On the integral of fundamental polynomials of Lagrange interpolation

P. VÉRTESI

1. Introduction. Let $X = \{x_{kn}\}$, n = 1, 2, ...; $1 \le k \le n$, be a triangular interpolatory matrix in [-1, 1], i.e.

$$(1.1) -1 \leq x_{nn} < x_{n-1, n} < ... < x_{1n} \leq 1, \quad n = 1, 2,$$

If, sometimes omitting the superfluous notation,

$$\omega(x) = \omega_n(X, x) = \prod_{k=1}^n (x - x_k), \quad n = 1, 2, ...,$$

then

(1.2)
$$l_k(x) = l_{kn}(X, x) = \frac{\omega(x)}{\omega'(x_k)(x-x_k)}, \quad k = 1, 2, ..., n,$$

are the corresponding fundamental polynomials of Lagrange interpolation. It is well known that the so called Lebesgue function and Lebesgue constant

(1.3)
$$\lambda_n(x) := \lambda_n(X, x) := \sum_{k=1}^n |l_k(x)|, \quad \Lambda_n := \Lambda_n(X) := \max_{-1 \le x \le 1} \lambda_n(x)$$

are of fundamental importance considering the convergence and divergence properties of the Lagrange interpolation. Many important properties can be found in [1]—[7] and in their references.

One of them is as follows.

There exists a constant $c_1>0$ such that we have for arbitrary X.

(1.4)
$$\int_{k=1}^{1} \sum_{k=1}^{n} |l_{kn}(X, x)| dx > c_1 \log n.$$

Received December 1, 1985.

394 P. Vértesi

This statement, proved by P. Erdős and J. SZABADOS [3]¹⁾, was explicitly formulated, perhaps first, in P. Erdős [2, p. 242], where he also stated (without proof) that

To every $\varepsilon > 0$ there exists a $\delta > 0$ so that the number of indices k, $1 \le k \le n$, for which

$$(1.5) \qquad \int_{-1}^{1} |l_k(x)| \, dx < \frac{\delta \log n}{n}$$

is less than en, and the number of k's for which

$$\int_{-1}^{1} |l_k(x)| \, dx < \frac{c_2}{n} \quad \text{is less than} \quad \frac{c_3 \log n}{n} \, .$$

2. Results.

2.1. From (1.5) one could easily obtain (1.4). The first result in this paper gives another statement by which we can get again (1.4).

Let
$$x_{0n}=1$$
, $x_{nn}=-1$, $l_{0n}(x)=l_{n+1,n}(x)=0$,

(2.1)
$$J_{kn} = [x_{k+1,n}, x_{kn}], \quad 0 \le k \le n.$$

First a remark. If for a fixed k, $0 \le k \le n$, $|J_{kn}| > \delta_n := \frac{75 \log n}{n}$, then

 $\int_{-1}^{1} \lambda_n(x) dx \ge 4n \ (n \ge n_1)$ which is even stronger than (1.4) (see [3, case 1] and [3, (5)]; the last formula shows that $|J_{kn}| \le 25 \log \Lambda_n/n$ if $k \ne 0, n$; but it can easily be proved for J_0 and J_n , too).

I.e. the real problem is to settle those so called "short" intervals J_{kn} , for which $|J_{kn}| \le \delta_n$.

The short interval J_{kn} is said to be exceptional iff for a given sequence $\varepsilon = \{\varepsilon_n\}_{n=1}^{\infty}$, $0 < \varepsilon_n \le 2$,

(2.2)
$$\frac{1}{|J_{kn}|} \int_{-1}^{1} (|l_k(x)| + |l_{k+1}(x)|) dx < c\varepsilon_n \log n$$

(where c can be taken as 71680). Further, let $k \in K_n$ iff J_{kn} is exceptional. We prove

Theorem 2.1. If $\varepsilon = \{\varepsilon_n\}$ is given then for any fixed n the total measure of intervals for which (2.2) is valid, could not exceed ε_n , or which is the same,

(2.3)
$$\sum_{k \in K_n} |J_{kn}| \leq \varepsilon, \quad n = 1, 2, \ldots.$$

r : ·

^{1) (1.4)} is an easy consequence of another statement in [1, Theorem 2] which was proved by P. Erdős and P. Vértesi (cf. [6] and [7]).

