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Comparison theorems and convergence properties .
for functional differential equations with infinite delay

J. HADDOCK?*), T. KRISZTIN and J. TERJEKI

Dedicated to Lajos Pintér on his 60th birthday

1. Introduction -

In the general area of stability theory for functional differential equatlons
Lyapunov functions (Lyapunov-—-Razumikhin or — Krasovskii functions) often are
employed instead of Lyapunov functionals [8, 12]. The derivative of such a function
with respect to the equation under investigation is estimated from above on some
appropriately chosen subset of the underlying solution (phase) space. The method
requires a comparison theorem (or theorems) since the Lyapunov function in ques-
tion usually is compared to a solution of a certain ordinary differential equation.

The technique of comparison theorems has been thoroughly investigated for
functional differential equations with finite delay. (See, for example, [2, 6, 9].) For
infinite delay cases DRIVER [1] obtained the first results, and his technique has been
generalized in several directions and applied to examine various notions of stability. -
For instance, KATo [7] and ZHICHENG [13] have obtained results for general “admfs-
-sible” phase spaces, while PARROTT [11] developed her work in terms of certain .
(exponentially weighted) C, spaces. In a recent paper of the authors [3], this method
was applied for general C, spaces, but the comparison differential equation was only
a trivial one.

In the present paper we examine the technique of comparison results from several
points of view. In Section 2 we formulate general comparison theorems in terms. of .
arbitrary real functions and then apply the theorems (in Section 3) to obtain various
convergence results for these functions. Among the consequences of Section 3 there
is a generalization of the main convergence result of [4] for semigroups on a special
function space.

*) Supported in part by the US National Science Foundation under Grant MCS-8301304.
Received June 28, 1985.



400 : J. Haddock, T. Krisztin, J. Terjéki

As may be surmised from the title, one of our primary motivations has been
to generate convergence theorems for solutions of functional differential equations
with infinite delay. This is accomplished in Section 4 with the aid of the work in
Sections 2 and 3. The main thrust in Section 4 is to compare convergence prop-
erties of certain functionals W (=W (, x,)) to corresponding properties of related
Lyapunov functions ¥ (=V (t, x(1))).

The paper is concluded with several examples given in Section 5.

2. Comparison theorems

Let w: R*XR*—-R* be a continuous function, ¢, #4,€ R* and let u(r) be
the maximal solution of

W {u'(t)=cu(t, u(®) (t=t)

u(te) = uy

‘on an interval [ty, @) (fp,<a=). Let f: R*~R* g: R—R*, and let g be conti-
nuous on [fy, ).

Theorem 1. ff for all t€[ty, a) the inequalities

A | () = 1),

(B f0) = max{_max g(t+s), ft—n)} (rel0, 1=,
are fulfilled and if for t¢ [tt;, a)

(C) 0<g(®=f(

implies ' :

D) D*g(n) = w(t, g()),

then f(to)=u, implies f()=u(t) (t€t,, a)).
Proof. First we remark that (A;), (B,) imply

@ liminf f(t—h) = f() (1€ (to, @), .
ON limsup f(i+h) = f(1) (t€[t, a)).

Let >0 and define the function

F(r) =max{sup f(s),e} (t=1). |

to= st
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Clearly F is monotone nondecreasmg So, (2) and (3) imply F is continuous. Ob-
viously

4) g =fD=F@) (=1)
and
(5) F() = max{ _sup_ f(s), F¢—nr)} =

=max{ sup max{ max_g(s+u), f(t—r)}, F(t—r)} §.

t—r=s=t t—r—s=uz0
= max {_r'néas»);o g(t+s), F(t—n)} (1 = 1, r€[0, t—1,)).
If g(t)< F(¢), then by the continuity of g there is a >0 so that orgla}a git+s)=<
< F(t). Hence by using (5) -
F(t+h) = max {orgiléxa g(t+s), F(1)} = F(?)
whenever O0<h=4. So, g(t)<F(¢) implies D*F(t)=0.

