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Interval filling sequences and additive functions 

ZOLTÁN DARÓCZY and IMRE KÁTAI 

1. Introduction. Interval filling sequences have been defined in our paper [1]. 
Let A denote the set of all real sequences, for which the conditions 

(n€N) and L:= hold. 
n = l 

D e f i n i t i o n 1.1. We call the sequence {!„}€ A interval filling, if for any 
L] there exists a sequence {e„}, sn£ {0, 1} (w£N), such that 

(1.1) 
n=1 

We have the following result ([1]): 

Theorem 1.2. The sequence {X„}£A is interval filling if and only if 

(1.2) /.„=2 2 'A, 
i=n+1 

for any n£N. 

Let {2,,}6 A be an interval filling sequence. For Jc6[0, L} we define by induc-
tion on n 

1 if "Z 
(1.3) £„(*):= 

i=l 

0 if * i { x ) X l + k u ^ x . 
i=l 

It is known ([1]) that 

(1.4)" x= Zen(x)X„. 
n=i 

We call the representation (1.4) of the number x the regular expansion of x. 
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Def in i t i on 1.3. Let (A„}€ A be an interval filling sequence and a„£C such 
oo 

that ^ l°/>l Then we call the function 
n = l 

(1-5) F(x):= Z^n(x)an (x£[0, L]) 
n=l 

additive (with respect to the interval filling sequence A), where s„(x) denotes 
the digits (0, 1) determined by algorithm (1.3). 

In this paper we give an exact description of the set of those points in which an 
additive function is continuous. Following this, with the help of quasiregular expan-
sions we give a criterium for the continuity in [0, L] of additive functions. Thus we 
generalize our results obtained in [2] which referred to special interval filling se-
quences 

( 1 < ? S 2 ) . 

As to further properties of continuous additive functions, we refer to our result 
in [2], according which there exist an interval filling sequence and a function F con-
tinuous and additive with respect to it, such that this function is nowhere differentiable 
in [0, L]. 

In this paper {A„}6 A will denote an arbitrary but fixed interval filling sequence, 
even if we do not emphasize it explicitely. 

2. Finite numbers. Finite numbers will play a fundamental role in the sequel. 

Def in i t ion 2.1. Let {An}€/1 be an interval filling sequence. We call the num-
ber [0, L] finite, if there exists N£N such that e„(x)=0 for n>N. If x is finite 
and em(x) = l moreover en(x)=0 for n>m, then we say that x has length m, and 
write h(x)=m. We define h(0)=0, i.e. x = 0 is also a finite number. 

Let N£ N and 
(2.1) VN:= {t\t№L],h(t)^N} 

the set of finite numbers having length not greater than N. For 0 < x S L we put 

(2.2) bN (x) max {t 11£ VN, t < *} 

and call this number the left neighbour of x in V„. 

Lemma 2.1. Let 0 b e arbitrary. Then for any bN(x)~=y<x we have 

(2.3) en(y) = en[bN(x)] if n^N. 

Proof. If b N ( x ) < y ^ x then let 

y= Zen(y)K+ 2 « .GOV 
ii—X n=N+l 
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Clearly 

11 — 1 

The inequality bN(x)<SN(y)^y<x is impossible by the definition of bN(x). Thus 
SN(y)^bN(x). Now SN(y)<bN(x) implies the existence of a first index {1, 2, ... 
. . . , N } such that e*00=0 and e*[6tf(x)] = 1. From this, by algorithm (1.3), 

b„(x) S k£e„[bN(x)]+Xk = k2en(y)K+h > y 
n = l n = l 

follows, a contradiction. Thus SN(y)=bN(x), and this implies (2.3). 

3. Additive functions. 

Theorem 3.1. Let F: [0, Z,]—C be an additive function. Then F is continuous 
at every nonfinite point x. 

Proof . Let 0<x<Z< be a nonfinite number. Let e>0 . Then there exists 
iVoCN such that 

2 2 
n=J¥0+l 

N 
Let N > N 0 be such that x < 2 and put 

n = l 

j w (x) := min /}. 

Then x~zjN(x). We assert that 

(3.1) bN[jN(x)] < x < j N (x ) . 

As a matter of fact, ¿JVL/NMJ^X because x is nonfinite, and [/w(x)] would 
contradict the definition of jN(x). 

