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Comparison theorems and convergence properties 
for functional differential equations with infinite delay 

J. HADDOCK*), T. KRISZTIN and J. TERJÉKI 

Dedicated to Lajos Pintér on his 60th birthday 

1. Introduction 

In the general area of stability theory for functional differential equations, 
Lyapunov functions (Lyapunov—Razumikhin or — Krasovskii functions) often are 
employed instead of Lyapunov functional [8, 12]. The derivative of such a function 
with respect to the equation under investigation is estimated from above on some 
appropriately chosen subset of the underlying solution (phase) space. The method 
requires a comparison theorem (or theorems) since the Lyapunov function in ques-
tion usually is compared to a solution of a certain ordinary differential equation. 

The technique of comparison theorems has been thoroughly investigated for 
functional differential equations with finite delay. (See, for example, [2, 6, 9].) For 
infinite delay cases DRIVER [1] obtained the first results, and his technique, has been 
generalized in several directions and applied to examine various notions of stability. 
For instance, KATO [7] and ZHICHENG [13] have obtained results for general "admis-
sible" phase spaces, while PARROTT[11] developed her work in terms of certain 
(exponentially weighted) Cy spaces. In a recent paper of the authors [3], this method 
was applied for general Cg spaces, but the comparison differential equation was only 
a trivial one. 

In the present paper we examine the technique of comparison results from several 
points of view. In Section 2 we formulate general comparison theorems in terms of 
arbitrary real functions ánd then apply the theorems (in Section 3) to obtain various 
convergence results for these functions. Among the consequences of Section 3 there 
is a generalization of the main convergence result of [4] for semigroups on a special 
function space. 
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As may be surmised from the title, one of our primary motivations has been 
to generate convergence theorems for solutions of functional differential equations 
with infinite delay. This is accomplished in Section 4 with the aid of the work in 
Sections 2 and 3. The main thrust in Section 4 is to compare convergence prop-
erties of certain functionals W(= W(t, x,)) to corresponding properties of related 
Lyapuriov functions V(=V(l, x(t))). 

The paper is concluded with several examples given in Section 5. 

Let co: R+XR+-*R+ be a continuous function, /„, u0£R+ and let u(t) be 
the maximal solution of 

on an interval [/„, a) Let / : R+-»R+ g: JR—R+, and let g be conti-
nuous on [t0, 

Theorem 1. If for all f€[f0, a) the inequalities 

2. Comparison theorems 

(1) 
u'it) = <a{t, u(t)) (t S t0) 
u(t0) = u0 

(Bi) 

(AO git) S f ( t ) , 

fit) s max { max g( /+s) , f(t-r)} (r£[0, / - /„]) , 

are fulfilled and if for a) 

(Cx) 
implies 
(DO 

0 < g (0 = fit) 

D+g(t) co(t, g(0), 

then fit0)^u0 implies f(t)Su(t) (t£[t0, a)). 

Proof . First we remark that (Aj), (Bj) imply 

( 3 ) 

(2) l i m i n f / ( i - / O s / ( r ) (teit0,a)), 

lim sup f(t+h) s f i t ) (td[t0, a)). 
B^OT 

Let £ > 0 and define the function 

Fit) = max { sup /(s), e} (i £ i0). 
to S t m t 
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Clearly F is monotone nondecreasing. So, (2) and (3) imply F is continuous. Ob-
viously 
(4) g(0 ^/(0 S F(t) ( t s t 0 ) 
and 
(5) F(/) = max{ sup f(s), F(t-r)} ^ 

1 - R I S S L 

s m a x { sup max{ max g(s + M), f(t—r)}, Fit—r)} s 
l-rSsXt l « - r - J S u S o ' 

max{ max g ( i+s ) , F ( i - r ) } (i r6[0, i - /„ ] ) . V - / S S S 0 ' 

If s ( t h e n by the continuity o f g there is a (5>0 so that max 
< F ( 0 - Hence by using (5) 

F(t+h) « max{ max g ( i+s ) , F(t)} s F(i) 

whenever 0</i^<5. So, g(t)<F(t) implies D + F ( / ) S 0 . 
Assume g(t)=F(t) and D + F ( i ) > 0 . Then there exists a sequence {<5„} such 

that ¿ , > 0 , <5„-0 as F(f+c5B)>F(/) and 

Z > + F ( 0 = l i m m v z m . 
»— d„ 

From (5) it follows that for any n there is a yn, 0<y„^S„, such that 

g(t+y„) £ F(t+Sn) . 
Using (4) and (Dj) we have 

D+F(t) = lim n t + V - m s l i m s u p a 
o„ »— yn 

^ Z) + g(0 co(t, g (0) = 0)(/, / ( 0 ) = m(t, F(0). 

