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Wreath product decomposition of categories. I*) 

CHARLES WELLS 

1. Introduction. In this paper I prove a theorem (Theorem 4.1) giving sufficient 
conditions for decomposing a functor F: C—Cat into the wreath product of two 
functors, given a natural transformation X: F—G. When the functors are discrete 
(set-valued) the sufficient conditions always hold. 

The theorem is a double generalization of the theorem about embedding a 
group into a wreath product due to KALOUJNINE—KRASNER ([7], stated also in 
WELLS [13]). To be precise, it generalizes the one-step version of that theorem, although 
for any action — not just for the regular representation as it is commonly stated 
in group theory texts. 

The generalization is double in the sense that the group is generalized to a cate-
gory and the action not merely to a set-valued functor (which already gives a new 
theorem) but to a Cat-valued one. The theorem provides a decomposition of any 
Set-valued functor with given quotient, and any Cat-valued one provided the fibers 
of the quotient are split opfibrations. Since the wreath product itself is a split fibra-
tion, this brings the theory of fibrations into the picture in two different ways. 

Some applications are given in Section 6. One, Proposition 6.4, provides a gen-
eralization of a technique used in some proofs of the Krohn—Rhodes Theorem 
(see KROHN—RHODES [101, WELLS [13]). ( A generalization o f another of the techniques 
to Cat-valued functors is in WELLS [17].) 

My hope is that both techniques might be useful in developing a theory of state-
transition systems with structured, typed states. Any functor F: C—Cat can be 
thought of as such a system. The objects of C are the types of states. For each object c, 
the objects of Fc are the states of type c. Th6 transitions are the functors Ff: Fc-*Fd 
for / : c-*d in C. The structure on the states of type c is the category structure on Fc 
(thus having a poset or monoid or group structure as possible special cases). 
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Perhaps the theorem of the present paper will also be useful in developing a 
theory of varieties for categories, in the way the embedding into a wreath product has 
proved useful in group theory (NEUMANN [12]). 

Categorical fibrations and opfibrations are discussed in Section 2, and the wreath 
product with categorical action in Section 3. The decomposition theorem is stated in 
Section 4 and proved in Section 5. Some applications are given in Section 6. 

Throughout this paper, a set is identified with the category which has the ele-
ments of the set as objects and no non-identity arrows. Such a category is called 
discrete. 

These results were obtained in part while I was a guest of the Forschungsinstitut 
für Math., E.T.H. Zürich, for whose support I am grateful. An earlier version, con-
taining errors, called Wreath product decomposition of categories and functors, was 
distributed but never published. 

2. Fibrations. In this section, I outline that part of the theory of split fibrations 
and opfibrations needed for the main theorems. The material is not new, and is 
scattered through GROTHENDIECK [5], GIRAUD [1], GRAY [2], [3], [4]. 

Given a functor P: E—C there is an induced functor S from the arrow cate-
gory Ar E to the comma category (C, P) which takes u: e'-*e to (Pu, e). A right 
adjoint right inverse R for S is called a cleavage, and a left adjoint right inverse R° 
to the functor S°: Ar E—(f, C) which takes u: e'-*e to (e\ Pu) is an opcleavage. 
P, together with a cleavage R, is a fibration of C. If R° is an opcleavage, (P, R°) is 
an opfibration of C. Neither a cleavage nor an opcleavage necessarily exists for any 
given functor P. 

Assume (P: E—C,R) is a fibration. Let / : ¿—c in C and u: e?—e lie over c 
(i.e. Pu— lc). Define <Pf. e"=dom R(f e") for any object e" over c, and <Pf. u 
by requiring R(lb, u)=($f. u, u) (the second component is necessarily u). Similarly 
for an opfibration (P, R°), let <P°f. e"=cod R°(e",f) for e" over b, and R°(u, lc)= 
— (u, <P°f.u). One then has the commutative squares 

e' e' R°(e''/). e' 
(2.1) ja I» | 

By setting <Pc=<P°c=P~1c (the full subcategory of E lying over lc) one has 
0, <P° both defined on objects and arrows of c. They may not be functors. If they are, 
they are functors to Cat and R ( f , —) and R°(—,/) are natural transformations for 
each / . If P - 1 c is a set (no non-trivial arrows) the fibration or opfibration is called 
discrete. 