Assume g(t)=F() and D*F(t)=0. Then there exists a sequence {,} such
that 6,>0, §,-0 as n—+o, F(t+4,)>F(@) and

D*F() = h»“lw'

From (5) it follows that for any » there is a y,, 0<v,=4,, such that

g(t+y,) = F(t+4,).
Using (4) and (D,;) we have

F_(tj___é)_F_(). = lim sup

5 "o

g(t+va)— g(t)

DYF() = }Lm
=Dtg() = w(t,"g(t)) = o(t, /() = o(t, F(1)).
Since w is a nonnegative function, we obtain
D*F() = o(t, F(1)) (t€lto, a)).

By using this inequality, the continuity of F, F(t;)=max {u(t,), ¢} and a well-known
differential inequality [9, vol 1, pp. 15] we get

SO =F@)=u(t) on [1,a,),
where u,(¢) is the maximal solution of ‘
{¢m=w@mm)azm
u,(ty) = max {u,, &}

on [t, a,). If ¢+0+, then ag,~a and u,(¢)-u(f) uniformly on every compact
interval of [¢,, a). This completes the proof.
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Corollary 1. Let (A)), (By) hold and suppose that (C)) implies
(Do D*g() = 0.
Then f(t) is a monotone non-incredsing Sfunction on [t,, a).

Theorem 2. Suppose that a=e<o, (A,), (B,) are satisfied and (C,) implies (Dy),
moreover w(t, u) is nondecreasing in u and the solutions of equation (1) are bounded on
[ty, =) for every uy. Then !Ll’g J(t) exists.

Proof. Since'f is bounded below,-it is enough to prove that V*f<eo, where
V*f denotes the positive variation of fon [#,, e). Let () be the maximal solution of
(1) on [ty, ) with #(t))=f(f,). Theorem 1 implies f(¢z)=idi(t) for tZ=t,. From
w(t,u)=0 and the boundedness of u(t) it follows that @’¢ Li([t,, oo)) If 0< f(t)_
=g(t), then

D*g(t) = o(t, g(t)) = o(t, f()) = o(t, u(t)) =) (= k).

That is Theorem 1is applicable with w(z, u)=a’(z).
Obviously the maximal solution of

{u’(t),: @, t=1
u(ty) = flt)

is u(=f(t)+ f @ (s) ds=f(t,) +i(f)—ii(t). Replace ¢, by ¢t, and apply Theorem 1
3% . .

to get -
S = f)+a@—da@) forall =1 =t

Using that #(¢) is nondecreasing on [t,, =), this inBQuali;y' gives ¥ *f<eo. This
completes the proof.. ‘

Remark 1. Theorem 1 is an extensmn of Dr1vers result [1, Lemma 1]. He -
examined the case f(¢)= sup g(s), —oo<oz5t0 and g is continuous on [a, @)."
a=s=t

Remark 2. Theorem 2 may b§ false if w(z, u) 1S decreasmg in u. For example,
let - ' ' '
3—u if u=3

ol “)={0 i u=3,

and put f(t)=g(t)=sin¢. Then all the assumptions of Theorem 2 are satisfied
except the monotonicity condition on w(t, 4) and ¥1»n°1° f(t) does not exist.

Further on, we need a sharper version of Theorem 1. Namely, inequality (D,)
will be required only on.a subset of the set of the points of [¢,, @) where (C,) is satis-
fied. In order to give this subset we introduce the following notation.
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Let us suppose a(t, 7), p(¢, r), h(z, r) are continuous functions on [r, =) X R*,
where 7=0 is a constant, p(¢, r) is nondecreasing in r, a(¢, r)<r for all r=0,
t=0. Suppose that t=h(t,r), p(t,r)=t for all r=0, t=t. Let o(t,r)=
=sup {s: p(s,r)=r}. It is not difficult to see that o(¢, r) is nonincreasing in r,
o(f,r)=t and if fis a locally bounded function on [z, <), o(r,r)<o for-all
r=>0, then there is O<uy(=uy(f, 7)) such that f(t)=u, on [1,0(t, up)]. For
r>0, 0=z=s=t define the function

gz s ¢ r)={D+g(s) if a(t,r)<g(), fl)=r forall ve€[z,s]
1T 0 otherwise.