Since (o is a nonnegative function, we obtain 

D + F ( t ) S (o(t, F(i)) (/€[/„,«)). 

By using this inequality, the continuity of F, F( / 0 )=max (w (/0), e} and a well-known 
differential inequality [9, vol. 1, pp. 15] we get 

f ( t ) sS F(t) ^ ut(t) on [t0,at), 

where uc(t) is the maximal solution of 

K i t ) = (o(t, Mc(0) ( f § / , ) 
\ut(t0) = max{«0 , e} 

on [f„, at). If e—0-|-, then o,—a and uc(t)—u(t) uniformly on every compact 
interval of [/0, a). This completes the proof. 
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Corol lary 1. Let (A^, (Bx) hold and suppose that (Cx) implies 

(D^ D+g(t) si 0. 

Then f ( t ) is a monotone non-increasing function on [/0, a). 

Theorem 2. Suppose that a=°°, (Ax), (Bj) are satisfied and ( Q ) implies (DJ, 
moreover co(t, u) is nondecreasing in u and the solutions of equation (1) are bounded on 
[t0, for every u0. Then lim f ( t ) exists. 

Proof . S ince / i s bounded below, it is enough to prove that F + / < where 
V+f denotes the positive variation o f / o n [/„, «>). Let «(/) be the maximal solution of 
(1) on [/„, with u(t0)=f(t0)- Theorem 1 implies f(t)^u(t) for t^t0. From 
a>(t, t / )£0 and the boundedness of u(t) it follows that H'tV-Qt0, If 0 < / ( i ) = 
=g(t), then 

D+g(t) s co(t, g(0) = a(t,f(0) ^ u(t)) = u'{i) (t S i0). 

That is Theorem l is applicable with to(i, u)=u'(t). 
Obviously the maximal solution of 

f«'(0 = fl'(0. t ^ h 
W o = m 

t 
is m ( 0 = f ( h ) + J u'(s)ds=f(t1)+u(t) — u(t1). Replace tQ by tx and apply Theorem 1 

'i to get 
/ ( 0 ^ / X ' i ) + f l ( 0 - « ( 0 for all i o ^ i i ^ i . 

Using that i /(0 is nondecreasing on [/„, this inequality gives F + / < c o - This 
completes the proof.. 

Remark 1. Theorem 1 is an extension of Driver's, result [1, Lemma 1]. He 
examined the case / ( / ) = sup g(s), — st0 and g is continuous on [a, a). 

assst 

Remark 2. Theorem 2 may be false if co(t, u) is decreasing in u. For example, 
let 

. . (3 — u if t / ^ 3 
"> = l o if « > 3 , 

and put f(t)=g(i)=sin t. Then all the assumptions of Theorem 2 are satisfied 
except the monotonicity condition on a>(t, u) and lim f ( t ) does not exist. 

Further on, we need a sharper version of Theorem 1. Namely, inequality (Dx) 
will be required only on a subset of the set of the points of [i0, a) where (Ci). is satis-
fied. In order to give this subset we introduce the following notation. 
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Let us suppose a(t, r), pit, r), h(t, r) are continuous functions on [r, 
where t & 0 is a constant, p(t, r) is nondecreasing in r, a(t, r)<r for all 0, 
iSO. Suppose that x^h(t,r), p(t,r)^t for all /->0, t^x. Let ait, r) = 
=sup {i: pis, r)^t). It is not difficult to see that oit,r) is nonincreasing in r, 
ER(I, and if / i s a locally bounded function on [T, CT(T, for all 
r=>0, then there is 0<w 0 (=w 0 ( / , X)) such that / ( i ) = « o on [T, CT(T, «„)]. For 
/•>0, O s z s j g / define the function 

*r , ._iD+gis) if a(t, r) < g(u), /(i>)^r for all t>e[z, s] 
g (z, s, 1, r} - | Q otherwise. 