A fibration (P, R) is split if 
a) $ is a functor, and 
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b) i f / : c ' - c , g: c - c " in C and Pe"=c", Pe=c, then 

(2.2) R ( f , $g. e")oR(g, e") = R(gof, e"). 

Then $ is a splitting, and I shall refer to the split fibration as (P: E— C, R, <P). 
A split opfibration (P, R°, <P°) requires 
a)° <P° is a functor, and 
b)° if / : c'-'c, g: c - c " in C, Pe'=c', Pe=c, then 

(2.2)° R°(e', go / ) = R'($°f. e', g)oR°(e' , / ) . 

It is easy to see that (P: E—C, R, <P) is a split fibration if and only if (Pop: 
Eop—Cop, Rop, <Pop) is a split opfibration. 

A morphism of split fibrations is a pair (U, V): (P: E—C, R, 4>)-»(P': 
E ' - C , R', cp') where U: C - C ' and V: E - E ' are functors for which 

E-^— E' 
(2.3) p | p 

C - ^ C 

commutes and for / : b—c in C, e an object of <Pc, 

(2.4) V(R(f, e)) = R'(Uf, Ve). 

Composition of morphisms is componentwise, giving a category F of split fibra-
tions. 

Morphisms of opfibrations are defined similarly. (2.3)° is the same as (2.3) and 
(2.4) becomes 
(2.4)° <£ V (R°(e, / ) ) = R'(Ve, U f ) 

where e is an object of <P°b. The resulting category is denoted F°. 
It follows from (2.4) that 

(2.5) V($f.e) = $'(Uf).Ve, 

i.e. V respects fibers. A similar statement holds for morphisms of opfibrations. 
Now I define another category Scat which will turn out to be equivalent to both 

F and F°. The objects of Scat are all Cat-valued functors from all categories. An 
arrow (K, X): F—G has K: dom F—dom G a functor and A: F—GoK a natural 
transformation. Composition is given by 

(2.6) (L, ¡i)o(K, X) = (LoK, iiKoX). 

All functor categories Func (C, Cat) are subcategories of Scat„and so is the comma 
category (Cat, Cat), where the second "Cat" is an object in the first. Scat is the cate-
gory called Cat„oCat0 by KELLY [8, §7]. 
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Given any functor F: C o p -Cat , let SD(F) be the category defined this 
way: an object of SD(F) is a pair (c, x) with c an object of C and x an object of 
Fc. An arrow ( / , « ) : (c, x)—(c', x') has / : c'—c in C and u: x-^Ff.x' in Fc. 
If (g,v): (c', x')—(c", x"), then 

(2.7) (g,v)o(f, u) = (fog, (Ff.v)ou). 

Likewise, given F: C—Cat define SD°(F) the same way except that for (f,u): 
(c, x)—(c\ x'), / : c—c' and M: F f . x—x', and 

(2.7)° (g,v)o(f,u) = (gofVo(Fg.u)). 

There are then functors SW(F): S D ( F ) - C o p and SW^F): S D ( F ) - C taking 
(/ , «) to / . 

There are then functors Kf(/?F) and F(F°) for which (SN(F), RF,F) (resp. 
(SN°(F), F°)) is a split fibration (split opfibration). The definitions are, for 
(f,u): ( c ,x ) - ( c ' , x ' ) in SD(F), 

(2.8) I?F ( / , (c', x ' ) ) = ( / , 1F/.x') : (C, F / . X ' ) - (c'( x ' ) 

and for (/, u): (c, x ) - ( c ' , x') in SD°(F), 

(2.8)° J$((c, x), / ) = (1^ . , , / ) : (c, x) - (c', F/.x). 

