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A characterization of weak convergence of weighted 
multivariate empirical processes 

J. H. J. EINMAHL, F. H. RUYMGAART and J. A. WELLNER 

1. Introduction 

The characterization of weak convergence of the one-dimensional weighted 
empirical process indexed by points is obtained by CHIBISOV [5] and O'REILLY [11]. 
Later, SHORACK [16] and SHORACK and WELLNER [17] wanted to give a new, "ele-
mentary" proof of this so called Chibisov—O'Reilly theorem but their proofs were 
not correct wihout additional monotonicity conditions on the weight functions. This 
was pointed out in CSÖRGŐ, CSÖRGŐ, HORVÁTH and MASON [6] (pp. 2 5 — 2 7 ) . SHORACK 
and WELLNER [17] also gave a characterization of weak convergence of the one-
dimensional weighted empirical process indexed by rectangles. Their proof, however, 
is again only correct with an additional monotonicity condition on the weight func-
tion. Recently a new approximation of the empirical process is established in CSÖRGŐ 
CSÖRGŐ, HORVÁTH and MASON [7] which among others yields a proof of the Chibi-
sov—O'Reilly theorem. 

The aforementioned theorems can be generalized in two directions: (I) the case 
of dependent and/or non-identically distributed random variables and (II) the multi-
variate case. Case I has been studied by ALEXANDER [1], ALY, BEIRLANT and HORVÁTH 
[3] and BEIRLANT and HORVÁTH [4]. In our paper, which is a revision of the technical 
report EINMAHL, RUYMGAART and WELLNER [9], we study case II, i.e. we derive nec-
essary and sufficient conditions on the weight functions for weak convergence of 
weighted multivariate empirical processes; these processes are indexed by quadrants 
(points) and rectangles respectively. Our main tools are exponential probability 
inequalities for the empirical process. The paper is a continuation of RUYMGAART 
and WELLNER [14], [15], where the basic tools are already presented but attention is 
focussed on strong convergence properties. 
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During the preparation of the earlier version of this work we became aware of 
recent developments in this area, especially the work of ALEXANDER [1], already quoted 
before, on weighted empirical processes based on non-i.i.d. random elements and 
indexed by Vapnik—Chervonenkis classes of sets. Although his results are of impres-
sive generality, also this author needs a rather unnatural monotonicity condition 
which we can avoid everywhere, i.e. though his theorems allow more general indexing 
classes, our theorems allow more general weight functions. Very recently, ALEXANDER 
[2] also obtained our (stronger) version of the multivariate characterization theorem 
for points. 

In order to be more explicit we need to present the basic notation. Let 
X ^ , ..., «CN, be a triangular array of i.i.d. random vectors that are uniformly 
distributed on [0, l]d, d£ N. Adopting the notation in OREY and PRUITT [12] we 
shall write (x l5 ..., xd)= (x,-)= (x(j))£ Rd if it is desirable to display the coordi-
nates of x If Xj=% for all j we simply write (£). For x, y£Rd we write x^y if 
Xj^yj for ally and x<y if x=y and x^y. It has some advantage to denote the 
half-open rectangles (xl5 j J X ...X(xd, yd] by R(x, y) rather than (x, y]. The classes 

(1.1) = {R«0>, y) : R((0), y) e [0, 1]"}, ® = {R(x, y) : R(x, y) c: [0, 1]"}, 

of all half-open quadrants respectively rectangles in the unit square will play an im-
portant role. We will write l i ^ ^ X . - . X ^ , \dt\ for Lebesgue measure on [0, l]d 

and |R| for the Lesbesgue measure of a rectangle R. Using this notation for the uni-
form underlying d.f. F we have 

Given any function A: Rd—R and an arbitrary rectangle R= R(x, y) we write 

extending the difference operator Ay
x, usually applied only to distribution functions. 

The weight functions will be always restricted to the class' 

(1.4) 2.* = {q : [0, 1] — [0, with q continuous and non-decreasing, 

(1.2) m = kl, f€[0, 1]". 