T h e o r e m 3. Suppose g is continuously differentiable on [T, (Ax), (B^ are 
satisfied on [r, and that 

1 
(EJ J g*(z, s,t, r) ds < r-a(t, r) 

Z 

for all r>0, /*) r). Moreover, if the inequalities 

10 < git) = fit), p(t, fit)) ^ X, 
( 2} \ a ( t , f i t ) ) ^ g i v ) ^ f i v ) ^ f i t ) for all vi[h(t, f(t)), t] 

imply (Dj), then 
fiv) S Uq for all v£[x, <t(t, w0)] 

implies 

fit) ^ uit) (i6[<7(T, u0), a)), 

where uit) is the maximal solution of (1) on a) with t0=aix, u0). 

Proof . Define t0=aix,u0) and for t^t0 
G(t) = max (g(/), w0), Fit) = sup max (/(s), u0). 

t„SsSt 

Then in the same way as in the proof of Theorem 1 we can see that 

Git) Fit) it S t0), 

F(t) max{_max o G(/+s) , f ( i - r ) } (t £ t0, r€[0, f-?0]) , 

G i O ^ F i t ) implies D + F ( 0 s 0 , and if = £ + F ( / ) > 0 then D + F i t ) i S 
^D+Git). It is easy to see that in the case t^t0, Git)~Fit), D+F(t)>0 the 

d 
following relations are true: F{t)=f(t)=G(t)=git)^ua, —g(t)=D+Git). We 

dt 
want to show that in this case D+G(t)^m{t, Git)) is fulfilled, too. This would be 
sufficient to the completeness of the proof by using Theorem 1. 

Since f ( 0 = / ( 0 implies f(v)^f(t) for all v£[h(t,f(t)), /], by the conditions 
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of Theorem 3 it is enough to prove that a(t,f(t))^g(v) for all v£[h(t,f(t)), /]. 
Suppose the contrary, that is there exists a [h(t,f(t)), t] such that a(t,f(t))<g(v) 
for all v£(z,t], a(t,f(t))=g(z). Then g*(z, s, t,f{t))=D+g(s) for all s£(z, t). 
Therefore, by inequality (Ej) one gets 

f(t)-a(t, /(f)) = g(t)-g(z) = / g*(z, s, t, / ( 0 ) ds < f(t)—a(t, /(/)), 
X 

which is a contradiction, thereby completing the proof. 
We can extend Theorem 2 in a similar way: 

Theorem 4. Suppose that a=<=°, (Aj), (BJ, (Ex) are satisfied and (C2) implies 
(Dj), moreover ca(t, u) is nondecreasing in u and the solutions of equation (1) are 
bounded on [f0, for every u0. Then lim / ( / ) exists. r-»oo 

If we analyse the proof of Theorem 3 we can find that the differentiability pro-
r 

perty of function g(t) is used only in relation g(t)—g(z) = J g*(z, s, t,f(t)) ds, 
z 

where z£[h(t,f(t)),t]. So, if h(t,r)=t, then it is sufficient for g to be continuous. 
Therefore, a J. KATO and W. ZHICHENG type comparison theorem [7, 13] can be 
deduced from Theorem 1. We shall formulate it in the next 

Corol lary 2. Assume xsO, g: [r, <x>)—R+ is a continuous function and 

p(t, g(0) £ T, 0 < g(t) = p(( max j s r g(s) 
imply 

D + g ( 0 s ©(f, g(0). 

If there is m0>0 such that <t(t, w„)<°°, g(t)Su0 on [t, O(T, w0)], then g(t)Su(t) 
for all t, u0), a), where u(t) is the maximal solution of (1) on [/,, a) with /„ = 
= a ( T, M0). 