As for F and F° the definitions are determined by RF. In particular (because it is 
used later), for F: C—Cat, u an arrow in Fc, 

(2.9)° F°f.(\c, u) = ( l c . , Ff. u). 

These constructions make SN: Scat—F and S№: Scat—F° into the object 
maps of functors. @ 

I will continue the development only for opfibrations, since the constructions for 
fibrations are not needed. Let F: C - C a t , G: D - C a t , (K, A): F—G in Scat. 
Let ( f , u ) : (c, x ) - (c ' , x') in SD°(F). Then define 

(2.10)° SD°(K, X ) ( f , u) = (Kf, Xc'.u) 
and 
(2.11)° SN°(K, A) = (K, SD°(K, A)). 

Thus SD°: Scat -Cat and S№: S c a t - F ° are functors. 
S№ is an equivalence of categories. Define the functor A0: F°—Scat as fol-

lows. 
(2.12)° A°(P: E — C, RP, = <P°. 

(2.13)° A°(U,V) = (U,txv), where 

(2.14)° av.c = V\$°c 
for c an object of C. 
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There is a natural isomorphism e: i d S c a t — A ° o S № , whose component at 
F: C - C a t is 
(2.15)° sF=(\c,eF): F* F° 

(see (2.9);, where for an object c of C, eF. c: Fc—F°c takes an object x to (c, x) 
and an arrow u over \ c to ( l c , u). 

There is also a natural isomorphism rj\ idp,—SN°oA°, defined as follows. 
Given a split opfibration (P: E - C , R°, <f>°), let I: E -+SD°($° ) take an arrow u 
to (Pw, u). Then the component oft] at (P, R°, <P°)is ( id c , / ) : (P, R°, <P°)-*(S№(<Z>°), 
R4jo, Thus S№ and A° are equivalences. 

This Lemma is needed later: 

L e m m a 2.1. Let (U, V), {U, W): (P: E - C , R°, $ ° ) - ( P ' : E ' - C ' , R°' <P°') 
be morphisms of split opfibrations for which for every object c of C, V\Gc= W\Gc. 
Then V—W. 

Proof . Let m: e^-e0 in E lie over / : b-*c. It is enough to show that Vm= 
= Wm. Since R° is left adjoint to S°, there is a unique morphism of Ar E from 
R°(e,f) to m corresponding to the identity arrow in (P, C) from (<?,/) to (e,f)= S°m. 
Since R° is left inverse to S°, this arrow must be of the form ( l e , k) where k: i>°/. e— 
->~e0 and k is in 3>°c. Then by definition of morphism in ArE, m=koR°(e,f). 
Hence by (2.4)°, 

Vm = VkoVR°(e,f) = WkoR°'(Uf, Ve) = WkoR°\Uf, We) = WkoWR°'(f e) = Wm 

since k is in <P°C and e is in <P°b. 

3. The wreath product of categories. Given categories B and C and a functor 
G: C—Cat, let GB=Func (G(—), B): C o p -Cat . The wreath product of B by C with 
action G, denoted B wrG C, is SD(GB). Thus via SN(GB) it is a split fibration of C 
in a canonical way. Note that Scat=Cat wr7 Cat with I being the identity functor. 

The concept is due to KELLY [8, §5], who denotes B wrG C by [C, G]oB and 
calls it the composite. His definition is more general than mine, since for him B 
can be any object in a 2-category. 

B wrG C is natural in both variables in the sense that functors U: B—B' and 
V: C ' - C induce a functor SD (Func (G(—), U), V): B wr G K C'-B'wr G C which 
is natural in both variables. 

More important, a functor F: B—Cat induces a functor F w r G : BwrGC-» 
-»• Cat which generalizes the concept of the wreath product of two actions. Given F, 
define F: Bwr G C—Scat as follows. For an object (c, P) of B w r G C (whence 
P: G C - B is a functor), set F(c, P)=FoP. For an arrow (/ , X): (c, P)-(d, Q) 
(whence/: c-+d in C and A: P - Q o G / ) , set F(J, A)=(G/, FX). Then set F w r G = 
= S£>°oF: B wrG C—Cat. 