(1.3) 

q > 0 on (0, 1]}. 

The subclasses that will appear in our characterization are 
i 

(1.5) M0={q£2*: f a^exp^Xq*(o)/<j)d<j <<*> for all X > 0}, 
o 

(1.6) \ = {qiâ*: <jr(<7)/j/<7(log(l/<7))* as cr|0}, kdN. 

Occosionally it will be convenient to use 

(1.7) 2, = {q£â*: ( - ) _ 1 / 2 9( - ) non-increasing on (0, 1]}. 
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The (reduced multivariate) empirical process (indexed by points) is defined by 

(1.8) Un(t) = nV2(Fn(t)-\t\), /€[0,1]", 

where the empirical d.f. Fn is based on X^, ..., X(
n
n) and defined by nF„(t)— 

= XV£R((0), 0}, /€[0, l]d. It is well-known that Un^dU, as и - « , , 
where U denotes the standard tied-down ¿/-parameter Brownian motion. The so 
called Skorokhod construction ensures the existence of processes, equal in law to the 
Un and U above and all defined on the same probability space, for which this conver-
gence in distribution may be even replaced by almost sure convergence in the supre-
mum norm. Without loss of generality we can and will assume that the present U„ 
and U are obtained from the Skorokhod construction so that we have 

(1.9) sup \Un(t)-U(t)\ -v , .0 , as и - c o . ' 
te[o,i]d 

In view of (1.3) it will be clear that we even have 

(1.10) sup I f/„ {jR} — —a.s. 0> as л 
лея 

It is the purpose of this paper to give necessary and sufficient conditions on the 
weight functions q and q in order that 

(1.11) svLp\Un{R}-U{R}\/q(\R\)q(l-\R\)~pO, as 

where either <в=01й (Section 2) or ^ с З ? (Section 3). 
Since for R—R((0), we have (7„{Я«0>, t)}=U„{t) and |Д«0>, О Н И , 

the random variable in (1.11) could as well be represented by means of the time 
points i€[0, \]d instead of the quadrants. More generally, a similar remark holds true 
for R=R(s, t)£M provided we allow the time points to be of dimension 2d. Let us 
write s=(sj)—(l — sj) and note that 

F{R(s, 0} = PiX^ZRis, 0) = 

(1.12) = P(l-X($ == , ..., 1-Х®, ш sd> X($. щ Xtf = 

- - - _ r l ^ + s - H = f o r s ^ t , 5, f<E[0, l ] d , 

= F(s, 0 = ( 0 ; if s < t is not fulfilled; 

cf. KIEFER and WOLFOWITZ [10]. Let U„ denote the reduced empirical process based on 
the vectors ( 1 - X $ , ..., X f f , ..., X f f i j in [0, l]2d, for i=\, ...,n. Now it 
suffices for our purposes to consider 

CI i-j\ Un(s, 0 i n s t e a d 0f 0} 

This will be called the point representation for rectangles. 

13 
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To conclude this section we present, in the next paragraph, our basic inequality 
which can be found in RUYMGAART and WELLNER [14], [15]. The main results are pre-
sented in Section 2 and 3. They are derived under the assumption that the d.f. of the 
X[n) is uniform. We conjecture, however, that extension to the case that F has a den-
sity w.r.t. to Lebesgue measure that is bounded away from 0 and <=° is possible. Let 
\p : [0, <*>)—[0, oo) be the decreasing function defined by 

x. 
(1.14) i/f(A) = 2A-2 / log(l + ff)i/<x, A > 0; ^(0) = 1. 

o 

See SHORACK and WELLNER [17] for elementary properties of ¡¡/. 