Proof. Define h(t,r)=t, and f ( t ) = maxg(s) for "tst0. If p(t,f(t))^x, 
0 < g ( 0 =/(')> then g(t) = mzxtg(s), consequently g ( t ) = ^ m a x ^ s t g ( s ) , 
therefore (Dt) is fulfilled, and the assertion follows from Theorem 3. 

Z. MIKOLAJSKA [10] used a comparison result analogous with the special case 
p(t, r)=t0. This case is stated in the following corollary. The proof is omitted because 
it is similar to that of Corollary 2. 

Corol lary 3. Suppose r^t0, g: [r, R+ is continuously differentiable, 
(Ex) is satisfied for all r>- 0, t^t0, i > z s A ( / , r). If h(t, for all r > 0, t^t0, 
and if 

g(0) < min g(s) S max g(s) = g(t) 

imply (Dj), then max g(s)Su0 implies j ( / ) S u ( i ) for all 
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3. Convergence properties of real functions 

In the previous chapter sufficient conditions on functions / and g were given to 
guarantee the existence of the limit o f / as t-~ Now, we show that it is possible to 
modify condition (E )̂ such that the existence of Jim f ( t ) implies that of lim g(t). 

Lemma 1. Suppose (A!) for t^t0 and that there exists a function 
h: R+XR+-R+ such that 

Then lim sup g(t) = lim sup f(t). 
(-»• oo J-^oo 

Proof . (Ax) implies lim supg(/ )^l im s u p f ( t ) . On the other hand, if 
c= l imsupg( / )<o° , then for all e > 0 there is a T=T(e)^t0 such that g(t)S 

CO 
=ic+£ for / s r . By (B2) we have f(t)^c+s+h(t-T, t) for all t*sT. Using 
(FJ, we obtain lim sup f(t)^c+e. Since £ > 0 is arbitrary, the theorem is proved. 

Theorem 5. Suppose g is uniformly continuous on [/0, <»), (Ax) is satisfied for 
and there exist functions h, kx,k2: R+XR+—R+ such that (Fj) is fulfilled, 

kx(r, u), k2(r,u) are monotone nondecreasing and continuous in u for all r£R+, 

k2(r, u) < u for all r, M > 0, k2(0, u) S u and_ 

(B3) / ( / ) ^ max {/c^r, max k2(r, max g( i+s))}+ft (r, t) 
~rSlSO ~'f 

(t S to, T<E[0, t-t0], r€[0, T]). 

Then lim g(t)=c if and only if lim f(t)—c. 

Proof . If lim g(t)=c, then according to (Aj), (B3) with r-0 and Lemma 1 

c — lim inf git) s lim inf f ( t ) s lim sup fit) = lim sup g(t) = c, t~*" oo t-+oo t-»oo f-»oo 

i.e. lim f i t ) = c. 
oo 

Now, assume Jim f(t)=c. It is enough to prove that lim inf g (/)=£• Sup-
pose the contrary, i.e. lim inf g(t)<c. Let ^ ( l i m inf g(t), c). From the uniform 
continuity of g there is a <5>0 such that tx, i2-'o> imply |g ( / i ) -g ( / 2 ) l< 

(F i ) lim h(t—r, i) = 0 ( r > 0 ) , 

/ ( / ) S max g(t+s)+h(r, t) ( i s t0, r<E[0, t-t0]). (B0 

fei(0» ") = rlim fcj(r, u) = u (u > 0), 
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<(c—cJ/4. Define a sequence {/„} such that /„— as and for 
n = 1 , 2 , . . . . Then 

_maxog(i„ + s) _masX0(g(/„ + s ) - g ( O ) + g ( O ^ 

Let /-€(0, be chosen such that k^r, (c+3c1)/4)^(c+c1)/2. Choose £>0 , 
T=T(e)^t0 such that k2(r,c+e)^c and g(t)Sc+e for t^T. From (B3) we 
obtain 

/ ( O = max {kt(r, max g(tn+s)), k2(r, max g(/„+s))} + — f s S S v J — t j j S S S - * 

+ h(t„-T, tn) ss max{-^t£L, k2(r, c+e)} + h(tn-T, t„) 

for t„^T. Using lim h(t„ — T, t„)=0 we get the contradiction 
t-*- oo 

c = lim sup /(?„) ^ max {(c + c^/2, fc2(r, c+s ) } < c. n— oo I 

This completes the proof. 

