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Wreath product decomposition of categories. II*) 

CHARLES WELLS 

1. Introduction. In this paper, I prove a theorem which shows how to decom-
pose a functor F: C—Cat into the wreath product of two functors, given a right 
ideal and a "wide" subcategory of C which together generate C (this is made precise 
in Section 2). 

The decomposition is in the sense of Krohn—Rhodes theory: the functor F 
is not embedded in a wreath product, but rather a subfunctor of the wreath product 
maps onto F, like a covering space. This is in contrast to the decomposition theorem 
of WELLS [4], although of course any embedding is an example of decomposition 
in the present sense. The theorem in this paper actually generalizes one of the de-
composition techniques used in proving the Krohn—Rhodes Theorem (KROHN— 
RHODES [2], EILENBERG [1], WELLS [3]), although it works just as well for infinite 
categories. Note that one of the corollaries of the decomposition theorem in WELLS 
[4] generalizes another of the techniques used in proving the Krohn—Rhodes 
Theorem. 

My hope is that the decomposition techniques described here and in WELLS [4] 
will be useful in developing a theory of "state-transition systems with structured, 
typed states". This is discussed in WELLS [4] so I will say no more about it here. 

The present paper is self-contained except for the terminology developed in 
Section 2 .3 o f WELLS [4]. 

I am grateful to the Forschungsinstitut für Math., E.T.H. Zürich, where I was 
a guest while these results were (in part) obtained. 

2. Statement of the theorem. If C, D are categories and x an object of D, the 
constant functor Kf takes all objects of C to x and all arrows to 1*. The constant 
completion of a subcategory A of Cat consists of the subcategory of Cat consisting 
of everything in A and all constant functors K'£ where a is an object of A and x is an 
object of some object of A. 
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*) Supported in part by DOE contract DE—AC01—80RA5256. 
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If C is a small category, the global horn functor C+: C— Cat takes an object c 
to the set of all arrows into c, and / : c-*d to the function from C+c to C+d which 
takes x: a—c to fox. C+ is set valued, regarded as a discrete-category-valued 
functor. 

The constant completion of a small category C, denoted Cc, is the constant com-
pletion in the sense defined earlier of the image of C+ . C+ is injective, and I shall 
identify C with its image, so that C + / : C+c—C+d is f : c-*d. I shall write Kx 

for This has the following notational consequences: 
a) Kx: c—d where x is an arrow with codomain d. (The notation does not 

determine dom x.) 
b) If Kc

x: c—d and g: d-e then goKc
x=Kc

gox. 
c) If Kc

x: c^d and h: b^c then Kc
xoh=Kb

x. 
d) If it is defined, Kd

yoKc
x=Kc

y. 
The inclusion C+: Cc— Cat is denoted dc. 
A subclass I of arrows of a category C is a right ideal if for any arrow/ of C and 

g of I, if gof is defined then it is in I. An example of a right ideal is any Grothendieck 
topology on C. If / i s a right ideal (which need not be a subcategory of C), I1 denotes 
the subcategory consisting of all objects and identity arrows of C and all arrows of I. 

A subcategory D of C is wide if it has the same objects as C. If C = D o / for some 
subcategory D and right ideal I then C is generated by D and I. A functor H: A—B 
lifts triangles if for all arrows / of A and h, k of B for which Hfoh and koHf are 
defined, there are arrows u, v of A for which fou and vof are defined and Hu=h, 
Hv=k. The motivation for requiring this property in wreath product decompositions 
is discussed in WELLS [4, §4] . 

Theorem. Let C be a small category and G: C—Cat a functor. Let D be a 
wide subcategory and I a right ideal which generate C. Then there is a subcategory S 
of I1 wr Dc (action by JD), a triangle-lifting functor H: S—C and a surjective natural 
transformation 

0:W-~GoH where W = [(Gl/1)wr /D] |S. 

Note . This theorem cannot be strengthened to make GoH a subfunctor of W, 
even when G is set valued and the categories are all monoids. 

3. Proof of the Theorem. For an object c of C, let <5C: D + c— I 1 be the function 
taking an arrow to its domain, and ic: D+c—I1 the function taking an arrow to the 
identity arrow of its domain. 

Define S as follows. An object of S is any pair (c, Sc) for any object c of C. 
Arrows are of the following two forms. 

(3.1) (/> ib)-(b, Sb) — (c, <5<) 
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for all arrows / : b—c in D, and 

(3.2) (Kg, C^hlD^c):^, Sc) — (e, <5e) 

for all h: c—d in I1 and g: d—e in D. 
Let's check that (3.2) makes sense ((3.1) is easier). An arrow of I1 wr D c must by 

definition be of the form (/, A): (c, P)-(d, Q) where / : c-d, P: D „ c - / 1 , Q: 
Ti^d—I1, and A: P—QoJDf is a natural transformation (note that D* is discrete 
so there are no commutativity conditions for natural transformations here). Here, 
Kc

g: D+c— { g } c D / . For an object / : b—c of D + c the component of the natural 
transformation must be an arrow from 6cf=b to (8eoKg)f—8eg=d. This works 
because C^h .f=hof: b—d. 

Define the functor H: S-C by H(f,ih)=f and H(Kc
g, Cifh)=goh. 

We have the following formulas for composition of arrows in S, which prove 
that H is a functor. H is bijective on objects, so lifts triangles. 

(3.3) (g, 8<)o(f, 3") = (go/, 5") 

for / : b—c, g: c-*d in D 

(3.4) (KB<, C ^ ) O ( f , 5b) = (K$, C*(hof)) 

for / : b—c, h: c->d, g: d—e in D. 

(3.5) (g, <5")°(Kb
m, C„fc) = (Kb

gam,C + k) 

for k: b—c in I, m: c—d, g: d—e in D. 

(3.6) (*„*, G,M)O(KC
B , h) = (K'n, C + (MOGOh)) 

for h: c—d, m: e—p in I,g: d—e, n: p—q in D. 
To simplify notation in the definition of 9, the component of 9 at an object 

(b, 5b) of S will be denoted 9b. First note that for each object b, W(b, db) is the dis-
joint union of categories Ga indexed by all arrows / : a—b of D. This follows from 
the definition of the wreath product of functors in WELLS [4, § 3]: An object of 
W(b, db) is a pair (/ , x) with / : a—b (some a) and x an object of Ga. An arrow has 
to look like ( f , r ) : (f,x)—(f,y) where r: x—y in Ga, f : a—b in D, since DJb 
is a set (discrete category). 

Now, to define the component 9b: W(b, 6h)-GoH(b, 5b)=Gb, set 

(3.7) 9b. ( / , r) = Gf. r, 

for / : a—b in D, r an arrow of Ga. 
To prove that 9 is a natural transformation requires (after applying the defini-

tion of H) proving the following diagrams commute. 

W(b, Gb 
( 3 . 8 ) Jc» 

W(c, ¿ c ) - s r Gc, 
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for g: b-*c in D, and 

W(IT9
B, CTA)J |C(90),) 

W(c, Ő0-5T G*c 

W(b, 5")-^ Gb 
(3.9) 

for h: b—c in I and g: c—d in D. 
These facts follow from an easy application of the definitions. Given / : a—b 

in D and starting at the upper left corner of (3.8), the northeast route gives ( / , r)>~* 
i-—(Gf). r>—(GgoGf) . r and the southwest route gives (/ , r)>-+(gof, r)t--G(gof). r. 
For (3.9) the corresponding chases are (/ , r)^Gf. r>-+(G(goh)oGf) . r and (/ , r)>— 

G(hof). r)~(GgoG(hof)) . r. 
This proves the Theorem. 
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