Theorem 1.1 (basic inequality). Let with |R | s l / 2 . Then we have 

(1.15) PCsupltUS}, 22d+4exp A S 0, 

where 

2. Weight functions for quadrants (points) 

We first derive a useful inequality that should be compared with Inequality 1.1 
in SHORACK and WELLNER [17]; see also RUYMGAART and WELLNER [14] (Corollary 
2.3). For the proof a special countably infinite partition of (0, \]d will be used that 
becomes arbitrarily fine near the lower boundary of this set. This kind of partition is 
motivated by O'REILLY [11]; see also SHORACK and WELLNER [17]. This partition is 
the collection of rectangles 

(2.1) ^ = {R(((l/2)k(J)), ((l/2) l (-')-1)): <*(./)>€ N'}. 

For any R(a, we have the useful property 

(2-2) -¡gj- = ( 1 / 2 y ( 1 U + --+(*W-i) = № = = 

notice that 6 is independent of the particular rectangle in the partition. 
For any let us introduce the subclass 

(2.3) = |fc| S a, \a\ < j?}, 

consisting of all rectangles having a non-empty intersection with the set {¿€[0, l]d: 
a ^ \ t \ ^ p } . The inclusions 

(2.4) (a ë | S /?} c U III s PIB} 

are immediate. 
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Inequal i ty 2.1. Let us choose any O<aS)?S0/2= l/2 i+1 . For any 
and A=0 we have 
(2.5) P{ sup |C/„(0I/<?(I'I) S X) s 

Proof . It follows from the monotonicity of q and from Theorem 1.1 that 

(2.6) P{ sup |C / „ (0 IMI ' l ) £ A) Pi max sup | C / „ ( f ) I M M ) S A) ^ 

^ 2 P{ sup \u„(t)\ s Xq(\a\)) ^ 
R(a, »)€?„,, t£R(a, b) 

22d+4 V exp * f ]) 

In view of (2.2) and because (-)~ll2q(-) is non-increasing we may bound the 
first factor in the exponent in (2.6) below by 

(2.7) A2<72(|a|)/32|f>| s 0A2^2(|i|)/32|i|, for t£R(a,b). 

Using the monotonicity of q and ¡¡/ and q£Q, the second factor in the exponent in 
(2.6) may be bounded below by 

(2.8) il,{Xq(\a\)imnll2)^^{lqi.oi)IAainil% for R(a,b)ZP«t. 

When we use 
(2.9) 1 = 2"/\b\ J \dt\ ^ 2 " J 1 /\t\ \dt\, for R(a, b)£&>, 

R(a,b) R(a,b) 

at the transition from summation to integration we find, by combining (2.4), (2.6)— 
(2.8) that 
(2.10) P( sup^ \Un(t)\lq(\t\) S i ) -

To complete the proof we use the change of variables <r=jx= |i|, s2=t2,... 
i 

..., sd=td with Jacobian (JJ s)_1 to compute the integral on the right hand side 
>=2 

of (2.10). This yields as an upper bound for the right hand side of (2.10) 

which is easily seen to be equal to the expression on the right in (2.5). 
13» 
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Theorem 2.1. Let F (0= | ' l» '€[0,-1]'', rfeN, and Then we have 

(2.12) sup \Un(t)-U(t)\/q(\t\) - p 0 , as 
0 S | l | 3 1 

if and only if gd^-i-

Proof . The theorem is well-known for d= 1; see O'REILLY [11]. Hence we 
assume cfe2. The notation 

(2-13) 8(a) l/o)d-\ o > 0, 

will be used in both parts of the proof. 
(«=) Suppose that q H ^ y . Following SHORACK and WELLNER [17] (p. 649 ) 

we can and will assume without loss of generality that 

(2.14) g ( - ) ^ }/(logl/C-))"-1 and g\ on (0,1] (hence qiM). 

For any 0<5^( I /2 ) d + 1 we have 

(2-15) sup \Un(t)-U(t)\/q(\t\)^ 2Ynk, 0s|(|sl k = 1 
where, with a„=q\l/ri), p„=(d-1)! •(«(log n)*-1)'1 and y€(0, the r.v.'s 
Y„k are given by 

(2.16) Ynl = sup \Un(t)\/q(\t\), 
o=s|r | S0nh-

(2.17) Y„2 = sup \Un(t)\lq(\t\), 

(2.18) Yn3 = sup \U„(t)\/q(\t\), . 