4. Applications for functional differential equations 

Let X be a Banach space with the norm || . ||x and let B be a space of functions 
mapping R~ into X with a semi-norm || . |'|B. For a function x: (—a)-<-X and 
for a) define x, as a function from R~ into X by s£R~. 
For T £ R + define Bz as the set of (p£B such that <pt£B for each T, 0] and 
<p(s) is continuous on [—r, 0]. Let DczB and let / : R+XD-»X be a given function, 
Consider the functional differential equation 

(6) x(t) =f(t,x,). 

A solution of equation (6) on [/„, a), t0<aS<*> is a function x: a)-»X such 
that x,£D for a), x(t) is continuous on [/„, a), difiierentiable on (/„, a) 
and x(t)=f(t, xt) on <70, a). 

Let V: RXX--R+ be a locally Lipschitzian function. 
Suppose that there exists a function W: R+XD-*R+ such that 

(AV) V(t,(p(0))^W(t,(p) (t£R+,(p£D) 
and 
(BVJ W(t, q>) ^ max {_maxo V(t+s,cp(s)), W(t-r, <p_r)} 

(ten*, r€[0, /], <p£Br). 
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If x(t) is a solution of (6), then g(t)=V{t, x(t)) and f ( t ) = W(t, xt) satisfy 
conditions (Áx) and (Bj). So, we may apply Theorem 1, when the derivative of 
V(t, x(()) has an appropriate estimate on the set V(t, <p (0)) = W(t, cp). 

If W(t, (p)= sup V(t+s, (p(s)), T£/?+, then we get a RAZUMIKHIN type com-
- t s s s o 

parison result [6, 12]. One may put 

(7) 'W{t,<p)= sup F( i+s , <p(s)) 
SÍR-

ÓT 
(8) W(t, <p) = sup l(s, V(t + s, <p(s))), 

s£R-

where /: R~xR+-»R+ is a continuous function such that !(s1, v2)<v2 

for all j1<5'2<0, 0 ^ v l < v 2 and supposing that the supremums on the right-hand 
side of (7) and (8) exist for all cp£D. If l(s, v)—eysv for a y>0, then we obtain the 
case examined by M. PARROTT [11]. 

Let k: R~-*R+ be a measurable function such that k(sQ)=0 implies £ ( s ) = 0 
for all f ° r each /"=0 

(9) esssup + fk(s)dsS 1 
i€K-,*(s)=- o k(S) _J

r 

0 
holds and exists for all 0, (pdD. Then one can choose 

— oo 

0 
(10) W(t, q>) = max [v(t, <p(0)), f k(s)V(t + s, <p(sj) ds. 

— oo 

We remark if k 
is continuous then (9) implies k(s )^Me t s for all ( — 0 ] 

where M, y>0 . On the other hand, (9) is true if k(s)=Meys such that 0. 
Our comparison results are useful to prove stability, uniqueness and continuous 

dependence of the solutions (see e.g. [1]). In this paper we deal with the convergence 
properties of solutions as t-*<=°. From Theorems 2 and 4 we get the following results. 
The derivative of V with respect to (6) is defined by 

V(t, <p) = lim sup(K(i+h, <p(0) + hf(t, cp))-V(t, cp(0)))h~\ H—Q + 

Coro l lary 4. Suppose (AV), (BV^ and 

(DV) V(t,cp)sco(t,V(t,<pm) 
whenever 
(CVx) 0 < V{t, cp(0)) = W(t, cp) 

for t£R+, (p£D, where co: R+XR+-*R+ is continuous, nondecreasing in its se-
cond variable and the solutions of the equation ú (t)—a>{t, u(t)) are defined and bounded 

12 
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i 
on R+. Then for each solution x(t) of (6) defined on [0, the limit lim fV(t, x,) 

t—OO 

exists. 