6 
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KELLY [8, § 7] shows that wreathing for categories and for functors is associative 
up to a 2-natural isomorphism. 

If B and C are groups regarded as categories and G is discrete (Set-valued) then 
B wr° C is the usual wreath product of groups. If G is not discrete then B wrG C 
is a groupoid. If B is a set regarded as a discrete category, C is a monoid acting on B 
and G is the action, then B wrG C is a directed graph with objects which are functions 
/ : B—B and edges f-^fg'1 where g is an invertible element of C. When B and C 
are groupoids, B wrG C has as a special case the untwisted version of the wreath pro-
duct due to HOUGHTON [6]. Here the functor G is discrete; its value at an object c of 
C is the total sieve on c (the set of all arrows into c). 

4. Coordinate systems. In the Kaloujnine—Krasner setup a group action is 
decomposed along a quotient action. The second coordinate is the quotient, and the 
first coordinate (the one with the most dependencies) is the action on a fiber. One can 
get away with this because the fibers are all isomorphic — although to get a decompo-
sition you have to specify the isomorphisms. 

In the present schema this corresponds to introducing a "typing functor" (defi-
ned below), which allows a partial skeletonization of the fibers of the quotient action. 
To do this we will make the fibers into a category Fib (A) where A is the quotient map. 
A "coordinate system" will then be a category and an action (Cat-valued functor) 
which "includes" Fib(A) in a certain sense. All this requires that the components of 
A be split normal opfibrations, a condition which is vacuous in the discrete case. The 
main Theorem 4.1 then says that in the presence of a coordinate system the action 
can be decomposed into the wreath of the action on the (partially skeletonized) fibers 
and the quotient action. 

Let C be a category, F: C—Cat and G: C—Cat functors, and A: F—G a 
natural transformation. Then A is split if for each object c of C, Ac: Fc—Gc is a 
split opfibration with splitting Lc: Gc—Cat, and for each / : c-*d in C, the pair 
(G/, F f ) is an F°-morphism. The latter requirement implies that for each object x 
of Gc, Ff\Lc . x has values in Ld(Gf. x), and for each u: x-*y in Gc, 

Lc.x Ff]Lcx> Ld(Gf.x) 
( 4 . 1 ) |I.c.u |L<((G/.u) 

Lc.yy^rLdiGf.y) 

commutes. If F and G are discrete, any natural transformation A: F—G is split. 
The fibers of A, in other words the categories Lc . x for c an object of C and x ' 

an object of Gc, are objects of a category Fib (A). The arrows are the functors from 
Lc . x to Ld(Gf. y) given by (4.1) for each / : c—d in C and each u: x—y in Gc. 
Thus Fib (A) is a subcategory of Cat. 
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A functor T: Fib (A)—Cat is a typing functor if there is a natural isomorphism 
T: IX-*T, where /A: Fib (2)—Cat is inclusion. Extreme cases of typing functors are 
Ix and a skeletonizing functor. An intermediate case is actually used in an applica-
tion in Section 6. 

(M, K, T) is a coordinate system for a split X: F-+G with splitting L if T is a 
typing functor for Fib (A), M is a category and K: M—Cat a functor for which 

CS—1. For each object c of C there is a set <2>c of functors P: Gc—M for each 
of which ToLc is a subfunctor of KoP, and 

CS—2. If / : c - d in C and P: G c - M in then there is Q: Gd-*M 
in <Pd for which for each object x of Gc there is an arrow m: Px—Q(Gf. x) for 
which Km\T(Lc . x)=T(Ff\Lc . x). 

A transitive group action with a quotient always has a coordinate system. Let C 
be the group, F the action, G the quotient action, A the quotient map, so the fibers 
form a system of imprimitivity. T is then a way of identifying all the fibers with one 
of them, M is the isotopy subgroup of that fiber with action K. P is then a constant 
map. Even a nontransitive group action with quotient has a coordinate system, but 
then M will be a disjoint union of isotopy subgroups regarded as categories. 

