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On the integral of fundamental polynomials
of Lagrange interpolation

P. VERTESI

1. Introduction. Let X={x,,}, n=1,2,...; 1=k=n, bea triangulaf interpola-
tory matrix in [—1, 1], i.e. '

(1.1) ~l=x, <X p<.<x,=1 n=12, ..

If, sometimes omitting the superfluous notation,

wm=%%ﬂ=£&ﬁun=hhw

-

l then
12 L) = ln(X, %) = —-200)

———, k=1,2,..,n,
o (¥ (x =)

are the corresponding fundamental polynomials of Lagrange interpolation. It is
well known that the so called Lebesgue function and Lebesgue constant

(1'3) )'u(x) = j'n(A,’ x_) = 2 IIt(x)l’ An = An(X) = —-Il'ngaxxgl A,,(X)

k=

are of fundamental importance considering the convergence and divergence proper-
ties of the Lagrange interpolation. Many important properties can be found in [1]—
[7] and in their references.

One of them is as follows.

There exists a constant ¢,>0 such that we have for arbitrary X.

1

(149 / g’l (X, )] dx > ¢, log n.

-1
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This statement, proved by P. ErDSs and J. SzaBaDOs [3]V, was explicitly formu-
lated, perhaps first, in P. Erdds [2, p. 242], where he also stated (without proof) that

To every &>0 there exists a 6=>0 so that the number of indices k, 1=k=n,
for which

(1.5) J @)l dx <

dlogn
n

is less than en, and the number of k’s for which.

N .
f 1()ldx < ~cnﬁ is less than &I&n—.
-1

2. Results.

2.1. From (1.5) one could easily obtain (1.4). The first result in this paper gives
another statement by which we can get again (1.4).
Let x0u= 1’ xnn= - l’ lOn(x)=In+l, n(x) = 0;

@.1) Jo = [gsrm %) 0=k = n.
751
First a remark. If for a fixed k, 0sk=n, |Jyl>5, -:=—°§l, then
n

f A,(x) dx=4n (n=n,) which s even stronger than (1. 4) (see [3 case 1] and [3, (5)];

the last formula shows that |J,,|=251log A,/n if k#0, n; but it can easily be proved
for J, and J,, too).

Le. the real problem is to settle those so called “short” mtervals Jins for whrch
I‘] Iml = 5

The short interval J,,, is said to be exceptzonal iff for a glven sequence &= {a,,},, —1s
0-~< g,= 2, :

22) f (uk(x)|+uk+1(x)|) dx <.ce,logn -

IJ,,|

(where ¢ can be taken as 71680). Further let k€K, iff J, is exceptional Wef prove

Theorem 2.1. If e={e,} is given then for any fixed n the total measure of inter-
vals for which (2.2) is valid, could not exceed ¢,, or which is the same, -

(2.3) ' S Ml se n=12, ..
o2 Ml = _

1) (1.4) is an easy consequence of another statement in [1 Theorem 2] which was proved by.
P. Erdds and P. Vértesi (cf. [6] and [7]). P T SRt
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Now let us suppose that for a fixed n all the mtervals Jy. are short. Then, using
Theorem 2.1 with &, _1 we can wr1te

f Iy dx = = f 2 (uk(x)|+llk+1(x)|) dx =

k¢K

n -

1 .
’ ’ L. C . . ‘ Cc

[ L@+l () dx = 5-logn 3 [l = 5 logn,

1 o ' k&K,

i.e. we obtain (l 4). "

2.2. The next theorem gives information on both short and long mtervals
The interval J,, is-bad iff for ‘a given >0

.- . 8 -, T logn . .
(2.4) S f (LGN Hlly () dx < 1(0) EL, nzne),
where n(e) can be choosen as (10%- 14336)~ 2.2 ‘Further, let k€T, iff Jy; is bad.
Then we prove . -

Theorem-2.2.. By the prevzous notatzons :

(2.5) IS & k-GZT'",lenl é g if-n= no(s)

2.3. Finally we remark that én,alogdus results can be proved for a fixed interval
[a, b]c[—1, 1]. We omit the details. = -

3. Proof. B _
53,1, Proof of Theorem 2.1. If for a*fixed n, 0=, <(clogn)~Y ‘thén by
(3.1 LG+l =1 i 264y k=01, .m nzl,
(cf. [4; Lemma 4] .for . k=0, n; if k=0 (or n) .(3.1) comes from Il(x)ZI XZX)

(or 1,(x)=1, xSx,,)) we get

f(llk(x)|+|lk+l(x)l)dx> f( )>|Jk| IJklcs Togn, ie.

there is-no except10nal ‘interval. That means from NOW On We can suppose
clogn’.