'fheorem 3. Suppose g is continuously differentiable on [z, ), (A;), (B,) are
satisfied on [z, =) and that '

. . t
(E) ' _ ’ f g*(z, s, t,r)yds <r—a(t,r)

for all r=0, t=a(x,r) t=z=h(t,r). Moreover, if the inequalities

(C) : {0 <g =10, p(t, [O) =+,
2 a(t, f() < g) = f) = f(1) for all ve[h(t, f(1), 1]

imply (D,), then - .
f@ =uy for all velr, o(r, up))

SO = u@) (t€lo(z, uy), a)),

where u(t) is the maximal solution of (1) on [t,, a) with ty=a(t, ).

implies

Proof. Define t,=o(t, u,) and for z=¢,
G(1) = max(g(1), u,), F() = : sup max (f(s), t)-
' . =S =t R

Then in the same way as ‘in the proof of Theorem 1 we can see that
| GO =F@) (t=1t),
- F( §max{~£r;a;§0G(t+s), F(t—r)} (t= ¢, rel0, t—1,)),
G(t)<F(¢) implies D*F(t)=0, and if G(¢)=F(t), D*F(t)>0 then D*F(t)=
=D*G(t). It is easy to see that in the case (=¢,, G(t)=F(t), D*F(t)>0 the
following relations are true: F(t)=f(1)=G(t)=g(t)=u,, %g(t):DfG(t). We

want to show that in this case D*G(t)=w(z, G(?)) is fulfilled, too. This would be
sufficient to the completeness of the proof by using Theorem 1.

Since F(t)=f(r) implies f(s)=f(¢) -for all ve[h(z, £(?)), ], by the conditions
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of Theorem 3 it is enough to prove that a(r, f(r)<g(v) for all ve[h(s, f(2)), 1].
Suppose the contrary, that is there exists a z€[h(t, f(¢)), ¢] such that a(z, f(1))<g(v)
for all v€(z, 1), a(r, f(1))=g(z). Then g*(z,s,1,f(1))=D*g(s) for all s€(z,?).
Therefore, by inequality (E;) one gets

S —a(t, /) = e—g(D = [ g*(z s, 1, [O) ds < f@)—al(t, fO)),

which is a contradiction, thereby completing the proof.
We can extend Theorem 2 in a similar way:

Theorem 4. Suppose that a=-<o, (A,;), (B,), (E,) are satisfied and (C;) implies
(Dy), moreover w(t, u) is nondecreasing in u and the solutions of equation (1) are

.bounded on [t,, =) for every u,. Then krg (1) exists.

If we analyse the proof of Theorem 3 we can find that the differentiability pro-
t
perty of function g(z) is used only in relation g(r)—g(z)= f g*(z, 5,1, f(t)) ds,

where z€[h(1, f(t)), t]. So,if h(t, r)=t, then it is sufficient for g to be continuous.
Therefore, a J. KaTo and W. ZHICHENG type comparison theorem [7, 13] can be
deduced from Theorem 1. We shall formulate it in the next

Corollary 2. Assume =0, g: [r, °)=R* is a continuous function and

pitg®) =1, 0<g()= -g(s)

Pt alyBsst
imply :
_ D*g(t) = o1, g(1).
If there is uy=0 such that o(t, uy)< <, g(t)=u, on [1, 6(z, uy)l, then g(t)=u(r)
Sor all - t€[o(z, u), a), where u(t) is the maximal solution of (1) on [t,, a) with ty=
=01, ).

Proof. Define h(t,r)=¢, and f(tf)=maxg(s) for “t=t,. If p(s, f@))=1,
O0<g(t)=f(t), then g(t)= max g(s), consequently g(t)—w !m)éss'g( 5),
therefore (D,) is fulfilled, and the assertion follows from Theorem 3.

- Z. MixoLasskaA [10] used a comparison result analogous with the special case
p(t, r)=1,. This caseis stated in the following corollary. The proof is omitted because
it is similar to that of Corollary 2. '

Corollary 3. Suppose 1=ty, g: [r, °)=R* is continuously differentiable,
(E,) is satisfied for all r=0, t=t,, t>zah(t r). If h(t ry=z for all r=0, t=t,,
and if t=1,,

a(t,g(D)< min _g(s)= max g(s)=g(®)

h(t, g(e))=s=¢ k(t,g(1))=s=t¢

imply (D,), then 3;‘3;5., g(8)=u, implies g(t)=u(t) for all 1=t,.
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A

3. Convergence properties of real functions

In the previous chapter sufficient conditions on functions f and g were given to
guarantee the existence of the limit of fas 7—+oc. Now, we show that it is possible to
modify condition (B,) such that the existence of }im f() implies that of }im g(®).