(2.19) Yni = sup \U(t)\/q(\t\), 
0s|r|s3 

(2.20) Y„5 = sup \Un(t)-U(t)\/q(ô). 
0 S | ( | S 1 

It will be shown that for any e>0 and each k= 1, ..., 5 there exist y—y(e), ô—8(e) 
and n(e)ÇN such that 

(2.21) P ( Y „ k ^ e ) ^ e , for n s «(e). 

To show (2.21) for k= 1 let |A-|1:n=min {|JfW|, ..., Note that. 
P(\X\1:nspnly)^l-exp(-l/y), as , so that P(\X\1:n^PJy)se for y suf-
ficiently large. Under the condition sup F„(f)=0, which is fulfilled with 

. os|i|spjy 
probability S 1 — e according to the remark just made, it is easy to see that 

(2.22) Ynl =§ n1/2 sup \t\/q(\t\) == n^ÇPJyf" {g(PJy) (log n)«'.-»/*}-1 < e, 
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for n sufficiently large. Hence it follows that 

(2.23) P(Ynl ^ £) S P( sup F„(t)> 0) + 
os|(|a/)„/y 

+ i>( sup \Un{t)\lq(\t\) ^ e| sup Fn(t) = 0) S e, 
oali|sp„/y os|t| sfijy 

for n sufficiently large. 
For k=2 the left hand side of (2.21) is for any Vi€(0, bounded above by 

P ( sup \UM/\t\112 s eg(a„) (log l / a ^ " 1 » 2 ) s 
(2 24) 

S i ( sup \ U M M V 2 ^ y i Q o g n ) « - » ' % ejyts |t|s<z„ 

for n^n^n^ji). Hence, applying Inequality 2.1 with q(-)—(- )1/2, we see that 
there exist c l 5 ..., c4£(0, such that the last expression in (2.24) is in turn bounded 
above by 

cx (log rif exp ( - c2 vKlog « )d" V ( c a 7i y1'2 (log nf ~*)) s 

S c1 (log rif exp (— c4y1y"1/2 log log n) s s, 
provided and n are chosen sufficiently large. 

Inequality 2.1 may be directly applied to Yn3 with a=a„ and P—5. The integral 
in the resulting upper bound decreases to 0 as <5|0, since q££ d-1 implies that 

i 
(2.26) / (l/a2)exp(-Xq2(a)/a)dc for all A > 0 ; 

o 

see SHORACK a n d WELLNER [17], ( (1.9) , (1 .15) a n d (1.26)) . 
According to OREY and PRUITT [12] (Theorem 2 .2) the function Xq is point 

upper class for U, for all 2>0. This yields 

(2.27) sup |t/(OI/?(|i|)-a.s.O, as ¿10, 

which entails (2.21) for k=4. The validity of (2.21) for k—5 is immediate from (1.9). 
(=>) Let p„ be as before. We obviously have 

(2.28) sup \Un(t)-U(t)M\t\)^ sup \U„(t)-U(t)\/q(\t\) = Y. 

Using the remark below (2.21) we see that with probability larger than 1/2 we have 

(2.29) F M ^ ' V - W - sup \U(t)\}/q(p„) S 

S (2n1'2q(P„))-1 m (3((d- W'Wfa))-1 

for all large n, where for the second inequality again Theorem 2 .2 in OREY and 
PRUITT [12] is applied. 
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The assumption that sup \Un(t)— U(t)\lq(\t\)-» 0, as n— jointly with 
Oslflsi 

(2.28), (2.29) and the fact that q is nondecreasing, implies that q£2J_1. 

Theorem 2.2. Let F ( i )= | ' | , '€[0,1]'', N and q£2*. Then we have 

(2.30) sup \U„(t)-U(t)\/q(l-\t\) - p 0 , as 

if and only if q££0. 

