Rare bases for finite intervals of integers

KATALIN FRIED

In this paper we discuss the following finite problem for additive bases: What is the least possible number of elements of a set B, for which all integers in the interval [1, n] can be represented as the sum of two elements of B. (B can be called a basis of order 2 for the interval [1, n]). Let us denote this minimal number by c_n .

Clearly, $c_n \ge \sqrt{2} \cdot \sqrt{n}$ holds, since if there are k elements in B, then we can form at most $\binom{k+1}{2} \sim \frac{k^2}{2}$ sums which have to give at least n different values, hence $n \le \frac{k^2}{2}$, i.e. $k \ge \sqrt{2} \cdot \sqrt{n}$.

On the other hand, a simple construction shows $c_n \leq 2 \cdot \sqrt{n}$. Let B be the union of two arithmetical progressions; 0, 1, 2, ..., $\lceil \sqrt{n} \rceil$ and $2 \cdot \lceil \sqrt{n} \rceil$, $3 \cdot \lceil \sqrt{n} \rceil$, ..., $\lceil \sqrt{n} \rceil$, $\langle \sqrt{n} \rceil$, where $\lceil a \rceil$ means the least integer $s \geq a$. These approximately $2 \cdot \sqrt{n}$ elements form a basis of order 2 for the interval $\lceil 1, n \rceil$.

Rohrbach conjectured in 1937 that $c_n = 2\sqrt{n} + O(1)$. This was disproved in 1976 by HÄMMERER and HOFMEISTER [2], they showed $c_n \leq \sqrt{3.6} \cdot \sqrt{n}$. (For further references and related problems see [1], 47.)

The aim of this paper is to improve the result of Hämmerer and Hofmeister:

Theorem.
$$c_n \leq \sqrt{3.5} \cdot \sqrt{n} + o(\sqrt{n}).$$

The method of proof is different from that of [2], it is completely elementary, and is based on similar simple ideas as the one which gave the obvious upper bound. Some further refinements might yield even better upper bounds for c_n .

Proof. For a clearer exposition of the construction we show first $c_n \le \sqrt{3.6} \cdot \sqrt{n} + o(\sqrt{n})$. B will consists of the union of 4 arithmetical progressions:

I. $\alpha_0=0$, $\alpha_1=1$, ..., $\alpha_t=t$; here the difference of the consecutive terms is $d_1=1$.

Received August 7, 1985.

II.
$$\beta_0 = \alpha_t = t$$
, $\beta_1 = 2t + 1$, ..., $\beta_{3t} = 3t(t+1) + t = 3t^2 + 4t$; $d_2 = t+1$.
III. $\gamma_1 = 3t^2 + 5t + 1$, ..., $\gamma_{t+1} = 3t^2 + 6t + 1$; $d_3 = 1$.
IV. $\delta_1 = 6t^2 + 12t + 3$, ..., $\delta_{t+1} = 7t^2 + 12t + 3$; $d_4 = t$.

The following inclusions (mostly in form of equalities) are all obvious, except the last but one, which we shall verify below:

$$\begin{aligned} \{\alpha_i + \alpha_j\} &\supseteq [1, 2t], \quad \{\alpha_i + \beta_j\} \supseteq [2t+1, 3t^2+5t], \\ \{\alpha_i + \gamma_j\} \supseteq [3t^2+5t+1, 3t^2+7t+1], \quad \{\beta_i + \gamma_j\} \supseteq [3t^2+7t+2, 6t^2+10t+1], \\ \{\gamma_i + \gamma_j\} \supseteq [6t^2+10t+2, 6t^2+12t+2], \quad \{\alpha_i + \delta_j\} \supseteq [6t^2+12t+3, 7t^2+13t+3], \\ \{\beta_i + \delta_j\} \supseteq [7t^2+13t+4, 9t^2+17t+3], \quad \{\gamma_i + \delta_j\} \supseteq [9t^2+17t+4, 10t^2+18t+4]. \end{aligned}$$

To verify the last but one inclusion we use the following two equalities, which are straightforward from the construction of II and IV:

 $\beta_{i+1}+\delta_{j-1}=\beta_i+\delta_j+1$ and $\beta_{i-t+1}+\delta_{j+t}=\beta_i+\delta_j+1$.

Hence we obtain the consecutive elements of the interval $[7t^2+137+3, 9t^2+17t+3]$ by the following sums:

Ри ¹ В	-δ	P 21 + 1 R	, ג <u>י</u>	,		<u>в</u> <u>т</u> <u>в</u>	P 81	•1,
: 8- +	δ	·B	⊧ծ.			• • •	ß., -	-δ.
$\beta_2 +$	$\delta_{t+1},$	•••						
$\beta_1 +$	δ_{t+1} ,	$\beta_2 +$	δ_t ,	••••			β_{t+1}	$+\delta_1,$
$\beta_0 +$	$\delta_{t+1},$	$\beta_1 +$	δ_t ,	$\beta_2 + \delta_t$	-1,	••••	β_t	$+\delta_1$,

Summarizing our construction, B contains k=6t+3 elements and is a basis for the interval [1, n], where $n=10t^2+18t+4$. This proves $c_n \le \sqrt{3.6} \cdot \sqrt{n} + o(\sqrt{n})$ (for all n).

To obtain $c_n \leq \sqrt{3.5} \cdot \sqrt{n} + o(\sqrt{n})$ we have to add just another arithmetical progression to B:

V. $\varepsilon_1 = 10t^2 + 18t + 5, \dots, \varepsilon_{t+1} = 11t^2 + 18t + 5; \quad d_5 = t.$ Now

 $\{\alpha_i + \varepsilon_j\} \supseteq [10t^2 + 18t + 5, 11t^2 + 19t + 5],$ $\{\beta_i + \varepsilon_j\} \supseteq [11t^2 + 19t + 6, 13t^2 + 23t + 5],$ $\{\gamma_i + \varepsilon_j\} \supseteq [13t^2 + 23t + 6, 14t^2 + 24t + 6].$ Hence we have a basis for [1, n] with $n=14t^2+24t+6$, and it consists of k=7t+4 elements, i.e. $k \sim \sqrt{3.5} \cdot \sqrt{n}$.

References

- P. ERDŐS-R. L. GRAHAM, Old and New Problems and Results in Combinatorial Number Theory, L'Enseignement Mathématique (Genève, 1980).
- [2] N. HÄMMERER—G. HOFMEISTER, Zu einer Vermutung von Rohrbach, J. Reine und Angew. Math., 286/287 (1976), 239—246.

EÖTVÖS UNIVERSITY BUDAPEST TEACHER'S TRAINING FACULTY DEPARTMENT OF MATHEMATICS