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Compact and Fredholm composite multiplication operators

R. K. SINGH and N. S. DHARMADHIKARI

1. Introduction. Let X be a nonempty set and ¥ (X) be a vector space of complex
valued functions on X under the pointwise operations of addition and scalar mul-
tiplication. Let 7 be a mapping of X into X such that foT is in ¥ (X) whenever f
is in ¥V (X). Define the composition transformation Cr on ¥V (X) as Cyf=foT for
every fin V(X). If V(X) has a Banach space structure and Cy is bounded, then C;

is called the composition operator on V' (X) induced by T. Let 6: X—C be a func- *

tion such that M,, defined as M, f=0-f for every f in V' (X) is a bounded linear
operator on ¥ (X). Then the product MyCy which becomes a bounded operator on
V(X) is called a composite multiplication operator.

The study of composite multiplication operators becomes significant and inter-

esting due to the fact that the class of composite multiplication operators includes - -

composition operators, multiplication operators, weighted composition operators.
LamBERT and QUINN [4] initiated the study of weighted composition process on
Li-space, having resemblence with composite multiplication operators. HADWIN,
NORDGREN, RaDjavi and ROSENTHAL [2] proved that there exists on operator be-
longing to the class of composite multiplication operators, which does not satisfy
Lomonosov’s hypothesis [5] pertaining to the wellknown invariant subspace problem
in operator theory.

In this paper the necessary and sufficient conditions for M,Cr€B(L?(1)) to
be a compact operator and a Fredholm operator are obtained in case V' (X) is an
Lzspace of a sigma-finite measure space.

By #(9), we mean the Banach algebra of all bounded operators on a Hilbert
space . If (X, &, A) is a measure space and T: X—X is a measurable transforma-
tion such that Cr€4%B(L%A)), then the measure AT, defined as AT YE)=
=A(T~YE)) for every E in &, is absolutely continuous with respect to the measure A
[7]. Let f; denote the Radon—Nikodym derivative of AT~ with respect to 4. If
Cr€B(L2(A)), then C3Cr=M fo [7]. The symbols Ker 4 and Ran A denote the
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kernel and the range of the operator A€ #($H) and ZJ denotes the closed subspace
of L2(/) consisting of all those functions which vanish outside X, d={xcX llH(x)| =6}
By Z,, we mean the set {x€X|6(x)=0} and Z, is the complement of Z,. In this
paper we consider (X, &, 1) to be a o-finite measure space.

2. Some basic results. In this section we present some essential results which
are often used in the presentation of this paper.

Theorem 2.1. Let Cr€%B(L*(A)). Then Cy has dense range if and only if
CTCT "'Mf oT*

Proof. Suppose that Cr has dense range. Then for every f in L2(2) we have
a sequence {f,} with f=lim Crf, and we get

CrCif = li'r'n CrCiCrfo = li'r'n CrM; 1= li'r'n Cr(fo- fo) =
= lim (/oo T)(f,0T) = lim Myo01Cr f, = MpporCr f.

Hence CrCr=M, .

Conversely, let C;Cf=M (ot Then since fpoT#0 [11], we can conclude
from Lemma 1.2 of [9] that M . is an injection. Hence C7 is an injection. So the
fact that {0}=Ker C}=(Ran Cr)* proves that C; has dense range. Hence the
proof is complete.

Theorem 2.2. Let MyCr€B(L*(1)). Then MyCr=0 if and only if 0 vanishes
on T~YE) almost everywhere whenever A(E)< oo,

Proof. In case 6 vanishes on T7YF) a.e. whenever A(E)< o, we get My=0.
Hence My,Cr=0. For the converse suppose MyC=0. Since X is o-finite measure

space, we can write X= J E;, where {E;} is the sequence of disjoint sets such that
i=1 '

A(E)<eo for each i, 1=i<e. Now MoCTXE,=0, ie. MeXT—!(E,)=0- Hence
=0 on T-Y(E) foreach i,1=i<oo

3. Compact composite multiplication operators. Let us recall that an operator
ACRB(H) is compact if {4f: f€H and [|f| <1} is a precompact subset of §. A
measure 4 is called atomic if every element E of & with A(E)0 contains an atom.
A subalgebra o7 of #(9) is transitive if & is weakly closed, contains the identity
operator and Lat &/={0, 9} where Lat & = g Lat 4.

Theorem 3.1. Suppose CpcB(L*(A)) has dense range. Then M,C 1€ B(L2(A))
is compact if and only if Z["fo°T is finite dimensional for every §=0.
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Proof. The operator MyC, is compact if and only if (M,Cy)(MCr)* is
compact. So by using the Theorem 2.1, the operator M;Cr becomes compact if and
only if MI,,W . is compact. Hence by the Lemma 1.1 of [10], M,Cy is compact if
and only if Z"’l Jo°T s finite dimensional for every 6=0.

Corollary 3.2. Let T: N~N be an injection. Then MyCrE€B(I*(N)) is
compact if and only if ZP" is finite dimensional for every §>0.
Proof. Since T is an injection, Cr has dense range [8] and f,oT=1. Hence

the proof is immediate.
The main theorem on compact composite multiplication operator on /2(N) is

given below.

Theorem 3.3. Let M,Cr€B(I3(N)). Then MyCy is compact if and only if
{0(m)}—+0 as n—co.

Proof. Suppose MOCT is compact. Let {¢™} be the sequence defined by
e™(m)=4,,, the Kronecker delta. Since e™ -0 weakly and (M,Cy)* is compact
we have

(M, Cr)*e®™| = 10(m)i [ CFe™] ~ 0.
Since [[CFe™| =]le”™™| =1, we get {#(m)}—~0 as n—co.