If F, G: C—Set, X: F—G any natural transformation, then X always has a 
coordinate system based on Fib (A). This is discussed further in Section 6. 

A functor H: A—B lifts triangles if for all arrows / of A and h, k of B for 
which Hfoh and koHf are defined, there are arrows u,v of A for which fou and 
vof are defined, and Hu=h, Hv=k. A decomposition ought to lift triangles, as I 
explain later. Too bad, because the decomposition is trivial to construct if it needn't 
lift triangles. 

In the following theorem, F: C-+ Cat, G: C—Cat are functors and X: F—G 
a natural transformation. G is the image of G in Cat, and IG: G—Cat is inclusion. 

Theorem 4.1. If F is faithful and X is split with coordinate system (M, K, T), 
then there is a subcategory S c M w r ' s G and a triangle-lifting functor H: S—C 

for which FoH is isomorphic to a subfunctor of the restriction of K wr Ia to S. 

The proof is given in Section 5, and applications are discussed in Section 6. 
If you think of this theorem as giving sufficient conditions for simulating a 

state-transition system triangularly (in the sense of KROHN, LANGER and RHODES [11]) 
by a wreath product or cascade of systems, then the simulation has the property that 
for any state and any transition from that state in the simulated system, there is at 
least one state and transition from it in the simulating system which mimics (functori-
ally) the operation of the simulated system. Moreover you can always simulate the 
next transition from the simulating state you find yourself in. That is the meaning of 
triangle-lifting. Clearly it is a necessary property of typed-state simulations. 

6* 
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Note that the system F: C—Cat might very well allow a sequence of transitions 
which begin and end at the same state, but for which the simulation begins and ends 
at different states, behavior reminiscent of a path in a Riemann surface lying over a 
loop. 

Theorem 4.1 is similar to, but apparently not exactly a generalization of, both 
Theorem 11.1 o f WELLS [13] and the main theorem of WELLS [15]. 

5. Proof of Theorem 4.1. S is the subcategory of M wrI<; G defined this way: 
an object of S is any pair (Gc, P) where c is an object of C and P: Gc—M is a 
functor in $ c . An arrow (G/, y): (Gc, P)-»(Gd, Q) has f : c—d in C and y any 
function from the objects of Gc to the arrows of M with the properties that for each 
object x of Gc, 

There may not be such a y for a given f , P, and Q as above, but for a given / and P 
there is a Q in for which there is at least one such y. That follows from CS—1 and 
CS—2. 

The functor H: S —C is defined by 

It is necessary to see that H is well-defined. Because T(Lc. x) is naturally isomorphic 
to Lc. x, (5.4) says that the arrows which make up y determine the effect of Ff on 
the categories Lc . x. Because (G/, F f ) is a morphism in F°, Lemma 2.1 says that y 
and Gf determine Ff. That determines / because F is faithful. It is clear that H is 
triangle lifting. 

To show that FoH is a subfunctor of the restriction of KWTIG requires several 
steps. In the first place 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

yx: Px - Q(Gf.x), 

T(Lc.x) c KPx, 

T {Ff(Lc. x)) c KQ (Gf. x), and 

K(yx) IT (Lc. x) = T(Ff\Lc.x). 

(5.5) H(Gfy) =/. 

(5.6) 

SD°(Ld) 

commutes, where Ic is the natural isomorphism defined by t]X c=(idG c , /c) as in 
Section 2, and px is first projection (representing the elements as ordered pairs as in 
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Section 2). This follows because (Gf, Ff) is an F°-morphism and SN°(A°(Fc))= 
= SD°(Lc) and SN°(A°(Gf, Gf))=(Gf, Gf). 

Because T is a typing functor, there are natural isomorphisms TC, id making 
this diagram of functors and natural transformations commute. The component of 
TC at x is T (Lc . x), x as in the definition of typing functor. 