Corol lary 5. Let a(t, r), p(t, r), h(t, r) be the same functions as in Theorem 3 
and for r>0 , O S z S i S i define 

g*(z, s, t, r) = sup{K(s, <p)\ a(t, r) < V(v, <p(v-s)), 

Щ», <Pv-s) ^ r for all v£[z, s]}. 

Suppose V(t, x) has continuous partial derivatives, (AV), (BVO, (Ex) are fulfilled 
and (DV) is true whenever (СУХ), p(t, V(t, <p(0)))>0 and for all z£[h(t, V(t, <p(0))), t] 
the inequality 

a{t, V(t, <p( 0)) < V(z, cp(z-t)) sW(z, <px_t) ё W(t, <p)) 

is satisfied. Then for each solution x(t) of (6) that is defined on [0, the limit 
lim IV(t, x,) exists. 

Generally, the existence of the limit lim W(t, x.) gives little information about 
t-*- CO 

the asymptotic behavior of solutions. For example, if W(t, <j!>)=sup V(t+s, <p(s)), 
then the existence of lim W(t, xt) means the boundedness of V(t, x(t)) on [i0, 
only. Using Theorem 5 we may obtain conditions for W(t, q>) to guarantee the 
existence of lim V(t, x(t)), which gives much more information about x(/). 

Corol lary 6. Suppose that all conditions of Corollary 4 for 5) are satisfied 
and there exist functions klt k2: R+XR+-*R+ and h: R+XR+XD-*R+ such that 
kx(r,u), k2(r,u) are monotone nondecreasing and continuous in и for all r£R+, 
lim^ kt(r, u)—u for all 0, k2(r,u)<u for all r, u>0, k2(0,u)^u for all 

иёО, h(t—r,t,<p)—0 as / - c o for all r=-0, (p£D, moreover 

(BV2) W(t, q>) max{k 1 ( r , _maxo V(t+s, (pis))), 

fc2(r, _ma ix_ rV(t+s, <p(s)j)} + h(-c, t, <p_r) 

for all t£R+, т£[0, f], /"€[0, T], (p£B_Tf)D. Then lim V(t, x(t)) exists for every 
solution x(t) of (7) which is defined on [0, and for which V(t, x(t)) is uniformly 
continuous on [0, »), 

If W(t, (p) is defined by (8), where l(s, u)—0 as i— — oo for every 
V(t+s, (p(s)) is bounded on R~, then (BV2) is true with k^r, u)=u, k2(r,u) = 
=l(-r,u) and h(r, t, <p)=sup l(s, V(t+s, <p(s))). If W(t,cp) is defined by (10), 

s s - r 0 
J' k(s)V(t+s,<p(s))ds<°° for all cp^D and t£R+, k(s) is nondecreasing, 
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o 
f k(s)ds=1, then (BV2) is true with 

o o 
fc1(r,«)-M(l+( / k ( s ) d s f - J k(s)ds)-\ 

—r —r 
0 

k,(r,u)=u{l+{ f k(s)dsy)-\ 
—r 

0 
h(x,t,(p)— J k(s—x)V(t + s — ?,<p(sj)ds. 

— oo 

We get an important special case if 

(11) D = B, K( / ,* ) = W(U9) = MB. , 

Then (AV), (BVi) and (BV2) are axioms for these norms as it is used generally in 
functional differential equations with infinite delay. 

These axioms resemble axioms of admissible phase spaces in which the estima-
tion 
(12) AtII9>(0)||* ^ IMU 3= K(r) sup Ms)\\x + M(r)\\cp_x\\B 

- r S s S O 

is true with ¿¿>0 and some continuous functions K, M: R+—R+ [7]. If ^ = 1 and 
K(r)+M(r)ts\ then (12) implies (AV) and (BV^) in the case (11). So (AV) and 
(BVx) are true in special admissible phase spaces. In case (11) property (BV2) cannot 
be compared to (12). 