Proof . Suppose q£20. Starting with the equalities 

(2.31) Un(t) = -Un{R((0),ty} and U(t) = - U{R({0), ty} 

we obtain using the union-intersection principle 

(2.32) \U„(t)-U(t)\ s 2 |tU*.(0} -

where the /?j(')'s are rectangles and . / a finite index set. This yields 

(2.33) sup \Un(t)-U(t)\/q(l-\t\) s 2 SUP 
os|t|si t(.sos\t\mi 

It turns out to be convenient to split this sum into two parts. Define as the 
set of all such that R^t) is (0, 1 1]X(0, l]d~J for some l ^ J ^ d . 
Write = . For we have 

(2.34) 
sup sup |c /n{i?,(0}-c/№(0}| / i ( l^(0l)-

Application of Theorem 2.1 with d— 1 (the case d= 1 is symmetrical) completes 
the proof for this part of the sum. 

Now let 1 . Define dimension (P ;(/))= # {j: /?,(i) depends on tj}. Suppose 
dimension (Ri(t))=l, 2s.ls.d. By symmetry considerations, studying 

sup |u„{R t(t)} - uW0}|/?(1 - I'D 

is equivalent with studying 

sup \un(f)-u(f)m\-\(\)-t\), 

where t' is t restricted to [0, 1]' in the way suggested above. 
Define £,= max t>. We have lsjsd 1 

(2.35) £ ( 1 - K l ) - ' I ) S q(£), 

and for small values of ^ 

(2.36) q ( 0 £ y j , 
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because using an argument similar to SHORACK and WELLNER [17] ((a) on 
p. 648). Define in the following way: 

q(o) = sup ]/z (log 1/T)' . 
OSTSit 

Using it is easy to see that 

(2.37) i l ^ l/|i'|(log W\y = q(\t'\) 

for small values of \t'\. The assertions (2.35)—(2.37) entail that 

sup \Un(t')-U(t')M\t'\) as 
<'€[0,1]' 

implies 
sup \Un(t')-U(t')\/q(l-\(l)-t\) - p 0 , as n 

03|r]51 

Combining this with Theorem 2.1 completes the " i f" part of the proof. 
The "only i f" part is clear from the "only if" part in the one-dimensional case by 

restricting the supremum e.g. to points of the form t=(t1} 1, ..., 1). 

Combining Theorems 2.1 and 2.2 yields 

Coro l l a ry 2.1. Let F ( f )= | f | , <£[0,1]'', and q,q^Si*. Then we have 

(2.38) sup \U„(i)-U(t)\lq(\t\)q(\-\t\) - p 0 , a* 
oslr ls l 

if and only if both q£Md-1 and q£ 

3. Weight functions for rectangles 

Extending an example in SHORACK and WELLNER [17] to the multivariate case we 
have 

(3.1) sup 11/„{*}|A?(I*I) a.s. 
Rim 

for any q££* with q(0)=0. For this reason |i?| should be bounded away from 0 
when the growth of the empirical process for small rectangles is studied. 

Our first goal is to obtain a suitable modification of Inequality 2.1. The special 
countably infinite partition of (0, l ] 2 d \ {F= 0} that will be used now becomes arbi-
trarily fine near the lower boundary of this set; for d= 1 this boundary is the line 
segment joining (0, 1) and (1, 0). This partition cannot be written as a product of a 
partition of (0, 1] like (2.1), but it can be written as a product of a partition of a subset 
of (0, l]2, namely the set {(.r, 1]2: X+J>1). So we know the partition 
completely if we define it on A. 
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Let us first introduce a sequence ... of partitions of (0, l]2 consisting of 
a finite number of half-open squares. More specifically, let 

(3.2) 91 = {R(((l/2T"(k(j)- 1)), ((\/2)n+1k(j))), (k(j))i{\, ..., 2-+1}2}. 

Let us next define recursively 

= {R&Z: R c {(*, 0, l]2: (1/2) ^ x + y- I s 1}}, 
(3.3) 

= : R c [{(x, y)e(0, I f : (1/2)" < x + y - U 3 . ( l /2)"}\ U *]}, 

for n s 2, 

and finally the desired partition of A by 

(3.4) U ^ ' . 
n=1 

We now obtain the partition of (0, 0} by taking the product of taking 
the co-ordinates Sj and tj together to form (0, l]2, l ^ j ^ d . Denote this partition 
as SP. 