If (i-e- if ^ is in the neighbourhood (3.1) of x), then by 
Lemma 2.1 

£„00 = t>n{bN[jN(x)]} = e„(x) for n == N, 
whence 

ITO-fGOl = | J «.(*)«,- 2 en(y)a„\ = 
n = l 11=1 

= | 2 [en(x)-ea(y)an\^2 2 l«J <=«. 
•»w+i •=«+1 

i.e. F is continuous at x. 
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We still have to consider the case x—L (L is a nonfinite number). Here we must 
prove continuity from the left. Now 

bN(L) = max {t\t£VK, t < L = x} = 2 A„. 
n=i 

Hence, if bN(L)<y<L then by Lemma 2.1 £„(J>) = 1 for n^N. This implies 

№)-FO)| = | 2 [i-e-OOKl^2 2 Kl-e 
N=N +1 n=N +1 

for jV>jV0, i.e. F is left continuous in x=L. 

T h e o r e m 3.2. Let F: [0, L] — C be an additive function. Then F is right conti-
nuous at every finite point xG[0, L], 

Proof . Let x be finite and m=h(x). Then for any e > 0 there exists N>m 
such that 

2 kl < e-
n=W + l 

Now xZVN .We have by definitions ¿w[jA,(x)]=x. Hence by Lemma 2.1 for any 

* = bN[jN(x)] < y < J N W 
the relation 

holds. Hence 
£n(y) = ett{bN[jN(x)]} = e„0) (nrSN) 

| F ( * ) - F ( y ) | = I 2e„{x)a.- 2en(y)an\ = 

= \ 2 2 IflJ 
n=N+l n=N+l 

i.e. F is right continuous in x. 

4. Examples. 

E x a m p l e 4.1. Let {A„}£/1 be an interval filling sequence. Let moreover 
a1=a2 = l and a„=0 for « > 2 . The additive function determined by the sequence 
a„ is 

0 for 0 S i < Aa, 
F(x) — 1 for 

2 for ; t l +A 2 S X S L . 

Clearly, this function is not continuous at the finite points A2, On the basis 
of this the question arises, how exact are Theorems 3.1 and 3.2. The answer is given 
by the following example. 
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^Example 4.2. There exists with respect to the interval filling sequence 

|a„ :=—J(i A an additive function F which is noncontinuous at every finite point 

x > 0 . 
- 1 

Proof . We have L\— 2—=1 and the algorithm (1.3) yields the unique 
n~i 2" 

dyadic respresentation of the numbers x£[0, 1]. The numbers -^-(0g/<2") 

and only these are finite, any other number is nonfinite. Let a„\=^— for which 
n 

~ 1 7C2 

2 — = — , and let 
n=l n i 6 

for any x€[0, 1]. Let still x€]0, 1[ be finite and / ¡ ( x ) = m £ l . Then 

_ y sn(x) 1 
x 2" 2 m ' 

Let N > m and 
_ "U;1 e„(x) 0 1 1 

(4-U xN:— 2i ^ h^„ + 2m+i + ••• + 2N"-

Since the right hand side of (4.1) is a regular expansion of xN, we get 

(4.2) 

If F were continuous in x, then xN—x would imply F(xN)-*F(x) (N-~°°). 
However from (4.2) we get 

, m-1 en(x) n2 1 1 

and this would imply 

i.e. 
1 __ 7I2 1 1_ 

m2 6 l 2 m2 

which is a contradiction, because n2 is not rational. 
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5. Quasiregular expansions. Let A be an interval filling sequence.0For 
•x£[0, L], by induction on n, let 

(5.1) e î (*):= 
1 for "Z 

¡=i 

D for e t (x )X i +X n ^x . 
¡=i 

Theorem 5.1. For any x£[0, L] we have 

(5.2) x= 2h*n(x)K. 
n = l 

Proof , (i): For x=0 and x=L (5.2) is trivially valid, (ii): If 0 < x < L and 
e*(x)=0 for infinitely many values of n, then N0:={h |h£N , e*(x)=0} is an infinite 
set. If TJ€N0 then 

O S i - 2 £*(x)Xi 35 x- "z =S K 
¡=i ¡=1 

whence by (N€N0, n-»°°) (5.2) follows, (iii): If 0<x<L and £*(x)=0 
holds only for finitely many values of n, then let N be the greatest index, for which 
E*(X)=0 (i.e. e*(x) = l if n=~N). Then 

S - S V C * ) ^ ^ J A ; = 2 ST(X)XT 
¡ = 1 ¡ = « + 1 ¡=N + 1 

whence 

¿efGOA,, 
¡=i 

i.e. (5.2) holds. 