6y

._'uv: :

n= 2,3

"3) Instead of'e; we can choose a sequence {e.} which would give n(e,) in (2.3). I hint with a
finer argument the relation #(g,)=cs, can be proved. :
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We introduce the following notations
(3.3) Ji(@) = Jin(@) = e sr+ gl xe—qlAl]l (0 =k <n),
where 0=¢=1/2. Let z,=2,,(g) be defined by

(3.4) lwa(z)l = min Jo,(x)l, k=0,1,..,n

x€4,(9)
finally let
Wi il = max (Ix;.—xil, [Xes1—xil) (0 =i, k= n).

In [5, Lemma 4.2] we proved
Lemma 3.1. If 1sk,r<n then for arbitrary 0<q=1/2

: NP G I/ I \
(3'5) ‘lk(x)l+|lk+l(x)l q2 Iw (zk)l I"raka‘ ’,f xe"r(q.)'

Later we shall also [6, Lemma 3.2]:
Lemma 3.2. Let Ik_[ak,bk], 1=k=t, t=2, be any t intervals in [~1, 1]
4 .
with |[LNI|=0, (k#)), L= (1=k=1), kz \Ll=p. Supposing that for certain
=l

integer R=2 we have p=2Rp, there exists the index s, 1=s=t, such that

t ) _ R
3.6 : Si= k —
(36) DT e

I, will be called accumilation interval of {I\};.,-

(Here and later mutatis mutandis we apply the: previous notations for arbitrary
intervals.)
‘Note that we do not require- b, =ay;.
Let 2 [yl :=pn, where K:=K,\{0;n}. If for a fixed n=ny(c,), - u,=¢,/2,
kEK
(2.3) holds true. So wé. 1nvest1gate those n=ny(e) p,=e,/10, say.
We now apply Lemma 3.2 for the exceptional J,,’s with p=p,, ¢=4, and

R= [log n'")+1, n€N, nz=ny(e) (shortly nEN).

Denote by M,=M,, the accumulation interval. Dropping Ml, we apply Lemma
3.2 again for the remaining exceptional intervals with p=p,—|M,|>u,/2 and the
above g and R, supposing u,=o"*! whenever n€N,. We denote the accumulation
interval by M,. At the i-th step (2=i=y,) we drop M,, M,, ... M, ; and apply-

. Lemma 3.2 for the remaining exceptional intervals with p=p,— IZ M, using the.
same @ and R
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Here ¥, is the first index for which
¥t Un >
(3.7) ’ 2 !M,l = -2— but 2’ |Ml > -—, nEN,.
fm=1 i=1

If we denote by My 1, My sz, s M, the remaining (i.e. not accumu]étion)
exceptional intervals, by (3.6) we can write

S M Uplogn .
(3.9 kgf A =1 if 1sr=y, (nEN,.

Now we have

(3.9) “2’,; j(llk(x)|+|lk+1(x)l) dx = 2 Z f(llk(x)l+|lk+l(x)l) dx =¥

k=1r=1

L w@)| M
3{5 (=2 M\g* | S Tar 2y =

2(1—2q) % [[w(z,) lw(fk)l] MM
= 2 k=1r I(D(Zk) |w(2r)l |MraMk| o

% M, wlogn - 1
2(1 — =7
=g (1 2q) Z' My Z’ M, M, 16-2-2-112 =3

(see (3.5), (3.7) and (3.8); we used that x+x"1=2).
On the other hand, by (2.2)

A . : .
S [ (L +lhaa @) dx <ce,logn 3 1] = cepalogn
EEK, _1 k€K,

ie. pllogn<7168 ce,p,logn, from where by p,=e, /10 1<71680c, a contra-
diction if ¢=(71680)"! and n=n,.
If n=ny, by (3.1) we have for arbitrary k, 0=k=n,

f (LI +ll 1 () dx = / () = | = [ 2clog ny = |yl ce, log n

whenever 2clogn,=1. Cons1dermg, that if no—10“° 2clogny=1, indeed. But
then for n=ny(e), K,=#, which gives the statement for arbitrary n=2.

3.2. Proof of Theorem 2.2. If |J,|=J,, then by @3.1)

f (U + U2 () dx = FISLELE Tologn,

3) We denote the fundamental polynomials corresponding to M, by A(x) and 4., ,(x), the
corresponding minimums are |w(Z)].
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i.e. a long interval could not be bad. Considering the short intervals, again we. sup-
pose that u,:= > |/,,|=¢/10 to get a contradiction. Then, as above, we obtain
kET, . - .

that for n=ny(e)

pilogn : -
Hoe =2 (e +Hh () dwi= P

By (2.3), P=<|T,In() log n =2(e)log n, ie.

g2logn wlogn
107068 = 7168~ 1 =2n@logn,

a contradiction, if (e)=(10%- 14 336)7%%, n=nq (o).
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