For any R{a, we have the property 

(3.5) F(a)/m ^ (1/2)" = B(d) = 06(0, 1). 

Again for we introduce 

(3.6) = {K(a, b)&: F(b) s a, F(a) < P} 

and remark 

(3.7) {a s F(s, t)^P] c (J F(s, i) S p/0}. 

I n e q u a l i t y 3.1. Let us choose any 0«x^P^B/2=(\/2)i+1. For any 
and A=0 we have 

(3.8) P( sup |i7„(s, t)\jq(\t-s\) is X) == 
xsF(s,0se 

P r o o f . The same reasoning as in the proof of Inequality 2.1. yields 

(3.9) P{ sup 117.(5,/) | /g( | i-j |)fe A) ^ 
asF(s,t)sp 
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In this case we have, moreover, that 

(3.10) k2q2(F(a))l32F(b)^Bk2q2(F(t))/32F(t), for t£R(a,b); 

(3.11) #(Jlq(F(a))/4F(b)nL^^t(Xq(a)/4ril'ta), for R(a, b)£9a,f. 

The way of construction of & entails 

(3.12) 1 =g 22d • 32d / (1/Я0)2 \dt\ for 
к 

Combination of (3.7) and (3.9)—(3.12) yields 

(3.13) P( sup \Un(s,t)M\t-s\)^X)^ 

To complete the proof let us recall formula (1.12) for F(s, t). The change of 
variables Uj=t}+Sj—\ and Vj=tj—Sj for 1 =./=d, with Jacobian (l/2)d, yields 
as upper bound for the integral in (3.13) 

Another change of variables, similar to the one above (2.11), completes the proof. 

Theo rem 3.1. Let F(0=l ' l> '€[0, I f , </€N, and For any fixed 
y£(0, we have 

(3.15) sup |Ц,{Д}-С/{Д}|М|Д|)- р0, as n , 

ylogn/nS|R|sl 

if and only if 

Proof . (<=) Supposethat q£2. Like in the proof of Theorem 2.1 the notation 
(3.16) ' g(a)= 9(ff)/|/<xlog 1/ff, < r>0 , 

will be used. We can and will assume without loss of generality that (2.14) holds true 
(for q as in (3.16)) with ]/(log l/( • ))d_1 replaced by /log l/( •) . We have for any 
0 < 5 s ( l / 2 ) d + 1 that 

(3.17) sup \Un{R}-U{R)\lq(\R\)^ ZZnk, 
yIogn/ns!«|sl -k=l 
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where with an=q\n~l) and P„=y log n/n the r.v.'s Z^ are given by 

(3.18) Zfll = sup |C7n{R}|/9(|R|), 

(3.19) Zn2 = sup |C/„{«}|M|K|), 

(3.20) Z„3 = sup |t/{/?}|/<7(|tf|), 

(3.21) Z„4 = sup . |t/n{K} - U{R}\/q(ó). 
0 = S | K | 3 1 

Again it will be shown that for any e>0 and each 6 = 1 , 2 , 3 , 4 there exist 
<5=<5(e) and n(e)€N such that 

(3.22) P(Znk S í ) S í for n s n(e). 

For k= 1 the left-hand side of (3.22) is bounded above by 

P( sup |£/„{*}|/|/?r2 ^ £g(an) (l°g I /O1 '2) ^ 
(3.23) 

s f ( sup C/„{i?} / | i?r 2 ^yiOogn)1 '2) 

for Vi€(0, oo) arbitrary and n S «i=Hi(yi). Using the point representation for 
rectangles we can apply Inequality 3.1. This yields the existence of c l5 ..., c4£(0, 
such that the last expression of (3.23) is bounded above by 

(3.24) 
Ci • n (log rif-2 exp (-c2y\ log «(/'(Cay!)) s q n (log nf~2 exp ( - c4yj log log n) £) 

provided yx and n are chosen sufficiently large. 
To handle Z„2 we can again use Inequality 3.1. The integral in the resulting upper 

bound decreases to 0 as <5|0 since implies 

(3.25) for all A > 0 , 

by a slight modification of the proof of Proposition 3.1 in SHORACK and WELLNER 
[17]. 