D e f i n i t i o n 5.2. We call the representation (5.2) the quasiregular expansion of x. 

Lemma 5.3. If 0 t h e n £^(x) = 1 for infinitely many values of n. 

Proof . Suppose the contrary, and let N be the largest index with ejj(x) = l . 
Then 

* = Z S T ( X ) X I = 2 \ T ( X ) X I + XN 
¡=1 i = 1 

and so by (5.1) E^(X)=0, a contradiction. 

Lemma 5.4. If 0 < x S l is a nonfinite number, then s„(x)=e*(x) for every 
N£N, i.e. the regular and quasiregular expansions coincide. 
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Proof. Suppose the contrary, and let k be the first index for which 
t^e^x). By the definitions of ek(x) and e£(x) then we have et(x) = l and £*(x)=0. 
Hence 

Si(x)Xt+Xk ^ x 
i = l 

and 
k-1 

i = l 

Now £f(x)=£*(x) for /=1 ,2 , ..., k — l; hence the previous inequalities yield 

fc—i 
x = 2 et(x)l,+Xk, ¡•=1 

i.e. x is finite, a contradiction. 
Quasiregular expansions make it possible to determine for a number 0 < x s i 

its left neighbour bN(x) (see Definition 2.1), and to describe exactly the regular ex-
pansion of the latter. This we formulate in the following statement. 

Theorem 5.5. If 0 t h e n 

(5.3) bN(x)= ien*(x)An , 
n = l 

where the right hand side is the regular expansion of bN (x), i.e. 

(5.4) sn[bs(x)] = e*(x) for « = 1,2, ...,7V. 

Proof. Suppose that, contradicting our assertion, there exists z£VN such that 
èjv(x)<z<x. 

(i) If x is nonfinite, then its regular and quasiregular expansions coincide. Let 
OO N N 

x=2e»(.x)X„. Then bN(x)= 2 en(x)K- Let z = 2 en(z)Xn . Since bN(x)~=z, 
(1=1 /1 = 1 11 = 1 

there exists a first index 2, ..., N} such that sk(x)?±ek(z). This is only possible 
if EK (z) = 1 and ek(x)=0. Hence 

¡=1 i=k+1 

k—l fc—1 
— 2 8i(z)AJ+Afc = 2 £ i(x)X i+Xk^x, 

J=I ¡ = I 
a contradiction. 

(ii) If x is finite, then let h(x)=m^l, i.e. 

m - 1 

X = 2 e„(x)Xn+Xm. 
N=I 

8 
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Then 

lm= 2*KU*i = 2 era J A, ¡=1 i=m+1 

because 6*(Am)=0 for /=1 , 2, ..., m. Hence 

m—1 oo 
(5.5) ^ e n ( * K + 2 

n - 1 »=m+l 

Clearly, the right hand side of (5.5) is the quasiregular expansion of x, i.e. 

(5.6) £„*(*) = 
e„(x) for n = 1, 2, .. . , m — 1, 
0 for n = m, 
e*(Am) for « = m + 1, m+2 , .... 

If m^N then the proof is the same as in (i). If m<N, then let z = 2 £n(z)^n-
n = l 

Now by bN(x)-<z there exists a first index m^k^N such that sk(z) = 1 and 
e*(x)=Q. Hence 

z = k£et(z)Xt + Xk+ 2 •««(*)A, S 
¡=1 i=k+1 

S k£*Mli+*k = S ' e f W A i + A t S x , 
¡=1 i = l 

I 

and this contradicts the condition z<x. 

6. Quasiadditive functions. The notion of quasiadditive function will be defined 
in analogy to that of additive function. 

D e f i n i t i o n 6.1. Let an£C and The function F: [0, L]-C 
n = l 

is said to be quasiadditive if 

(6.1) F(x)= 2s*n(x)an n = 1 

for any x€[0, L], where e*(x) denotes the digits 0, 1 determined by algorithm (5.1). 

