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On the integral of fundamental polynomials 
of Lagrange interpolation 

P. VÉRTESI 

1. Introduction. Let X={xk„}, « = 1 ,2 , . . . ; l^k^n, be a triangular interpola-
tory matrix in [—1, 1], i.e. 

(1-1) « = 1 , 2 

If, sometimes omitting the superfluous notation, 

n 
co(x) = a}„(X, x)= H (x-xk), n = 1, 2, ..., 

*=l 
then 

(1.2) = = fc = 1,2, . . . ,„ , 

are the corresponding fundamental polynomials of Lagrange interpolation. It is 
well known that the so called Lebesgue function and Lebesgue constant 

(1.3) Xn(x) := X„(X, x) := 2 \lk(x)\, An := An(X) := max XB(x) 
t = l - 1 S X S 1 

are of fundamental importance considering the convergence and divergence proper-
ties of the Lagrange interpolation. Many important properties can be found in [1]— 
[7] and in their references. 

One of them is as follows. 

There exists a constant ^>0 such that we have for arbitrary X. 

(1.4) / 2 x)\ dx > c1 log n. 
- i *=i 
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This statement, proved by P. ERDŐS and J. SZABADOS [3]^, was explicitly formu-
lated, perhaps first, in P. Erdős [2, p. 242], where he also stated (without proof) that 

To every e > 0 there exists a ő > 0 so that the number of indices k, l^k^n, 
for which 

0 . 5 ) F M X ) L D X < É } ^ L 

is less than en, and the number of k's for which 

f\lk(x)\dx^^- is less than -ElÍEiZL. 

2. Results. 

2.1. From (1.5) one could easily obtain (1.4). The first result in this paper gives 
another statement by which we can get again (1.4). 

Let x0n=l, *„„= - 1 , l0n(x)=ln+1,„(x) = 0, 

(2.1) 4 = O s f k s n . 

75 log n 
First a remark. If for a fixed k, OákáH, |/k„|><5n:= , then 

n 
l 

J Xn(x) dx^4n (n^Hj) which is even stronger than (1.4) (see [3, case 1] and [3, (5)]; 
- I 
the last formula shows that \Jkn\-^25 log AJn if k=^0, n; but it can easily be proved 
for / 0 and J„, too). 

I.e. the real problem is to settle those so called "short" intervals Jkn, for which 

The short interval Jkn is said to be exceptional iff for a given sequence s = {s„}^Lx, 
0~=ens2, 

i i 
(2.2) -r-j f (\lk(x)\ + \lk+1(x)\)dx ^ cejogn 

I'toil _I 

(where c can be taken as 71680). Further, let k£K„ iff Jkn is exceptional. We prove 

Theorem 2.1. If e = {en} is given then for any fixed n the total measure of inter-
vals for which (2.2) is valid, could not exceed e„, or which is the same, 

(2.3) n = 1, 2, . . . . 
*€K„ 

l) (1.4) is an easy consequence of another statement in [1, Theorem 2] which was proved by. 
P. Erdős and P. Vértesi (cf. [6] and [7]). :.. • .. 
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Now let us suppose that for a fixed n all the intervals Jkn are short. Then, using 
Theorem 2.1 with £„ = 1, we can write 

j \ n ( x ) d x ^ \ f •2(\h(x)\ + \h+1(x)\)dx^ 
- i 2 - i *=i 

s I 2 ! (Mx)\ + \h+i(x)\)dx S y logn 2 V.J S y log«, 

i.e. we obtain (1.4). 

2.2. The next theorem gives information on both short and long intervals. 
The interval Jkn is bad iif for a given c > 0 ; 

(2.4) .; J(\lk(x)\ + \lk+1(x)\) dx < t,(e) n £ n0(e), 

where r\(s) can be choosen as (102 • 14336)-1s2.2) Further, let k£Tn iff Jkn is bad. 
Then we proye 

Theorem 2.2. By the previous notations 

(2.5) • • • 2 U J « if ' n ^ n0(e). • . 
ktTn 

2.3. Finally we remark that analogous results can be proved for a fixed interval 
[a, ¿>]c [ - l , 1]. We omit the details. 

3. Proof. 

3.1. P r o o f of Theorem 2.1. If for a fixed n, 0<eA<(c log ri)~\ then by 

( 3 . 1 ) + S i i f *<iJkr k = 0 , 1 , . . . , n, n . s 1, 

(cf. [4, Lemma 4] for k^O, n; if &=0 (or n), (3.1) comes from 
(or /„(x)S 1, x^x„)) we get. 

l\\lk(x)\ + \lk+1(x)\)dx^ /(...) ^\Jk\>\Jk\ce„logn, i.e. 
-X JK 

there is no exceptional interval. That means from now on we can suppose 

C3.2) ; ; V=2 ,3 , ' . : : . • c log n 

a) instead of s, we can choose a sequence {e„} which would give t](e„) in (2.3). I hint with a 
finer argument the relation ^(e„)=C6„ can be proved. 
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We introduce the following notations 

(3.3) Jk(q) = JkM = [xk+1 + q\Jk\, xk-q\Jk\] (0 Si fc < л), 

where Let zk=zkn(q) be defined by 

(3.4) K(z») | = mini K ( x ) | , k = 0 , 1 , . . . . n, * с »fcWJ 
finally let 

| / f , Jk\ = шах ( | x i + 1 — \ x k + i - X j | ) (0 Ш i, к ^ л). 