Using Theorem 2 .1 in OREY and PRUITT [12] we can treat Z N 3 in the same way as 
R„4 in the preceding section. We also have similarity between Z„ 4 and YnS using ( 1 .10 ) 
instead of (1.9). 

(=>) For this half of the proof we refer to CSÖRGŐ, CSÖRGŐ, HORVÁTH and 
MASON [7] (pp. 8 7 — 8 9 ) where the proof is given for the quantile process and the one-
dimensional empirical process. Their proof immediately carries over to the multi-
variate empirical process; the generalizations of the results required in that paper can 
be found in EINMAHL [8] (p. 2) and PYKE [13] (p. 340) respectively. 
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We note in passing that the analogue for rectangles of Proposition 2.1 in 
O ' R H L L Y [11] can be obtained using some of the ideas in the proof of Theorem 3 . 1 : 
Let N and q^SL*. Then we have 

(3.26) lim sup = 0 a.s. 

if and only if 

For any y€(0, define Un>y, a process indexed by rectangles, by 

(3.27) U„,y{R} = £/„{*} 1 

Combining Theorem 3.1 and (3.26) yields 
Coro l l a ry 3.1. Let F ( f )= | i | , /€[0, I f , ¿€N and q£l*. For any fixed 

y£(0, we have 

(3.28) sup jC/B>J{R}-E/{R}|/g(|R|)-p0, flJ 

if and only if 
T h e o r e m 3.2. Let F ( 0 = | i | , /€[0, I f , d£N and Then we have 

(3.29) sup |C/n{tf}-tf{tf}|/£(l-|i?|)-*p0, as 

if and only if q£2.0. 

Proof . (<=) To avoid difficulties with notations and technicalities we restrict 
ourselves to the case d=2. Without any mathematical problems the proof can be 
extended to arbitrary d. (See also the proof of Theorem 2.2.) 

Let us first remark that for 0<<5< 1 

(3.30) sup | l /„{tf}-t /{2?}|A?(l- | i? |)s 

^ sup |tfn{/?}-t/{*}|/<?((5)+ sup \U„{R) — U{R)\lq(l — |i?|). 

The first term of the last expression causes no problems, so we focus on the second 
term. Let us choose R with | R\ ^ 1 — S and angular points ax, a2, a3, a4 starting at the 
upper vertex and moving clockwise. Remark that l a ^ l — <5 and \a2\, \a3\, ¡a^^d. 
Using the inequality 

(3.31) \U„{R}-U{R}\m-\R\)^ 2\U,{ad-U(aiy[m-\R\) 
¡=i 

we see that we only have to handle sup \Un{a^—U{a^\lq(\ — \R\) for 
l-a=5|R|3l 

1=1,2,3,4. Using we can apply Theorem 2.2 to handle the 
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ease i'= 1. With the same technique as used in the proof of this theorem we can also 
treat the cases i— 2, 3, 4. 

(=>) Theorem 2.2 together with the remark that (3.29) implies (2.30) yields this 
part of the proof. 

Combining Theorem 3.1, Theorem 3.2 and Corollary 3.1 yields 

Coro l l a ry 3.2. Let F ( í )= | í | , <€[0, l]d, and q,q£2*. For any fixed 
y£(0, oo) the following three statements are equivalent: 

(3.32) sup I ^ W - C A W l M l i í D í í l - I R D ^ O , as 
ylogn/nig|R|Sl 

(3.33) sup I ,,{/?} - U{R}\/q(\R\)q(l - |i?|) 0, or n , 
sea 

(3.34) qt^ and 
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