Lemma 1. Suppose (A,) for t=t, and that there exists a function
h: R*XR*—~R* such that

(Fp) limh(t-r, =0 (r=>0),
(Bo) f)= _max g(t+9)+h(r, 1) (¢ = to, r€[0, 1)),

Then lim sup g() = lim sup (). |

Proof. (A,) implies lxm 15up g(t)Shm 1 sup f(t). On the other hand, if
c= ]1msupg(t)<oo then for all e>0 there is a T=T(e)=t, such that g(z)=

=c+¢ for t=T. By (B;) we have f(t)=c+e+h(t—T,¢) for all t=T. Using
(Fy), we obtain hm 1sup f(¢)=c+e. Since £>0 is arbitrary, the theorem is proved.

Theorem 5. Suppose g is uniformly continuous on [t,, =), (A,) is satisfied for
t=t, and there exist functions h, ki, ky: R*XR*~R* such that (F,) is fulfilled,
ky(r, u), ky(r,u) are monotone nondecreasing and continuous in u for all réR*,

k,(0,u) = 'ygrl k(r,u)=u .(u=0),
ky(ryuy<wu forall r,u=0, k,0,u)=u and
(Bs) () = max {k(r, ;g;as)étog(t+s)), ky(r, _max gt+s)}+h(r, D
| (t = t5, T€[0, 1—1,), r€[0, 7)) | |
Then !ln.l g(®)=c if and only if Iirgf(t)=c.
Proof. If }ln.l g(t)=c, then according to (A,), (B;) with r=0 and Lemma I

c= lim °i"nf g(n = li?l Lnf NOE lirtri sup f(1) = lir}l sup g =c

ie. lim f(0) = c. '

Now, assume ]1m f(t) c. Itis enough to prove that 11m mf g(t)=c. Sup-
pose the contrary, i.e. 11m mf g(t)<c. Let cle(hm inf g(¢), c) From the uniform
continuity of g there is a 5>0 such that 1, t,=¢,, |t —t,|<5 imply |g(#)—g(t)l<
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<(c—¢)/4. Define a seciuence {t.} such that t,~e as n—e and g(t,)=c¢, for
n=1, 2, .... Then

max g(l,+s) = _max (g(t,+s)—g(t))+g(t) =

—d=5s=

c—¢, _ ct3e
= 2 +c¢ = 2 . ‘
Let r€(0,6) be chosen such that k,(r, (c+3¢)/4)=(c+c)/2. Choose &=0,
T=T(e)=1t, such that k,(r,c+e)<c and g(t)=c+e¢ for t=T. From (B;) we
obtain

@) = max {k;(r, _max g(i,+5)), ky(r, ,_max gt +s)}+

ctey
2

+h(-T, 1) = max{ et ol h (T, 1)

for t,=T. Using tlitg h(t,—T,1,)=0 we get the contradiction
c= lir:'l_.sup f(t) = max {(c+c,)/2, ky(r, C+8)}/ <c.

This completes the proof.

4. Applications for functional differential équatidns

Let X be a Banach space with the norm | . [y and let B be a space of functions
mapping R~ into X with a semi-norm | . ||. For a function x: (—eo,d)~X and
for t€(—o,a) define x, as a function from R~ into X by x,(s)=x(t+s), s€R".
For t¢R* define B, as the set of @€B such that ¢,€B for each #€[—r, 0] and
¢ (s)is continuous on [—7, 0}. Let DcB andlet /1 R*XD—X be a given function.
Consider the functional differential equation

() x(t) = f(t, x).

A solution of equation (6) on [t,, @), ty<a=-< is a function x: (—eo, @)—~X such
that x,€D for t€[ty, a), x(t) is continuous on [t,, a), differentiable on (¢, a)
and- x(¢)=f(¢, x,) on (t,, a). .