ToLc 
( 5 . 7 ) A%Gf,F.oj |A'iGf.TFf) 

Ld —r* ToLd. 
T d 

By (2.13)° and (2.14)°, the left vertical arrow is a . Ff and the right one is T(a . F f ) . 
Applying these functors at an object x of Gc and using (2.14)° yields 

Lc.x t(Lcx) . T(Lc.x) 
( 5 . 8 ) |F/|I.C.X | r (F/ | i c .*) 

Ld.Gf.xluzU7-rT(Ld.Gf.x) 

(the right arrow is also TFf\T(Lc . x)). The point is not to prove that (5.8) commutes, 
which is easy, but to see for later use that (5.8) is (5.7) evaluated at x. 

By definition of S there is an arrow (Gf y): (Gc, P)-»(Gd, Q) of S for which by 
(5.4) the following diagram commutes. The horizontal arrows are the inclusions of 
(5.2). 

T(Lc.x) > * KP.x 
( 5 . 9 ) jr(F/|Lc.*) | K ( T X ) 

T(Ld.Gf.x) >* KQ.Gf.x 

By (2.14)°, A°(Gf Ff)—(Gf, aFf) (a Scat-morphism from Lc to Ld), where 
a F / : Lc-^LdoGf is a natural transformation whose component at an object x of 
Lc is aFf . x= Ff\Lc . x. Then putting (5.8) and (5.9) together yields a commutative 
diagram 

Lc)> is—.KoP 
(5.10) Jv/ 

L d o G / > — KoQoGf 

of functors and natural transformations with ic,id monic. This yields a Scat-diagram 

Lc yS^c-'cK KoP 
( 5 . H ) | A % G f , F f ) |(G/. Ky) 

Ld>o^jrKoQ-
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Applying the functor SD° then yields a diagram of categories and functors whose left 
vertical arrow is SD°(A°{Gf, Ff))=(Gf, Ff): SD°{Lc)-~ SD°(Ld), the same as 
the right vertical arrow in (5.6). Pasting the front face of (5.6) and (5.11) together 
yields 
'fM^I Fc >~ SD°(KoP) 
(5.12) |sD°(G/.Ky) 

Fd SD°(KoQ). 

Now to complete the proof of Theorem 4.1. By (5.5), the left vertical arrow in 
(5.12) is (FoH)(Gf, v). By the definition of wreathing functors in Section 3 (warning 
— the G there is IG here, the/there is Gf), the right vertical arrow is SD°(Gf, Ky)= 
= SD°(K(Gf, y))=Kwr /G(G/, y). Thus FoH is isomorphic to a subfunctor of the 
restriction of K wr IG to S, as required. 

6. Applications of coordinate systems. If the actions in Theorem 4.1 are discrete 
(F and G are set-valued), there is no requirement on A except that it be a natural 
transformation. Then the category Fib (A) has only arrows corresponding to the hori-
zontal arrows in (4.1). In cmy case, if X is split, Fib (A) itself, with K= T the inclusion 
of Fib(A) into Cat, is a coordinate system; in CS—1, <Pc={Lc} where Lc is the 
splitting, and in CS—2, m=Ff. Thus we have the following corollary, in which IF 

is the inclusion of Fib (A) in Cat and IG the inclusion of Im G in Cat. 

Corol lary 6.1. If F: C - C a t is faithful, G: C - C a t , and A: F—G a 
split natural transformation, then there is a subcategory S of Fib (A) wr'cG for which 
F is isomorphic in Scat to the restriction of IF wr IG to S. 

Corol lary 6.2. If F: C—Set, G: C—Set and X: F—G is any natural trans-
formation, then the conclusion to Corollary 6.1 holds. 

The preceding corollary, when C is a group, could be called the natural Kalouj-
nine—Krasner theorem. It embeds C into a groupoid. The Kaloujnine—Krasner 
embedding into a group is obtained by constructing an unnatural typing functor 
which identifies all the fibers with one by noncanonical isomorphisms. 