Now let us suppose that for a fixed n all the intervals J_{kn} are short. Then, using Theorem 2.1 with $\varepsilon_n = 1$, we can write

$$\int_{-1}^{1} \lambda_{n}(x) dx \ge \frac{1}{2} \int_{-1}^{1} \sum_{k=1}^{n} (|l_{k}(x)| + |l_{k+1}(x)|) dx \ge$$

$$\ge \frac{1}{2} \sum_{k \in K_{n}} \int_{-1}^{1} (|l_{k}(x)| + |l_{k+1}(x)|) dx \ge \frac{c}{2} \log n \sum_{k \in K_{n}} |J_{kn}| \ge \frac{c}{2} \log n,$$

i.e. we obtain (1.4).

2.2. The next theorem gives information on both short and long intervals. The interval J_{kn} is bad iff for a given $\varepsilon > 0$

(2.4)
$$\int_{-1}^{1} \left(|l_k(x)| + |l_{k+1}(x)| \right) dx < \eta(\varepsilon) \frac{\log n}{n}, \quad n \ge n_0(\varepsilon),$$

where $\eta(\varepsilon)$ can be choosen as $(10^2 \cdot 14336)^{-1}\varepsilon^{2}$. Further, let $k \in T_n$ iff J_{kn} is bad. Then we prove

Theorem 2.2. By the previous notations

(2.5)
$$\sum_{k \in T_n} |J_{kn}| \le \varepsilon \quad \text{if} \quad n \ge n_0(\varepsilon).$$

2.3. Finally we remark that analogous results can be proved for a fixed interval $[a, b] \subset [-1, 1]$. We omit the details.

3. Proof.

3.1. Proof of Theorem 2.1. If for a fixed n, $0 < \varepsilon_n < (c \log n)^{-1}$, then by

And the training are greater to the great are to

$$(3.1) |l_k(x)| + |l_{k+1}(x)| \ge 1 \text{if} x \in J_{k}, k = 0, 1, ..., n, n \ge 1,$$

(cf. [4, Lemma 4] for $k \neq 0$, n; if k = 0 (or n), (3.1) comes from $l_1(x) \ge 1$, $x \ge x_1$ (or $l_n(x) \ge 1$, $x \le x_n$) we get

$$\int_{-1}^{1} (|l_k(x)| + |l_{k+1}(x)|) dx \ge \int_{I_k} (...) \ge |J_k| > |J_k| c\varepsilon_n \log n, \text{ i.e.}$$

there is no exceptional interval. That means from now on we can suppose

$$\varepsilon_n \ge \frac{1}{c \log n}, \quad n = 2, 3, \dots$$

²) Instead of ϵ , we can choose a sequence $\{\epsilon_n\}$ which would give $\eta(\epsilon_n)$ in (2.3). I hint with a finer argument the relation $\eta(\epsilon_n) = c\epsilon_n$ can be proved.

396 P. Vértesi

We introduce the following notations

$$(3.3) J_k(q) = J_{kn}(q) = [x_{k+1} + q|J_k|, x_k - q|J_k|] (0 \le k < n),$$

where $0 \le q \le 1/2$. Let $z_k = z_{kn}(q)$ be defined by

(3.4)
$$|\omega_n(z_k)| = \min_{x \in J_k(q)} |\omega_n(x)|, \quad k = 0, 1, ..., n,$$

finally let

$$|J_i, J_k| = \max(|x_{i+1} - x_k|, |x_{k+1} - x_i|) \quad (0 \le i, k \le n).$$

In [5, Lemma 4.2] we proved

Lemma 3.1. If $1 \le k$, r < n then for arbitrary $0 < q \le 1/2$

$$(3.5) |l_k(x)| + |l_{k+1}(x)| \ge q^2 \frac{|\omega_n(z_r)|}{|\omega_n(z_k)|} \frac{|J_k|}{|J_r, J_k|} if x \in J_r(q).$$

Later we shall also [6, Lemma 3.2]:

Lemma 3.2. Let $I_k=[a_k,b_k]$, $1 \le k \le t$, $t \ge 2$, be any t intervals in [-1,1] with $|I_k \cap I_j| = 0$, $(k \ne j)$, $|I_k| \le \varrho$ $(1 \le k \le t)$, $\sum_{k=1}^t |I_k| = \mu$. Supposing that for certain integer $R \ge 2$ we have $\mu \ge 2^R \varrho$, there exists the index s, $1 \le s \le t$, such that

(3.6)
$$S := \sum_{k=1}^{t} \frac{|I_k|}{|I_k, I_k|} \ge \frac{R}{8} \mu.$$

 I_s will be called accumilation interval of $\{I_k\}_{k=1}^t$.

(Here and later mutatis mutandis we apply the previous notations for arbitrary intervals.)

Note that we do not require $b_k \le a_{k+1}$.

Let $\sum_{k \in K'_n} |J_k| := \mu_n$, where $K'_n := K_n \setminus \{0, n\}$. If for a fixed $n \ge n_0(\varepsilon_n)$, $\mu_n \le \varepsilon_n/2$,

(2.3) holds true. So we investigate those $n \ge n_0(\varepsilon)$ $\mu_n \ge \varepsilon_n/10$, say.

We now apply Lemma 3.2 for the exceptional J_{kn} 's with $\mu = \mu_n$, $\varrho = \delta_n$ and $R = [\log n^{1/2}] + 1$, $n \in \mathbb{N}$, $n \ge n_0(\epsilon)$ (shortly $n \in \mathbb{N}_1$).

Denote by $M_1 = M_{1n}$ the accumulation interval. Dropping M_1 , we apply Lemma 3.2 again for the remaining exceptional intervals with $\mu = \mu_n - |M_1| > \mu_n/2$ and the above ϱ and R, supposing $\mu_n \ge \varrho^{R+1}$ whenever $n \in N_1$. We denote the accumulation interval by M_2 . At the i-th step $(2 \le i \le \psi_n)$ we drop $M_1, M_2, ..., M_{i-1}$ and apply Lemma 3.2 for the remaining exceptional intervals with $\mu = \mu_n - \sum_{j=1}^{i-1} |M_i|$ using the same ϱ and R.

Here ψ_n is the first index for which

(3.7)
$$\sum_{i=1}^{\psi_n-1} |M_i| \leq \frac{\mu_n}{2} \quad \text{but} \quad \sum_{i=1}^{\psi_n} |M_i| > \frac{\mu_n}{2}, \quad n \in N_1.$$

If we denote by M_{ψ_n+1} , M_{ψ_n+2} , ..., M_{φ_n} the remaining (i.e. not accumulation) exceptional intervals, by (3.6) we can write

(3.8)
$$\sum_{k=r}^{\varphi_n} \frac{|M_k|}{|M_r, M_k|} \ge \frac{\mu_n \log n}{112} \quad \text{if} \quad 1 \le r \le \psi_n \quad (n \in N_1).$$

Now we have

(3.9)
$$\sum_{k \in K_n} \int_{-1}^{1} \left(|l_k(x)| + |l_{k+1}(x)| \right) dx \ge \sum_{k=1}^{\varphi_n} \sum_{r=1}^{\varphi_n} \int_{M_r}^{\varphi_r} \left(|l_k(x)| + |l_{k+1}(x)| \right) dx \ge \frac{3}{2}$$

$$\ge \sum_{k=1}^{\varphi_n} \sum_{r=1}^{\varphi_n} (1 - 2q) |M_r| q^2 \left| \frac{\omega(\bar{z}_r)}{\omega(\bar{z}_k)} \right| \frac{|M_k|}{|M_r, M_k|} \ge$$

$$\ge \frac{q^2 (1 - 2q)}{2} \sum_{k=1}^{\varphi_n} \sum_{r=1}^{\varphi_n} \left(\left| \frac{\omega(\bar{z}_r)}{\omega(\bar{z}_k)} \right| + \left| \frac{\omega(\bar{z}_k)}{\omega(\bar{z}_r)} \right| \right) \frac{|M_r| |M_k|}{|M_r, M_k|} \ge$$

$$\ge q^2 (1 - 2q) \sum_{k=1}^{\psi_n} |M_k| \sum_{r=k}^{\varphi_n} \frac{|M_r|}{|M_r, M_k|} > \frac{\mu_n^2 \log n}{16 \cdot 2 \cdot 2 \cdot 112} \quad \text{if} \quad q = \frac{1}{2}$$