The converse is trivial.

Corollary 34. If «f is a transitive algebra of B(1?) containing MyCr such
that {§(m)}~0 as n—oo, then =R(?.

Proof. Since & is a transitive algebra of #(/?) and contains the compact oper-
ator MyCr, =%(?, [6].
Example 3.5. Let X=N and A be the counting measure. Define T: N—N as

T(n)={::’_ L 1 7=1 and define 6: N~C as 0(n)=1/n". Then MyCre ()

is compact by an application of the Theorem 3.3.

Theorem 3.6. Suppose (X,%,2) is a nonatomic measure space and
Cr€B(L2(A)) has dense range. Then . MoCr€B(L*(2)) is compact if and only if
0=0 on Z}oor.

Proof. Let M,C; be compact. Then in view of the Theorem 2.1

(MRCr)Cr(= M,,_,oT) is compact. Thus 6-f0cT=0 a.e. by a theorem of [10].
If 620 on Z, o1 then fooT=0 on Z, .7+ Hence fooT'=0 a.e. This is a contra-
diction to the fact that f,oT#0 a.e. for CTEQZ(LZ(A)) [11]. Hence 6=0 on Z; oT

Conversely, if 6=0 on Zfor, then |0]2f0T=0 a.e. Hence the operator

Mge; o 1(=(MoCr) (MyCr)*)

is compact. This proves that M,Cy is compact.
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Theorem 3.7. Let 06¢L>(2) be such that |0|=1 ae. and M,Cr€B(L2(%)),
Then MyCy is an injective compact operator only if X is an atomic measure space.

Proof. Since C7Cr=M,, [7], we get Ker MyCr=Ker (M,Cr)*(MyCr)=
=Ker M for Also the operator M,Cr is compact if and only if (MyC)*(MCp)
(=M, ) 1s compact. Since M,Cr is an injective compact operator, we get M s, to be
an mjectlve compact multiplication operator. Then by a result of [10], we conclude
that X is an atomic measure space.

Theorem 3.8. Let 0¢cL=(A) be such that |0|=1 a.e. and suppose
M,Cr€B(L*(2)). Then the following are equivalent:
(1) M,Cy is compact,
(i) Cy is compact,
(ili) Z{o is finite dimensional for every §=0.

Proof. Obvious.

4. Fredholm composite multiplication operator. Let € ($) be the ideal of compact
operators in #($) and = be the natural homomorphism from #(9) into ZB(H)/%(9)
~which is known as the Calkin algebra. Then an operator A€Z%($9) is said to be a

Fredholm operator if z(A4) is 1nvert1b1e in Z(9)/%(9H).

Atkinson Theorem. [1] If § is a Hilbert space, then TEQ«?(ﬁ) is a Fredholm
operator if and only if the range of T is closed, dim ker T is finite and dim ker T*
is finite.

Theorem 4.1. Let 0€L™(1) be bounded away from zero and C%., the adjoint
of Cr€B(L2(2)) be a composition operator. Then MyCr€B(L2(2)) is a Fredholm
operator if and only if Cy is a Fredholm operator .

Proof. Since Ker M,Cr=Ker C; and Ker (M,D;)*=Ker C*T‘, in the light
of Atkinson’s theorem it is enough to prove that MyC has closed range if and only
if C; has closed range. For this, suppose MyC has closed range. Let f€RanCy.
Then there exists a sequence {f,} in L?(A) such that Crf,—~f. Hence MyCr f,~M,f.
Since M,C has closed range, M,Cr f,—~M,Crg for some g in L2(1). Hence M, f=
=M,Crg. Since M, is invertible, f=Crg. This proves that C; has closed range.

The converse can be proved similarly.



Composite multiplication operators 441

References

[1] R. G. DouGLAs, Banach algebra techniques in operator theory, Academic Press Inc. (New
York—London, 1972).

[2] D. W. HapwiN, E. A. NorRDGREN, H. RADJAVI and P. ROSENTHAL, An operator not satlsfymg
Lomonosov’s hypothesis, J. Funct. Anal., 38 (1980), 410—415.

[3] P. R. HALMoS, A Hilbert space problem book, Van Nostrand (Princeton, 1967).

[4] A. LamBert and J. QUINN, Invariant measures and weighted composition process on L/,
Abstracts Amer. Math. Soc., 3 (1982), #792—47—389.

[5] V. Lomonosov, Invariant subspaces for operators commuting with compact operators, Funkt-
sional Anal. i Prilozhen, 7 (1973), 55—56.

[6] H. Rapsavi and P. ROSENTHAL, Invariant subspaces, Springer-Verlag (Berlin, 1973).

[7]1 R. K. SinGH, Compact and quasinormal composition operators, Proc. Amer. Math. Soc.,
45 (1974), 80—82.

[8] R. K. SiNngH, Normal and hermitian composition operators, Proc. Amer. Math. Soc., 47
(1975), 348—350.

[91 R. K. SingH and A. KuMAR, Characterization of invertible, unitary and normal composition
operators, Bull. Austral Math. Soc., 19 (1978), 81—95.

[10] R. K. SinGH and A. KuMaRr, Compact composition operators, J. Austral Math. Soc. (senes
A), 28 (1979), 309—314,
[11] R. K. SiNcH and T. VELUCHAMY, Non atomic measure spaces and Fredholm composition

operators, preprint.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF JAMMU
JAMMU—180 001

J&K STATE, INDIA

14*