In [5, Lemma 4.2] we proved 
Lemma 3.1. If 1 Sfc, r«=n then for arbitrary 0 < 9 ё 1 / 2 

(3.5) \lk(x)\ + \lk+1(x)\^q* toffi' 1 Л ' if XZJM-

\<>>n\.zk)\ IЛ» Л1 

Later we shall also [6, Lemma 3.2]: 

Lemma 3.2. Let Ik=[ak,bt], 1 Sk^t, t s 2 , be any t intervals in [—1, 1] t 
with | / .07,1 = 0, (k^j), | Ik\^Q (l^k^t), У \1к\=ц. Supposing that for certain 

integer Лё2 we have p^2RQ, there exists the index s, l^sSt, such that 

/s will be called accumilation interval of {/Jt}j_1. 

(Here and later mutatis mutandis we apply the previous notations for arbitrary 
intervals.) 

Note that we do not require 

Let 2 1Л1 where К'„:=Кп\{0, л}. If for a fixed лёл0(ея), 

(2.3) holds true. So we investigate those пёл0(е) дяёев/10, say. 
We now apply Lemma 3.2 for the exceptional Jk„'s with p=fiK, e=£„ and 

i?=[lognx/ ,] + l, n£N, лёл0(е) (shortly лбЛ^). 
Denote by M x = M l n the accumulation interval. Dropping Mj, we apply Lemma 

3.2 again for the remaining exceptional intervals with p=pu-\M1\^-pJ2 and the 
above q and R, supposing fi„^eR+l whenever л^Л^. We denote the accumulation 
interval by M2. At the z'-th step we drop M u M t , ..., M i_ 1 and apply 

i - i 
Lemma 3.2 for the remaining exceptional intervals with p=p„—j2\Mt\ using the. 

same q and R. 
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Here i[/„ is the first index for which 

(3.7) 
*n-1 
2 but 2 W I > f > 1-1 ^ 1 = 1 -i 

Un 

If we denote by M^ + 1 , M^ + 2 , ..., M^ the remaining (i.e. not accumulation) 
exceptional intervals, by (3.6) we can write 

(3.8) \ M k \ fa log n 
112 

if 1 («gJVi). 

(3.9) 

& I M„ Mk I " 

Now we have 

2 J ( | /k(*)l+ \h+ i toi) dx^ 2 2 f (Mx)\+\h+i(x)\) dx S » 

S 2V-ï<ù\Mrw * = 1r=1 
Û)(zr) 
tö(Zfc) |M„ MJ 

2 2 
¡=1 r=l V 

co(zr) 
<o{zk) 

+ <b(Z*) 
J |Mr,M*| -<u(zr) 

if 4 = 1 16-2-2-112 * 2 

(see (3.5), (3.7) and (3.8); we used that x + r 1 s 2 ) . 
On the other hand, by (2.2) 

.1 

2 / (IW*)i+IW*)l)<*x<=M;iog'n 2 1-41 = ce„/iniog« 

i.e. ^ log n -= 7168 ce„ /i„ log n, from where by 10 1<71 680c, a contra-
diction if c=(71 680) - 1 and « s « 0 . 

If nSnQ, by (3.1) we have for arbitrary k, Osk^n, 

J(\lk(x)\ + \lk+i(x)\)dx is f (...) ë | / t | s | /J2c logu, s | / t |ceB logn 
- i J* 

whenever 2c log 1. Considering, that if no=104ao, 2c log 1, indeed. But 
then for Hë«o(fi), ATB =0, which gives the statement for arbitrary 2. 

3.2. Proof of Theorem 2.2. If | /Js<5„, then by (3.1) 

j\\h(.x)\ + \lk+1(x)\)dx s / (...)dx S |/4| s 

*) We denote the fundamental polynomials corresponding to Mk, by /k(x) and 4 + i W . the 
corresponding minimums are |co(i„)|. 
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i.e. a long interval could not be bad. Considering the short intervals, again we sup-
pose that n„:= 2 ! I An I =£/10 to get a contradiction. Then, as above, we obtain 

*€r„ 
that for 7îë«0(e) 

2 ¡(\k(x)\ + \lk+1(x)\)dx:=P. 

II05 k£Tn_\ 

By (2.3), |Tn\ r,(e) S2r,(e)Tog n, i.e. 

e2 log n u2 log n _ . . ., 1 5 T W . : 
a contradiction, if >/(e)=(102-14 336)_1e2, në«0(e). 
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