(see (3.5), (3.7) and (3.8); we used that $x+x^{-1} \ge 2$). On the other hand, by (2.2)

$$\sum_{k \in K_n} \int_{-1}^{1} (|l_k(x)| + |l_{k+1}(x)|) dx < c\varepsilon_n \log n \sum_{k \in K_n} |J_k| = c\varepsilon_n \mu_n \log n$$

i.e. $\mu_n^3 \log n < 7168 c \varepsilon_n \mu_n \log n$, from where by $\mu_n \ge \varepsilon_n/10 \ 1 < 71680c$, a contradiction if $c = (71680)^{-1}$ and $n \ge n_0$.

If $n \le n_0$, by (3.1) we have for arbitrary k, $0 \le k \le n$,

$$\int_{-1}^{1} \left(|l_k(x)| + |l_{k+1}(x)| \right) dx \ge \int_{J_k} (\ldots) \ge |J_k| \ge |J_k| 2c \log n_0 \ge |J_k| c\varepsilon_n \log n$$

whenever $2c \log n_0 \le 1$. Considering, that if $n_0 = 10^{420}$, $2c \log n_0 \le 1$, indeed. But then for $n \le n_0(\varepsilon)$, $K_n = \emptyset$, which gives the statement for arbitrary $n \ge 2$.

3.2. Proof of Theorem 2.2. If $|J_{kn}| \ge \delta_n$, then by (3.1)

$$\int_{-1}^{1} (|l_k(x)| + |l_{k+1}(x)|) dx \ge \int_{J_k} (...) dx \ge |J_k| \ge \frac{75 \log n}{n},$$

³) We denote the fundamental polynomials corresponding to M_k , by $l_k(x)$ and $l_{k+1}(x)$, the corresponding minimums are $|\omega(\bar{z}_k)|$.

i.e. a long interval could not be bad. Considering the short intervals, again we suppose that $\mu_n := \sum_{k \in T_n} |J_{kn}| \ge \varepsilon/10$ to get a contradiction. Then, as above, we obtain that for $n \ge n_0(\varepsilon)$

$$\frac{\mu_n^2 \log n}{7168} < \sum_{k \in T_n} \int_{-1}^{1} (|l_k(x)| + |l_{k+1}(x)|) dx := P.$$

By (2.3), $P < |T_n| \eta(\varepsilon) \frac{\log n}{n} \le 2\eta(\varepsilon) \log n$, i.e.

$$\frac{\varepsilon^2 \log n}{10^2 \cdot 7168} \leq \frac{\mu_n^2 \log n}{7168} < P \leq 2\eta(\varepsilon) \log n,$$

a contradiction, if $\eta(\varepsilon) = (10^2 \cdot 14336)^{-1} \varepsilon^2$, $n \ge n_0(\varepsilon)$.

References

- [1] P. Erdős, Problems and results on the theory of interpolation. I, Acta Math. Hungar., 9 (1958), 381—388.
- [2] P. Erdős, Problems and results on the theory of interpolation. II, ibid, 12 (1961), 235-244.
- [3] P. Erdős, J. Szabados, On the integral of the Lebesgue function of interpolation, ibid, 32 (1978), 191—195.
- [4] P. Erdős, P. Turán, On interpolation. II, Ann. of Math., 41 (1940), 510-553.
- [5] P. Erdős, P. Vértesi, On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes, *Acta Math. Hungar.*, 36 (1980), 71—89 and 38 (1981), 263.
- [6] P. Erdős, P. Vértesi, On the Lebesgue function of interpolation, Functional Analysis and Approximation ISNM 60, Birkhäuser Verlag (Basel, 1981), 299—309.
- [7] P. Vérresi, New estimation for the Lebesque function of Lagrange interpolation, Acta Math. Hungar., 40 (1982), 21-27.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES REALTANODA U. 13—15 1053 BUDAPEST, HUNGARY