Rare bases for finite intervals of integers

KATALIN FRIED

In this paper we discuss the following finite problem for additive bases: What is the least possible number of elements of a set B, for which all integers in the interval $[1, n]$ can be represented as the sum of two elements of B. (B can be called a basis of order 2 for the interval $[1, n]$). Let us denote this minimal number by c_{n}.

Clearly, $\quad c_{n} \geqq \sqrt{2} \cdot \sqrt{n}$ holds, since if there are k elements in B, then we can form at most $\binom{k+1}{2} \sim \frac{k^{2}}{2}$ sums which have to give at least n different values, hence $n \cong \frac{k^{2}}{2}$, i.e. $k \geqq \sqrt{2} \cdot \sqrt{n}$.

On the other hand, a simple construction shows $c_{n} \leqq 2 \cdot \sqrt{n}$. Let B be the union of two arithmetical progressions; $0,1,2, \ldots,[\sqrt{n}]$ and $2 \cdot[\sqrt{n}], 3 \cdot[\sqrt{n}], \ldots,[\sqrt{n}]$. $\cdot[\sqrt{n}]$, where $[a]$ means the least integer $s \geqq a$. These approximately $2 \cdot \sqrt{n}$ elements form a basis of order 2 for the interval $[1, n]$.

Rohrbach conjectured in 1937 that $c_{n}=2 \sqrt{n}+O(1)$. This was disproved in 1976 by Hämmerer and Hofmeister [2], they showed $c_{n} \leqq \sqrt{3.6} \cdot \sqrt{n}$. (For further references and related problems see [1], 47.)

The aim of this paper is to improve the result of Hämmerer and Hofmeister:
Theorem. $c_{n} \leqq \sqrt{3.5} \cdot \sqrt{n}+o(\sqrt{n})$.
The method of proof is different from that of [2], it is completely elementary, and is based on similar simple ideas as the one which gave the obvious upper bound. Some further refinements might yield even better upper bounds for c_{n}.

Proof. For a clearer exposition of the construction we show first $c_{n} \leqq \sqrt{3.6}$. $\cdot \sqrt{n}+o(\sqrt{n}) . B$ will consists of the union of 4 arithmetical progressions:
I. $\alpha_{0}=0, \alpha_{1}=1, \ldots, \alpha_{t}=t$; here the difference of the consecutive terms is $d_{1}=1$.
II. $\beta_{0}=\alpha_{1}=t, \quad \beta_{1}=2 t+1, \ldots, \beta_{3 t}=3 t(t+1)+t=3 t^{2}+4 t ; \quad d_{2}=t+1$.
III. $\gamma_{1}=3 t^{2}+5 t+1, \ldots, \gamma_{t+1}=3 t^{2}+6 t+1 ; \quad d_{3}=1$.
IV. $\delta_{1}=6 t^{2}+12 t+3, \ldots, \delta_{t+1}=7 t^{2}+12 t+3 ; \quad d_{4}=t$.

The following inclusions (mostly in form of equalities) are all obvious, except the last but one, which we shall verify below:

$$
\begin{array}{cc}
\left\{\alpha_{i}+\alpha_{j}\right\} \supseteqq[1,2 t], \quad\left\{\alpha_{i}+\beta_{j}\right\} \supseteqq\left[2 t+1,3 t^{2}+5 t\right], \\
\left\{\alpha_{i}+\gamma_{j}\right\} \supseteqq\left[3 t^{2}+5 t+1,3 t^{2}+7 t+1\right], & \left\{\beta_{i}+\gamma_{j}\right\} \supseteqq\left[3 t^{2}+7 t+2,6 t^{2}+10 t+1\right], \\
\left\{\gamma_{i}+\gamma_{j}\right\} \supseteqq\left[6 t^{2}+10 t+2,6 t^{2}+12 t+2\right], & \left\{\alpha_{i}+\delta_{j}\right\} \supseteqq\left[6 t^{2}+12 t+3,7 t^{2}+13 t+3\right], \\
\left\{\beta_{i}+\delta_{j}\right\} \supseteqq\left[7 t^{2}+13 t+4,9 t^{2}+17 t+3\right], & \left\{\gamma_{i}+\delta_{j}\right\} \supseteqq\left[9 t^{2}+17 t+4,10 t^{2}+18 t+4\right] .
\end{array}
$$

To verify the last but one inclusion we use the following two equalities, which are straightforward from the construction of II and IV:

$$
\beta_{i+1}+\delta_{j-1}=\beta_{i}+\delta_{j}+1 \text { and } \beta_{i-i+1}+\delta_{j+t}=\beta_{i}+\delta_{j}+1
$$

Hence we obtain the consecutive elements of thê interval $\left[7 t^{2}+137+3,9 t^{2}+17 t+3\right]$ by the following sums:

$$
\begin{array}{lllllll}
\beta_{0}+ & \delta_{t+1}, & \beta_{1}+ & \delta_{t}, & \beta_{2}+\delta_{t-1}, & \ldots, & \beta_{t}+\delta_{1}, \\
\beta_{1}+ & \delta_{t+1}, & \beta_{2}+ & \delta_{t}, & \ldots, & & \beta_{t+1}+\delta_{1}, \\
\beta_{2}+ & \delta_{t+1}, & \ldots & & & \\
\vdots & & & & \\
\beta_{2 t}+ & \delta_{t+1}, & \beta_{2 t+1}+\delta_{t}, & \ldots, & & \beta_{s t}+\delta_{1}, \\
\beta_{2 t+1}+\delta_{t+1}, & \beta_{2 t+2}+\delta_{t}, & \ldots, & \beta_{3 t}+\delta_{2},
\end{array}
$$

Summarizing our construction, B contains $k=6 t+3$ elements and is a basis for the interval $[1, n]$, where $n=10 t^{2}+18 t+4$. This proves $c_{n} \leqq \sqrt{3.6} \cdot \sqrt{n}+o(\sqrt{n})$ (for all n).

To obtain $c_{n} \leqq \sqrt{3.5} \cdot \sqrt{n}+o(\sqrt{n})$ we have to add just another arithmetical progression to B :

$$
\text { V. } \varepsilon_{1}=10 t^{2}+18 t+5, \ldots, \varepsilon_{t+1}=11 t^{2}+18 t+5 ; \quad d_{5}=t .
$$

Now

$$
\begin{aligned}
& \left\{\alpha_{i}+\varepsilon_{j}\right\} \supseteqq\left[10 t^{2}+18 t+5,11 t^{2}+19 t+5\right], \\
& \left\{\beta_{i}+\varepsilon_{j}\right\} \supseteqq\left[11 t^{2}+19 t+6,13 t^{2}+23 t+5\right], \\
& \left\{\gamma_{i}+\varepsilon_{j}\right\} \supseteqq\left[13 t^{2}+23 t+6,14 t^{2}+24 t+6\right] .
\end{aligned}
$$

Here the first and last inclusions are obvious, and the second one follows exactly the same way as the one for $\left\{\beta_{i}+\delta_{j}\right\}$.

Hence we have a basis for $[1, n]$ with $n=14 t^{2}+24 t+6$, and it consists of $k=7 t+4$ elements, i.e. $k \sim \sqrt{3.5} \cdot \sqrt{n}$.

References

[1] P. Erdös-R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique (Genève, 1980).
[2] N. Hämmerer-G. Hofmeister, Zu einer Vermutung von Rohrbach, J. Reine und Angew. Math., 286/287 (1976), 239-246.