Let ¥V: RXX—R™* be a locally Lipschitzian function. -

Suppose that there exists a function W: R¥*XD-R* such that

(AV) V(to@)=W(,¢) (ERY, pED)
and :
(BV) W(t, ¢) = max {_g&:éo V(t+s, @(s), W(t—r, ga_,.)}“

(t€R*, rg[0, 1], p€B,).
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If x(¢) is a solution of (6), then g(¢r)=V(z, x(¢)) and f(t)=W(t, x,) satisfy
conditions (A;) and (B,). So, we may apply Theorem 1, when the derivative of
¥ (1, x(¢)) has an appropriate estimate on the set’ V' (¢, ¢ (0))=W(t, o).

If W(t, @)= sup . V(t+s, ¢(s)), t€R*, then we get a RAZUMIKHIN type com-

parison result [6, 12]. One may put

() W(t,¢) = sup V(t+5, ¢(5))
or .
®) W(t, ¢) = sup I(s, ¥ (t+s, 9()

where I: R~ XR*—R* is a continuous function such that I(s;, v))<I(S,, v,)<v,
for all s;<s,<0, 0=v,<v, and supposing that the supremums on the right-hand
side of (7) and (8) exist for all ¢p€D. If I(s, v)=€"v for a =0, then we obtain the
case examined by M. ParrOTT [11]. ’

Let k: R——~R* be a measurable function such that k(s,)=0 implies k(s)=0
for all s=s,, for each r=0 ‘

(N esssup k(s —r)

1}
_— k(s)ds =1
seR-, k>0 k(s) +_,'[ () ds

[ X . R
holds and f k(s)V(t+5, (s))ds exists for all 1=0, @€D. Then one can choose

(10) W(t, @) = max {V (t 9(0)), f k(s)V (t+s, @(s)) ds.

We remark if k is continuous then (9) implies k(s)=Me* for all SE(— o=, 0]
where M, y=0. On the other hand, (9) is true if k(s)=Me*™ such that y=M=0.

Our comparison results are useful to prove stability, uniqueness and continuous
dependence of the solutions (see e.g. [1]). In this paper we deal with the convergence
properties of solutions as ¢-<o. From Theorems 2 and 4 we get the following results.
The derivative of ¥ with respect to (6) is defined by

V(t, ) = limsup (V(t+h, 9(O)+hf(t, o)~ 9O

Corollary 4. Suppose (AV), (BV,) and

(DV) V{t, 0) = ot V (1, 0(0))
whenever
(CVy) 0 <V(t, p(0) =W(t, 9)

Jor tER*, @eD, where w: R*XR*—~R* is continuous, nondecreasing in its se-
cond variable and the solutions of the equation u(1)=w(t, u(t)) are defined and bounded

12
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on R*. Then for each solution x(t) of (6) defined on [0, =) the limit lim W, x)
exists. _

Corollary 5. Let a(t, r), p(t, r), h(t, r) be the same functions as in Theorem 3
and for r=0, 0=z=s=t define ‘

g*(Z, s, 8 r) = SUP{V(Sa (P) a(t’ r) < V(U, §0(U—S)),
W(v, @,-5s) = r for all v€[z, s]}.

Suppose V (t, x) has continuous partial derivatives, (AV), (BV,), (E,) are fulfilled
and (DV) is true whenever (CV,), p(t, V (t, ¢(0)))>0 and for all. z€[h(z, V (¢, 9 (0))), 1]
. the inequality

a(t, V(t, 9(0) < V(z, 9(z—1) =W (2, 9,-) SW (1, 9))

is satisfied. Then for each solution x(t) of (6) that is defined on [0, =), the limit
}.ij{‘, W, x,) exists.

Generally, the existence of the limit }1}2 W(t, x,) gives little information about
the asymptotic behavior of solutions. For example, if W(t, p)=sup V(t+s, @(9)),

. SER™

then the existence of lim W(z, x,) means the boundedness of V (1, x(t)) on [t, =)

only. Using Theorem 5 we may obtain conditions for W(z, ¢) to guarantee the
existence of }ir;_l° V (1, x(¢)), which gives much more information about x().