Remark. If a„€C ( 2 K H °°) then this sequence determines an additive n=i 
function (say Fj), and a quasiadditive function (say F2). By Lemma 5.4. Fx(x) — 
=F2 (x) holds for any nonfinite x€[0, L], and trivially also for and x—L. 
Hence, in general, the two functions diifer only at the finite points 0<x<L. 

D e f i n i t i o n 6.2. We call the function F: [0, ZJ—C biadditive, if it is both 
additive and quasiadditive. 
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Lemma 6.3. The additive function F: [0, ZJ—C determined by the sequence 
oo 

a„€C ( 2 is biadditive if and only if 

(6.2) an = 2 
i=n+l 

is satisfied for every «(EN. 

.Proof, (i): If F is also quasiadditive, then 

K= 2 efOM i=n+l 
implies 

a„ = F(X„)= 2 ^a>.•> 
>"=n+l 

i.e. (6.2) holds, (ii): If (6.2) is valid, then by the foregoing it suffices to show that (6.1) 
holds for every finite number Let h(x)=m^l and 

m—1 m—1 oo 
x = 2 2 „+ 2 ztttJ^. 

n=l n=l i=m+1 

Then by (5.6) we know the quasiregular representation of x, hence using (6.2) we get 

Tit—1 F(x) = 2 £n(x)an+am = n-1 

m—1 oo oo 
= 2 en(x) a„+ 2 ztiUai = 2 e*(.x) an, n = l i=m+l /1=1 

i.e. (6.1) holds. 

Lemma 6.4. If F: [0, L]—C is additive and continuous in [0, L], then F is 
quasiadditive (i.e. F is biadditive). 

Proof. The function F is left continuous at every A„, where 

K= 2 efttJA,. 
i=n+1 

Let iV>rt and 

(6.3) bN(Xn) = 2 
i=n j-l 

8 * 



346 Z. Dar6czy, I. K&tai 

Then by Theorem 5.5 the right hand side of (6.3) is a regular expansion and bN(Xn)—K 
(for N— hence by continuity 

an = F(X„) = lim F[bN(K)] = N-+oo 

= lira 2 « f ( ^ ) « , = 5 e f O , K ' 

for every n(EN, i.e. (6.2) holds. From Lemma 6.3. it.follows immediately that F is 
quasiadditive (i.e. biadditive). 

Remark. By Lemma 6.4 quasiadditivity is a necessary condition for the conti-
nuity of an additive function F; also, by Lemma 6.3 it is necessary that for the 

sequence a„€C ( 2 the difference equations (6.2) (« = 1 ,2 , . . . ) should 
n — 1 

be valid. 

7. Continuous additive functions. 

Theorem 7.1. An additive function F: [0, L]-«-C is continuous in [0, L] if 
and only if it is quasiadditive (i.e. biadditive). 

Proof . By Theorems 3.1—3.2 and Lemma 6.4. it will be sufficient to show that 
if F is also quasiadditive then it is left continuous at every finite point 0 < x < £ . 

For the sequence a„€ C determining the additive function F it is clearly true 
that for any £ > 0 there exists N0 such that N>N0 implies 

2 2 
n = N + l 

Let x be finite and h(x)=m^\, i.e. 

m—1 

i = l 

If N > m then 

M*)= 2 ¿tttJh 

i = l i = m + l 

is a regular expansion (Theorem 5.5), and in case bN ( x ) < j < x we have by Lemma 2.1 

«»00 = U M * ) 1 ( n = 1,2, ...,N). 
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Hence by the quasiadditivity of F we get from (6.2) 

\F(x)-F{y)\ = \m£ei(x)ai+am-
¿=1 

1 e f ( A J « i - J 8«(y)«i| = 
¡ = 1 i = m + l l=N +1 

= | i [ e i ( J J - 8 , G 0 ] « , | s 2 i N < 6 , 

i.e. F is left continuous at x. 

Corollary. Let a„£C ( ¿ | ű „ | < ° ° ) a«<i F: [0, L]—C the additive function 
n = J 

determined by the sequence a„. Then for the continuity of F in [0, L\ it is necessary 
and sufficient that the difference equations (6.2) should be valid for every h£N . 

Remark. For 1 < ^ < 2 and 2„:= l/q" the previous statement has been proved 
in [2]. 
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