In case of several phase spaces used in theory of functional differential equations 
with infinite delay we may define a norm such that (AV), (BVJ and (BV2) are ful-
filled. So, in the special case (11), if 

a) B=BC is the space of bounded continuous functions on ( — 0 ] into X 
with norm 

IMUc = sup \\(p(s)\\x s€R-

then (AV) and (BVX) are fulfilled but (BV2) is not statisfied. If we put 

• IMI„c= sup p(s)||<p(s)||*, s£R-

where p: R~ — R+, p (s 1 )<p(s 2 ) '= l for all ¿ ^ . y ^ O , (0) = 1 and lim p(s)—0, 

then (AV), (BVX) and (BV2) are fulfilled. 
b) B=Cy (y£R+) is the spa;e of continuous functions q> on ( — 0 ] such that 

lim eys||ffl(j)||y exists and 
S-* - oo 

IŜ PlIcy = sup 

12* 
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then for y > 0 (AV), (BVO and (BV2) are fulfilled. For y=0 (AV), (BV1) hold, but 
(BV2) does not. 

c) B=L£, p = \ is the space of measurable functions on R~ such that 
o 

/ k(S) || 9(5)11" ds 
CO 

0 0 
where k: R~—R+ is measurable, J k(s)ds-1 and J k(s)ds>0foT all r > 0 

— CO — f 

then (AV) and (BV2) are true with the norm 

|M|L, = max(||<K0)||x, ( J k(s)Ms)\\°xds)llP). 

If (9) is valid for all r>0, then (BV^ is fulfilled, too. 

5. Examples 

1. Consider the equation 
o 

(13) x(t) = H ( t , x ( t ) ~ J k(s)x(t + s) ds). 
— oo 

Here H: R+XR-R is continuous, H(t, m)wS0 for all t£R+, u£R; 
sup \H(t, M)|<OO for every compact set KczR; k: R~+R+ is nondecreas-

t£R + ,u£K 0 
ing, measurable, J k(s)ds= 1. So, for each constant c, x(t)=c is a solution of 

— oo 

equation (13). Let us choose L\ as a phase space for (13). Then the existence and 
continuity of a solution through every <p€L\ is insured, further, if a solution JC(/) 
is bounded, then it can be continued as /—oo. 

Assert ion. If (9) is fulfilled then every noncontinuable solution of (13) has a 
finite limit as i— 

In order to prove this assertion, we define the following functions for t£R+, 
<pZLl V(t, <p(0)) = |<p(0)|, 

o 
W(t, <p) = max (|<H0)|, / k(s)\<p(s)\ ds) . 

— oo 

If x(t) is a noncontinuable solution of (13) on [/„, a) through <p, then g(t)=V(t, x(t)) 
and fV(t, xt) satisfy the assumptions of Corollary 1 with ca(t, «) =0. So, we have 

o 
I*(0l ^ max (|x(0)|, / fc(s)|x(f + s)| ds) 
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for /6[/0, a). Consequently, x(t), x(t) are bounded, and a=°°, therefore we may 
apply Corollaries 4 and 6 with V(t, q> (0)), W(t, q>), which implies the assertion. 

Assert ion. If k(s) is dijferentiable and k'(s)^k(0)k(s) for s£R~, then 
every bounded solution of equation (13) has a finite limit as 

Indeed, let x(i) be a bounded solution of (13) on [/„, and put g(t) = V(t, x(t)), 
f{t) — W(t, x,) where V and W are defined above. 

We want to estimate the derivative D+f{t). We have three cases: 
o 

a) |x(0l S / k(s)\x(t+s)\ds. 
— oo 

Then f(t)=g(t) and (13) implies -^ - |x ( i ) |S0 . 
dt 
o 

b) |x(i)| < / k(s)\x(t + s)\ds. 

In this case 
o t 

f(t)= J k(s)\x(t + s)\ ds= J k(s-t)\x(s)\ds, — oo —oo 

so using the inequality 

d 0 ' 
(14) f k(s)\x(t+s)\ds = k(0)\x(t)\- j fc'(s-i)|x(s)| ds S 

— oo CO 

0 
S fc(0)|x(i)|- / k'(s)\x(t+s)\ds^ 

o 
S fc(0) (|*(0I ~ / fc(s)|x(f + s)|Js) 

— OO 

ct we get — / ( 0 ^ 0 . 

c) |x(/)|= / k(s)\x(t+s)\ds. 
— oo 

Then using the case a) and inequality (14) we have 

o 
D+f(t)^D+\x(t)\+D+ f k(s)|x(i+s)| ds S. 