Corollary 6. Suppose that all conditions of Corollary 4 (or 5) are satisfied
and there exist functions ki, ky: R*XR*—~R* and h: Rt XR*XD—~R* such that
ki(r, u), ky(r,u) are monotone nondecreasing and continuous in u for all ré R+,
'l_l.l’("l“l*_ ky(r,uy=u for all u>0, ky(r,u)<u for all r,u>0, k5 (0, uy=u for all

u=0, h(t—r,t, )0 as t—oo for all r=0, @&D, moreover
(BVy) w(t, @) = max{k,(r, _max V(t+s, ¢(s)), :

kz(", _trgsasx_’ V(t+s’ (P(s)))}"f'h(‘f, t: (P-t)

for all t¢R*, €[0,1], r€[0, 7], ¢€B_.ND. Then lim V (1, x(t)) exists for every
solution x(t) of (7) which is defined on [0, =) and for which V (¢, x(t)) is uniformly
continuous on [Q, o).

If W(t, ¢) is defined by (8), where I(s,v)~0 as s—-—o for every v=0,
V(t+s,¢(s)) is bounded on R, then (BV,) is true with k,(r, w)=u, ky(r,u)=
=I(—r,u) and h(r,1, (p)=ssup I(s, V(t+s, 9(s). If W(t, ¢) is defined by (10),

0
f k(s)V(t+s, o(s)) ds<o for all @¢D and t€R*, k(s) is nondecreasing,
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0 .
[ k(s)ds=1, then (BV,) is true with
. 0 [}
ky(ry ) = u(1+( [ k(s)ds)*— [ k(s)ds) ™",
o ,
ky(r,u)=u (1+( f k(s)ds)z]_l,

h(t, t, ) = fok(s—t)V(t+s—r, o(s)) ds.

We get an important special case if
(11) D = B, V(ta x) = ”.x"Xs W(t’ (P) = H(P][B

Then (AV), (BV,) and (BV,) are axioms for these norms as it is used generally in
functional differential equations with infinite delay.

These axioms resemble axioms of admissible phase spaces in which the estima-
tion
(12) ule@ix = llols = K(r) sup_ |I‘P(S)”x+M(")lI§0 s

—rss

is true with p>0 and some continuous functions K, M: R*—~R* [71. If u=1 and
K@)+ M(r)=1 then (12) implies (AV) and (BV,) in the case (11). So (AV) and
(BV,) are true in special admissible phase spaces. In case (11) property (BV,) cannot
be compared to (12).

In case of several phase spaces used in theory of functional differential equations
with infinite delay we may define a norm such that (AV), (BV,) and (BV,) are ful-
filled. So, in the special case (11), if

a) B=BC is the space of bounded continuous functions on (—ee, 0] into X

with norm
[elsc = sup lo)lx

then (AV) and (BV,) are fulfilled but (BV,) is not statisfied. If we put
ol = sup P& le®lxs

where p: R~—R*, p(s))<p(s;)<l1 for all 5;<s,<0, p(0)=1 and s_l.ir_na° p(s)=0,
then (AV), (BV;) and (BV,) are fulfilled.

b) B=C, (y€R") is the spaze of continuous functions (p on (— o, 0] such that
11m e"]lgo(s)]] x exists and

lolc, = sup e”*[@(s)lx,
s€R'~

12¢
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then for y=0 (AV), (BV,) and (BV,) are fulfilled. For y=0 (AYV), (BV,) hold, but
(BV,) does not.
¢) B=L?, p=1 is the space of measurable functions on R~ such that

[ k@ leG)|?ds <o,

, 0 0
where k: R™—R* is measurable, fk(s)ds:l and fk(s)ds>0for all r=0

then (AV) and (BV,) are true with the norm

ol = max (lo@lx, ( [ kO lo©l%ds)"?).

If (9) is valid for all =0, then (BV,) is fulfilled, too.

S. Examples

1. Consider the equation

(13) () =H(tx@)~ [ k(s)x(¢+s)ds).

Here H: R*XR-R is continuous, H(t,w)u=0 for all #€R*, ucR;

sup |H(t, u)|<< for every compact set KCR; k: R~+R* is nondecreas-
tcR+,u€K

0
ing, measurable, f k(s)ds=1. So, for each constant ¢, x(¢t)=c is a solution of

equation (13). Let us choose L, as a phase space for (13). Then the existence and
continuity of a solution through every €L, is insured, further, if a solution x(¢)
is bounded, then it can be continued as f-»co,

Assertion. If (9) is fulfilled then every noncontinuable solution of (13) has a
Sinite limit as t—eo,

In order to prove this assertion, we define the following functions for r€R*,
e<Li. (1, 9(@)=|e(0)l,

w(t, ) = max (e, [ k()lo(s)lds).

