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Wreath product decomposition of categories. IT*)

CHARLES WELLS

1. Introduction. In this paper, I prove a theorem which shows how to decom-
pose a functor F: C—Cat into the wreath product of two functors, given a right
ideal and a ““wide” subcategory of C which together generate C (this is made precise
in Section 2). ' A

The decomposition is in the sense of Krohn—Rhodes theory: the functor F
is not embedded in a wreath product, but rather a subfunctor of the wreath product
maps onto F, like a covering space. This is in contrast to the decomposition theorem
of WELLSs [4], although of course any embedding is an example of decomposition
in the present sense. The theorem in this paper actually generalizes one of the de-
composition techniques used in proving the Krohn—Rhodes Theorem (KROHN—
RuopEs [2], EiLENBERG [1], WELLS [3]), although it works just as well for infinite
categories. Note that one of the corollaries of the decomposition theorem in WELLS
[4] generalizes another of the techniques used in proving the Krohn—Rhodes
Theorem.

My hope is that the decomposition techmques described here and in WELLS [4]
will be useful in developing a theory of “state-transition systems with structured,
typed states”. This is discussed in WELLS [4] so I will say no more about it here.

The present paper is self-contained except for the terminology developed in
Section 2.3 of WELLS [4].

I am grateful to the Forschungsmstltut fiir Math., E.T.H. Zurxch where I was

a guest while these results were (in part) obtained.

2. Statement of the theorem. If C, D are categories and x an object of D, the
constant functor K€ takes all objects of C to x and all arrows to 1,. The constant
completion of a subcategory A of Cat consists of the subcategory of Cat consisting
of everything in A and all constant functors K2 where a is an object of A and x is an
"object of some object of A.
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If C is a small category, the global hom functor C,: C—Cat takes an object ¢
to the set of all arrows into ¢, and f: ¢—~d to the function from C,c to C d which
takes x: a—~c to fox. C, is set valued, regarded as a dlscrete-category-valued
functor.

The constant completion of a small category C, denoted C¢, is the constant com-
pletion in the sense defined earlier of the image of C,. C, is injective, and I shall
identify C with its image, so that C,f: C,c~C.d is f: c~d. 1 shall write K¢
for KS*. This has the following notational consequences:

a) KS: ¢c—~d where x is an arrow with codomain d. (The notation does not
determine dom x.)

b) If K: c~d and g: d—e then goK =K ..

©) If KS: c~d and h: b~c then K{oh=K}.

d) If it is defined, KJoK{=Kg.

The inclusion C,: C‘—» Cat is denoted d.

A subclass I of arrows of a category C is a right ideal if for any arrow f of C and
gof I, if gof is defined then it is in 1. An example of a right ideal is any Grothendieck
topology on C. If I is a right ideal (which need not be a subcategory of C), I* denotes
the subcategory consisting of all objects and identity arrows of C and all arrows of I.

A subcategory D of C is wide if it has the same objects as C. If C=Dol for some
subcategory D and right ideal I then C is generated by D and I. A functor H: A—B
lifts triangles if for all arrows f of A and h, k of B for which Hfoh and koHf are
defined, there are arrows u, v of A for which fou and vof are defined and Hu=h,
Hy=k. The motivation for requiring this property in wreath product decompositions
is discussed in WELLS [4, §4].

Theorem. Let C be a small category and G: C—Cat a functor. Let D be a
wide subcategory and I a right ideal which generate C. Then there is a subcategory S
of I wr D¢ (action by Jp), a triangle-lifting functor H: S—~C and a surjective natural
transformation

8: W -~ GoH where W ={(G|IY)wr Jp]S.

Note. This theorem cannot be strengthened to make GoH a subfunctor of W,
even when G is set valued and the categories are all monoids.

3. Proof of the Theorem. For an object ¢ of C, let §°: D c~1I* be the function
taking an arrow to its domain, and i°: D, c—~I' the function taking an arrow to the
identity arrow of its domain.

Define S as follows. An object of S is any pair (c, 6°) for any object ¢ of C.
Arrows are of the following two forms.

(3.1) (f, ®):(b, 8°) = (¢, 69
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for all arrows f: b—c¢ in D, and
(3.2) (K5, C hID, c):(c, 6°) - (e, 69
for all h: ¢c~d in I' and g: d—~e in D.

Let’s check that (3.2) makes sense ((3.1) is easier). An arrow of /! wr D¢ must by
definition be of the form (f, 1): (¢, P)—(d, Q) where f: ¢c~d, P: D, c-~1I!, Q:
D,d—~1', and A: P~QoJyf is a natural transformation (note that D, is discrete
so there are no commutativity conditions for natural transformations here). Here,
K¢: D,c~{g}cD,e. Foran object f: b—~c of D,c the component of the natural
transformation must be an arrow from §%=b to (6°0KJ)f=d°%=d. This works
because C_h.f=hof: b—d.

Define the functor H: S—~C by H(f,i*)=f and H(K{, C ,h)=goh.

We have the following formulas for composition of arrows in S, which prove
that H is a functor. H is bijective on objects, so lifts triangles.

(3.3) (g, 89)o(f, 8*) = (gof, 8"

for f: b>c, g: c+d in D ’

(.49 (Ks, C h)o (f, 8% = (K:, C, (hof))

for f: b—~c, h: c~d, g: d~e in D.

3.5) (g, 8%o(K2L, C k) = (K:om, C.k)

for k: b—c in I, m: c~d, g: d—e in D.

(3.6) (KS, Cum)o (K5, C, b) = (Kg, C,(mogoh))

for h: c~d, m: e~p inl, g: d—+e, n: p—~q in D.

To simplify notation in the definition of 8, the component of  at an object
(b, %) of S will be denoted 6b. First note that for each object b, W (b, 8°) is the dis-
joint union of categories Ga indexed by all arrows f: a—b of D. This follows from
the definition of the wreath product of functors in WELLS [4, §3]: An object of
W (b, 8% is a pair (f; x) with f: a—b (some a) and x an object of Ga. An arrow has
to look like (f;r): (f,x)~(f,y) where r: x—y in Ga, f: a~b in D, since Db
is a set (discrete category).

Now, to define the component 0b: W (b, 6°)~GoH (b, 8°)=Gb, set

(3.7 0b.(f, r) = Gf.r,
for f: a—~b in D, r an arrow of Ga.
To prove that 8 is a natural transformation requires (after applying the defini-
tion‘of H) proving the following diagrams commute.
W (b, 6*) 2~ Gb
(3.8) W) Jes
W (¢, 6) =~ Gec,
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for g: b—~c in D, and
W (b, "2~ Gb
W(KY, Cih) o
(3.9) | |ewen
W (c, 6°) 5~ Gc

for h: b->c in I and g: ¢—~d in D.

These facts follow from an easy application of the definitions. Given f: a—b
in D and starting at the upper left corner of (3.8), the northeast route gives (f, #)—
—(Gf) . r—~(GgoGf) . r and the southwest route gives (f, r)—{(gof, r)—~G(gof).r.
For (3.9) the corresponding chases are (f, r)—Gf. r—(G(goh)oGf).r and (f, r)—
(g, G(hof) . r)—(GgoG (hof)) . r.

This proves the Theorem.
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