— oo 

0 S D+ |x(i)| + k(0) (|x(0l — / k(s)\x(t+s)\ds)^0. 
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Therefore Z ) + / ( 0 = ° for all /£[>„, so Jim f ( t ) exists. Consequently, 
Theorem 5 implies our assertion. 

2. These results may be extended to the equation 

(15) x(0 = H(t, x(t), h(t, x,)), 
where 

H: R+xRnXRn - Rn, h:R+xLl-Rn, 

m,cp)\\S fk(s)Ms)\\ ds, sup \\H(t, U, l>)|| 
u,v£K,tiR + 

for every compact set K(zR" and 

sup {H(t,u,v),u)^p(t)\\uf 
nulls Hull 

where ( . , . ) means the inner product in R", and p: R+-*R+, J p(s)ds< 
o 

We may put V(t,x) = ||x|| =(x, x)1/2 and 

W(t, cp) = max {||cp (0)1, / k(s)\\cp(s)|| ds}, 

and we assert that lim ||x(/)|| exists for every solution of (15), if A: satisfies the same 
properties as in Example 1. 

3. Let us examine the equation 

(16) x(t) =-p(t)x(t)+q(f)x(t-e(t)): 

Let p,q,q: R+-*R be continuous, bounded functions, eO)=0 for td R+. Choose 
BC as a phase space for (15). 

Put V(t,x)=x2, W(t,<p) = sup e2ys|<p(s)|2, where y > 0 is a constant. Then 
s g R -

V(t,cp) = -2p(t)cp2(0)+2q(.t)cp(0M-Q(t)), 

therefore, if W(t, cp)=V(t, cp(0)), i.e. 

c-«»C) | ( p ( - e(/))|a 0), and |?(í)| ew(<) s p+(t), 
then 

V(t, cp) -2p(t)(p2(0)+2\q(t)\e»<V(0) == 2p~{t)V(t, <p{0)), 

where and in the sequel, for any a£R, a+,a~ are defined by a+ =max {0, a}, 
a~ =max {0, —a), respectively. Similarly to Example 1, the existence of solutions 
for all large t and their boundedness together with the derivative can be proved. 
Therefore, Corollary 6 gives: 
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Assert ion . If p'dL1 and there exists y > 0 such that |g(7)| eyeW^p+(t) 
for all t£R+, then —constant as t— °° far every solution of (16). 

4. Consider the equation 

(17) x(t) = q(t)x(t-Q(t)), 

where q, Q: R+—R are continuous, q is bounded, £?(0—0 for t£R+., and there 
exists a T > 0 such that / — f o r all / ^ T . Choose BC as a phase space. 

Assert ion . Suppose that there exists a strictly increasing continuous function 
g(s) on such that lim g ( i ) = 0 , 

S-. — oo 

t - i ( 0 
/or all. t^T and 

oo 

/ q+(t)lg(-e(t))dt^~. 
T 

Then for every solution x(t) of equation (17) the limit lim x(t) exists. 

Put V(t,x)=\x\, W(t, <p)= sup g(s)|<p(s)|, p(t,r)=0, h(t,r)=(t-e(t))+, 
s £ R -

a(t,r) = / |g (s ) | /g( - e (s )}ds) . 
Z t-cCO 

Then 

F(s, <p) = q(s)<p{— e(s)) sgn <p(0) 

for all (p£BC, so we have 

^ ( z . M . r ^ r l ^ l / g t - e t z ) ) , 

therefore (Ej.) is fulfilled for i^T . If i s J , 0-=\<p(0)\=sup g(s)\<p(s)\ and 

l<?(0)|) < |<p(z)| ^ sup g(s + z)|i>(s+z)| s sup g(s)|<p(s)| 
sex- s£R-

for all z£[—(t—Q(t))+ , 0], then sgn <p(0)=sgn<p(—q(t)) and therefore 

v(h 9) ^ </+W(t, <p(o))/g(- <?«)• 

The boundedness of solutions and their derivatives can be proved similarly to Example 
1. So, we can apply Corollary 6. 
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