If x(t) is a noncontinuable solution of (13) on [#,, a) through ¢, then g(t)=V (1, x(t))
and W(t, x,) satisfy the assumptions of Corollary 1 with w(¢, u)=0. So, we have

lx()] = max (Ix(@), [ k()Ix(t+5)| ds)
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for fé[to, a). Consequently, x(¢), X(¢) are bounded, and a=co, the'refore we may
apply Corollaries 4 and 6 with V(1, 9(0)), W(t, ), which implies the assertion.

Assertion. If k(s) is dz}j"erentiable and k'(s)=k(0)k(s) for sc¢R~, then
every bounded solution of equation (13) has a finite limit as t— oo,

Indeed, let x(¢) be a bounded solution of (13) on [¢,, =) and put g(¢)=V (¢, x()),
f(@)=W({, x) where V and W are defined above.
We want to estimate the derivatiye D*f(¢). We have three cases:

0
2) @l = [ k@x(+s)lds.
Then f(t)=g(z) and (13) implies %wan_s.o.

b) k@l < [ k@)lx(t+3) ds.

In this case A
SO = [k@x@+s)ds= [ k(s—1)lx(s)lds,

so using the inequality

(14) % [ k@Ix@+s)lds = k@Ix(@)— [ K (s=1)lx(s)l ds =
skOIx@— [ K@Ix@+s)ds=

=k©) (Ix@l~ [ k@)|x(t+3)|ds)
we get —%— J(H=0.
©) Ix()l = [ k@)lx(t+s)l ds.

Then using the case a) and inequality (14) we have

D*f() = D* x| +D* [ k(s)|x(t+3s)|ds =

0
= DHix(O+k©O) (Ix())- [ k@)Ix(t+s)ids) =o0.
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Therefore D*f(1)=0 for all €[z, =), so }'If.l f({t) exists. Consequently,
Theorem 5 implies our assertion.

2. These results may be extended to the equation

(15) x(f) = H(t, x(9), h(1, x))),
where : )
H: R*_'XR"XR"—-R", h: R* Il -~ R,

ol = [ kOlo@lds,  swp G uw ol <=

u,vEK, L€

for every compact set KcR® and

sup (H(t, u, v), u) = p(1)]ul?
Boll=ul

where (.,.) means the inner product in R, and p: R*—R%, f p(s)ds< oo,
- [}
We may put V(t, x)=|x||=(x, x)* and

0
wt, 9) = max{le©)l, [ k)o@ ds},
and we assert that }1:2 llx ()] exists for every solution of (15), if k satisfies the same
properties as in Example 1. ‘
3. Let us examine the equation
(16) x(t) =—p(Ox(®)+q(O)x(t—o(®)-

Let p,q, 0: R*—R be continuous, bounded functions; o(t)=0 for t€R*. Choose
BC as a phase space for (15).

Put V(t, x)=x W(t, @)= sup e¥|p(s)|’, where y=>0 is a constant. Then
sER-
V(t, 9) = =2p()¢*(0)+29() ¢ (0) o (— (),
therefore, if W(t, 9)=V (¢, ¢(0)), i

=20 |p(— o (D) = ¢*(0), and lq(t)le"“’Sp*(t)

V(t, 0) ==20()0*(0) +219()] 962 0) = 2=V (1, 9(O)

then

where and in the sequel, for any a€R, a*,a” are defined by a*=max {0, a},
a~=max {0, —a}, respectively. Similarly to Example 1, the existence of solutions
for all large ¢ and their boundedness together with the derivative can be proved.
Therefore, Corollary 6 gives: ' '
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Assertion. If p~€L' and there exists y=>0 such that |q(t)| e*®=p*(r)
for all t€R™*, then x(t)—constant as t— for every solution of (16).

