j}\right)\right), \sum_{j=0}^{b-1} f^{c}\left(t_{j}, W\left(t_{j}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right) \tag{17}\\
\text { as } n \rightarrow \infty,
\end{gather*}
$$

where $\{W(t): 0 \leqq t \leqq 1\}$ is a standard Wiener process in $D[0,1]$.
The assertion of Lemma 3 follows from (4) and Theorem 5.1 [1].
Lemma 4. If $f \in F_{M}$;, then for every. $\varepsilon>0$ and any given $C>0$

$$
\begin{equation*}
P\left(\|\left(\sum_{j=0}^{r-1} f^{c}\left(p_{j}, W\left(p_{j}\right)\right)\right)\left(W\left(p_{j+1}\right)-W\left(p_{j}\right)\right)-\int_{0}^{t} f^{c}(x, W(x)) d W(x)\right. \tag{18}
\end{equation*}
$$

$$
\left.\sum_{j=0}^{b-1} f^{C}\left(t_{j}, W\left(t_{j}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)-\int_{i}^{s} f^{c}(x, W(x)) d W(x) \|_{2}>\varepsilon\right) \rightarrow 0
$$

as

$$
\gamma=\max _{0 \leqq i \leqq r-1}\left(p_{i+1}-p_{i}\right)+\max _{0 \leqq j \leqq t-1}\left(t_{j+1}-t_{j}\right) \rightarrow 0
$$

where $0=p_{0}<p_{1}<\ldots<p_{r}=t, t=t_{0}<t_{1}<\ldots<t_{b}=s, 0 \leqq t<s \leqq 1$ are partitions of the intervals $[0, t]$ and $[t, s]$, respectively.

The proof of Lemma 4 is essentialy the same that is given in [4].
4. Proof of Theorem 1. Let us observe that

$$
\begin{equation*}
P\left(\max _{1 \leqq i \leqq k_{n}^{*}}\left|S_{n i}\right|>C\right) \leqq C^{-2} \tag{19}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
P\left(\sup _{0 \leq t \leq 1}|W(t)|>C\right) \rightarrow 0 \quad \text { as } \quad C \rightarrow \infty \tag{20}
\end{equation*}
$$

Thus, taking into account (11) and (16)-(20) we get

$$
\begin{equation*}
\left(Z_{n}(t), Z_{n}(s)-Z_{n}(t)\right) \xrightarrow{\mathscr{Q}}(Z(t), Z(s)-Z(t)) \quad \text { as } \quad n \rightarrow \infty, \tag{21}
\end{equation*}
$$

for every $0 \leqq t<s \leqq 1$. Clearly, using this method we may prove that the finite dimensional distributions of $\left\{Z_{n}, n \supseteqq 1\right\}$ converge weakly, as $n \rightarrow \infty$, to those of $\{Z(t)$: $0 \leqq t \leqq 1$.

To complete the proof, we have to verify the tightness condition. We use Theorem 15.6 in [1]. From this theorem and (19) we infer that it suffices to show

$$
\begin{equation*}
E\left(Z_{n}^{C}(t)-Z_{n}^{C}\left(t_{1}\right)\right)^{2}\left(Z_{n}^{C}\left(t_{2}\right)-Z_{n}^{C}(t)\right)^{2} \leqq\left[F\left(t_{2}\right)-F\left(t_{1}\right)\right]^{2 r} \tag{22}
\end{equation*}
$$

for any $t_{1} \leqq t \leqq t_{2}, \quad n \geqq 1, \quad C>0$, where

$$
Z_{n}^{c}(t)=\cdot \sum_{i=0}^{m_{n}(t)-1} f_{n}^{c}\left(s_{n i}^{2}, S_{n i}\right) X_{n, i+1}, \quad t \in[0,1] .
$$

We first note that, by (3) and (1),

$$
\begin{gathered}
E\left(Z_{n}^{C}(t)-Z_{n}^{c}\left(t_{1}\right)\right)^{2}\left(Z_{n}^{C}\left(t_{2}\right)-Z_{n}^{C}(t)\right)^{2} \leqq \\
\leqq K(C)\left(W_{n}^{*}(t)-W_{n}^{*}\left(t_{1}\right)\right)\left(W_{n}^{*}\left(t_{2}\right)-W_{n}^{*}(t)\right) \leqq 4^{-1} K(C)\left(W_{n}^{*}\left(t_{2}\right)-W_{n}^{*}\left(t_{1}\right)\right)^{2},
\end{gathered}
$$

where $K(C)$ is some positive constant which depends only on C. Hence, by assump- , tion (5) condition (22) holds, because in the case $t_{2}-t_{1}<m(n), Z_{n}^{C}(t)=Z_{n}^{C}\left(t_{1}\right)$ or $Z_{n}^{C}(t)=Z_{n}^{C}\left(t_{2}\right)$.

Acknowledgement. I would like to thank the referee for helpful comments.

References

[1] P. Billingsley, Convergence of Probability Measures, Wiley (New York, 1968).
[2] Z. Rychlik, I. Szyszkowski, Weak convergence of functionals of sums for martingale differences, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 31 (1983), 407-413.
[3] A. B. Skorohod, N. P. Slobodenyuk, Limit theorems for random walks, Nauka (Kiev, 1970). (Russian)
[4] K. Yoshinara, A weak convergence theorem for functionals of sums of martingale differences, Yokohama Math. J., 26 (1978), 101—107.
[5] K. Yoshitara, A weak convergence theorem for functionals of sums of independent random variables, Stochastic Process. Appl., 12 (1982), 293-299.

INSTITUTE OF MATHEMATICS

MARIA CURIE-SKLODOWSKA UNIVERSITY
UL. NOWOTKI 10
20-031 LUBLIN, POLAND