If F, G are set-valued one can always construct a coordinate system which is 
minimal (in states) but excessively large in transitions this way: let y be any set whose 
cardinality is the supremum of the cardinalities of all the sets Lc . x, and the typing 
functor T a collection of injections of Lc . x into Y. Let M be Trans Y, the monoid 
of all transformations of Y, with K its natural action. This yields 

Corol lary 6.3. If F,G, X are as in Corollary 6.2, then there is a subcategory S 
of Trans Y wr'G G and a triangle-lifting functor H: S—C for which FoH is iso-
morphic to a subfunctor of K wr IG, where K is the action of Trans Y on Y. 
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A more complicated construction leads to a decomposition via a subfunctor 
instead of a quotient functor; nevertheless it is an application of Theorem 4.1. 

Some concepts are necessary. A functor F: C—Cat is separated if for distinct 
objects c, c' of C, c is not an object of Fc and Fc fl Fc' is empty. Every functor 
F: C—Cat is isomorphic in Func(C, Cat) to a separated one. (In mathematical 
practice people commonly assume implicitly that set-valued functors are separated.) 
A transversal of a separated functor F: C—Cat is a function Y with domain the 
objects of C such that Yc is an object of Fc. Any separated functor has a transversal 
by the axiom of choice. 

If D is a subcategory of Cat, the constant completion of D, denoted Dc, is the 
category whose objects are the objects of D and whose arrows are the arrows of D 
plus all constant functors K*: A-*B, where A, B are objects of D and y is an object 
of B. 

Let F, H: C—Cat be functors with H a subfunctor of F. H is isolated in F if 
for each object c of C, He is the union of one or more connected components of Fc. 
Thus if u: x-*y in Fc and either x or y is an object of He then u is an arrow of He. 
Note that if F, H are set valued then H is automatically isolated. 

If H is isolated in F and F is separated then F/H: C—Cat is the functor defined 
by 

(6.1) (F/H)c = (Fc—Hc) {c} for c an object of C 

(remember {c} is the trivial category with object c), and for / : c—c' in C, 

There is a natural transformation F— F/H, easily seen to be split, defined by 

(6 3) A c — iC ^ y is in 

' H C - y ~ \ y otherwise. 

P r o p o s i t i o n 6.4. Let F: C—Cat be a separated functor with isolated sub-
functor H. Then there is a subcategory S of (Im H)c wrJ(F/F) and a triangle-lifting 
functor H: S—C for which HoF is isomorphic to a subfunctor of J wr I, where J is 
the inclusion of (Im H)c in Cat and I the inclusion of Im (F/H) in Cat. 

Proof . The objects of Fib(AH) are (a) the categories He for object c of C, and 
(b) the categories {x} where x is an object of Fc not in He. Arrows are of the form 
(a) Hf: Hc—Hd for arrows f : c - r f in C, and (b) { x } - { j } - { F / . where 
u : x—y is an arrow of Fc not in He and / : c—d in C. Arrows of type (a) do not 
compose with arrows of type (b) in either order. Thus Lc. c=Hc, Lc. x = {x} for 
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x an object of Fc—Hc, and for f : c—d, (Lc ,f)c=Hf, (Lc. f)u= { F f . x}— { F f . y} 
for u: x—7 in Fc—Hc. 

Define a typing functor T as follows. For objects He of Fib(AH), T(Hc)=Hc. 
For objects {x} where x is an object of Fc—Hc, {Kc}. For arrows Hf: 
Hc~Hd, T(Hf)=Hf. For arrows g: { x } - 0 > } . y } where u\ x-*y in 
Fc—Hc and / : c - r f in C, Hg= {Yc}~{Yd}. 

Then ((Im H)c, J, T) is a coordinate system. For CS— 1, let $c={K<£ln) c}. 
For CS—2, let / : c^d in C and x be an object of ( F / H ) c . If x=c set m=Hf: 
Hc-Hd. If xi Fc-Hc and F f . x is in Fd-Hd, set m=K$x. If F f . x is in Hd, 
set m=KyH. It is straightforward to verify that CS—2 holds for this definition. 
The proposition now follows from Theorem 4.1. 
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