4, Consider the equation

an (1) = g x(t—o(®),

where ¢, o: R¥—R are continuous, g is bounded, ¢(¢)=0 for ?¢R*, and there
exists a T=>0 such that 1—g()=0 for all r=7. Choose BC as a phase space.

Assertion. Suppose that there exists a striétly increasing continuous function
g(s) on R~ such that sli£n g(5)=0,

[ la@l/g(=e@)ds <1

t—o()

for all. t=T and .
J " @Olse@)dt <.
Then for every solutionbx(t) of equation'(17) the limit }352 x(t) exists.
Put V(,x)=lxd, W, @)=sup g@lo@h 2. N=0, ht,n=(-e()",
t

att,y =~ (1= [ la@)lg(-e)ds).

t—o(D)

i

Then ]
V(s 9) = g(s)¢(— (s)) sgn ¢ (0)

for‘ éll fpéBC, ‘so we have
, q*(z, 5,1, 1) = rlq(2)/g(~ e (2)),
therefore (E,) is fulfilled for ¢=T. If t=T, O<|p(0)|=sup g(s)|e(s)] and
a(t, lp@)) < 0@ = sup gls+2)le(s+2)] = sup gle ()
for all z€[—(r—o())*, 0], then sgn ¢(0)=sgn @(—¢(¢)) and therefore

Vvt 9) = g+ )V (5, 0(0))/g(~ ().

The boundedness of solutions and their derivatives can be proved similarly to Example
1. So, we can apply Corollary 6.



414 ). Haddock, T. Krisztin, J. Terjéki: Comparison theorems and convergence properties

References

[1] R. D. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational

Mech. Anal., 10 (1962), 401—426.

[2] 3. R. Happock and T. KriszTin, Estimates regarding the decay of solutions of functional

differential equations, Nonlinear Anal., 8 (1984), 1395—1408.

{3] J. R. Habpock T. KriszTiN and J. TeErJEKI, Invariance principles for autonomous functional

differential equations, J. Integral Equations, 10 (1985), 123—136.

[4] J. R. Happock and J. TeErsEkI, Convergence properties of a semigroup of the history space
© -1 C?,in: Differential equations: Qualitative Theory, Coll. Math. Soc. Janos Bolyai, 47 (Sze-

ged, 1983), Nort-Holland (Amsterdam—Oxford—New York, 1987); pp. 367—381.

[5]1 J. HALE and J. KATO, Phase space for retarded equations with infinite delay, Funkcial. Fkvac.,

21 (1978), 11-—41.

[6] J. KaTO, On Liapunov—Razumikhin type theorems for functional differential equations,

Funkcial Ekvac., 16 (1973), 225—239.

[71 J. XKaTo, Stability problem in functional differential equation with infinite delay, Funkcial.

Ekvac., 21 (1978), 63—80.

[8] H. H. Kpacosckuii, Hexomopste 3adauu meopuu ycmoiiuugocmu Josuxcenusn, DH3MATIH3

(Mocksa, 1959).

[9] LaksumikaNTHAM and S. LEeLA, Differential and integral inequalities. Theory and applica-

tions, Vol. I, II, Academic Press (New York, 1969).

[10] Z. MikoLAJSKA, Une modification de la condition de Liapunov pour les équations 4 paramétre

rétardé, Ann. Polon. Math., 22 (1969), 69—72.

[11] M. ParroTT, Convergence of solutions of infinite delay differential equations with an under-
lying space of continuous functions, Ordinary and Partial Differential Equations, Lectures
notes in mathematics, No. 846, Springer-Verlag (Berlin—Heidelberg—New York, 1981).
[12] B. C. Pazymuxuns, O6 ycTOMYMBOCTH CHCTEM C 3amaszeiBaHmeM, [lpuxa. mam. mex., 20

(1956), 500—512.

{13] W. Zuicaeng, Comparison method and stability problem in functional differential equations,

Tohoku Math. J., 35 (1983), 349—356.

(J.H) (T. K.and J. T.)

DEPARTMENT OF MATHEMATICAL SCIENCES BOLYAI INSTITUTE
MEMPHIS STATE UNIVERSITY ARADI VERTANUK TERE 1

MEMPHIS, TENNESSEE 38152, U.S.A. 6720 SZEGED, HUNGARY



