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On the representation of distributive algebraic lattices. II 

|A. P. HUHNf) 

1. Introduction 

Around 1980, H. Bauer found a result which implies that countable distributive 
semilattices with 0 can be represented as seniilattices of compact congruences of a 
lattice, whence it also follows that every lower bounded distributive algebraic lattice 
with countably many compact elements is the congruence lattice of a lattice. This 
proof, however, was not published. In [2], we proved that if Dx and D2 are finite 
distributive semilattices with 0 such that Dx is a O-subsemilattice of Z)2, then Dx and 
D2 have a simultaneous representation (in a sense precisely defined in [3]) as semilat-
tices of compact congruences of lattices Lt and L2, respectively. There we promised 
to show that this idea can be developed to a proof of the countable representation 
problem. Here we present this proof. We note that independently and by different 
methods H. DOBBERTIN [1] found another proof of the theorem. 

It is easy to show that any finite subset of a distributive semilattice with 0 is 
contained in a finite distributive O-subsemilattice. Hence it follows that for any 
countable distributive semilattice D with 0, there exist finite distributive semilattices 
D^'DifDi, ... with 0 and embeddings £;: A~*"A+n i=1,2,..., such that D is 
the direct limit of the family ( { A } ( 6 N > {£;};£N)- Now let D and Dt, / = 1 , 2 , . . . , 
be as above and fixed once and for all. We prove the following 

Theorem. There exist lattices Lu / = 1 , 2 , . . . , such that 
(a) £>j=Con (Lj) under an isomorphism to be denoted by (pt, / = 1 , 2 , . . . , 
(P) L( has an embedding to Li+1, i= 1, 2, . . . , 
(y) if we denote by Con (¿¡) the mapping of Con (LJ to Con (Lt+1) induced by 

(that is the one that maps & € Con to the congruence generated by 

*) This paper was left behind by András Huhn in the form of a first draft of a manuscript. 
Hans Dobbertin was kind to prepare it for publication. 
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{(<xi;, W.;)£.L?+1|(a, b)dQ}), then the following diagram is commutative 

A — A + i 
•fij jvi+i 

Con (£,) . Con (L,+ ]) Con 

where e,- denotes the identical embedding of Di to Di+1. In other words Con (X,) 
represents id;. 

C o r o l l a r y . Every countable distributive semilattice with 0 is isomorphic to the 
semilattice of all compact congruences of a lattice. 

To prove the Corollary from the Theorem, observe that the Con (Lf)'s form the 
same directed system (up to commuting isomorphisms) that the Djs, whence their 
direct limit is also isomorphic with D. On the other hand, the Z ; 's also form a di-
rected system and the congruence lattice of their direct limit is the direct limit of 
their congruence lattices (see PUDLAK.[3]) . This proves the corollary. 

2. The construction of L}. Proof of (a) 

First we define the following lattices, Let i=j be natural numbers. Let /)(/—_/) 
be the distributive lattice whose join-irreducibles are (af, ..., aj),(ai+1, ..., aj), ..., (aj), 
where, aL, ...,a} are join-irreducibles of •Dl,...,DJ, respectively, and ate^ 

u ai+ie;+i—a;+2> ••• • Let these join-irreducibles be ordered componentwise, 
that is, let (ak, ...,aj)^(a't, ...,a'j) iff k^l and Clearly, the 
set of join-irreducibles and their ordering determines D(i—j). Let B(\-+j) be 
the Boolean lattice whose set of atoms is {[a] | a join-irreducible in D(1 —j)}. 
Of course, instead of [(a l 5 . . , , aj)] etc. we shall write [a l 5 . . . , aj\. Now there are 
some natural 0-1-epibeddings. Each element of Z)(/ + 1 —_/) can be identified with 
an element of D(i->-j) as follows: x£D(i+l—j) is a join of join-irreducibles. 
These join-irreducibles are, however, join-irreducibles of D(i--j), too. Thus x can 
be identified with their join in D(i->~j). This is a lattice 0-1-embedding and from 
now on we shall • consider D(i+i—j) as a sublattice of D(i—j). Note that 
D(j—j)Dj and will be identified with it. Furthermore, D(l-+j) can be con-
sidered as a 0—1-sublattice of B(l-+j), namely x£.D(l-+j) can be identified with 
the joint of all [a], a = x , a join-irreducible. 

Now we define lattices L(\-+j) as follows. Let consist of all triples 
(x ,y , z)£(5(l—y))3 satisfying xNy=xNz=y/\z. Let L(\-+j) be the set of all 
those triples in Af(l—y) also satisfying z££)(l —_/'). Let M(i-*j) (/=-1) consist 
of all those triples (x,y, z)€(£>(i— 1 —j))3 satisfying xf\y=xt\z=yf\z, and let 
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£(/—/) be the set of all those triples satisfying also z£D(i—j). Now we describe 
the operations of L(l —/) and L(i->-j), i=2, . . . , / . The meet operations are the 
same as in (J?(l—j'))3 and in (D(i— 1—j))3, respectively. We shall denote the joins 
in (B(l-*j))3, M(l—j), £ (1— j ) by V, VM, y L , respectively and the join in 
(D(i— 1 —./))3, M(i-*j), L(i-»j) by V, VM>VL, respectively. This will cause no 
confusion. As D(l—y) is a sublattice of JB(1—/), with every z£2?(l->-/) we can 
associate an element z(LD(l-~j) which is the smallest element of B(l—j) such 
that z ^ z . Also, with any z£D(i—1-7) (/=-1) we can associate a z£Z>(/—y), 
which is the smallest element of D(i—j) such that z~z. Now ft is proven in SCHMIDT 

[4] that 
(x, y, z)NM{x', / , z') = (xVx', y\Jy\ z V z T , 

where 

(x, y, z) ' - (xV(yAz), yV(xAz), zV(xAy)) for (x,y, z)e(B( 1 - j))3, 

and 
(x, j , z)VL(x\ y', z') = (xVx', yVy', z V z T , 

where 

(x, >>, z)~ = (xW(yAz), yV(x/\z), z) for (x, y, z)£M( 1 - j ) . 

The same proof as in [4], pp. 82—86 yields that this description remains valid for 
(x, y, z)dD(i— 1—j) as well as for (x, y, z)£M(i^j). Now L(l->-j) has an ideal 
isomorphic to D(l—j), namely the ideal [(0, 0, 0), (0, 0,1)], where 0 and 1 denote 
the bounds of 5 ( W ) . The ideals [(0, 0, 0), (1,0,0)] and [(0, 0, 0), (0,1, 0)] are 
isomorphic to B{\—j). Furthermore, the dual ideals [(0,1,0), (1,1,1)] and 
[(1, 0, 0), (1, 1, 1)] are isomorphic to B(l—j). All these proofs can be carried out 
by using the description of the operation of L(l—j). In fact, as an example, we 
prove that [(1,0,0), (1,1,1)] is isomorphic to D(l-+j). The elements of this 
interval are the elements (1 ,y,z) with z£D(l —j) and by J>A1=ZA1 = 1A1 we 
have y=z, that is, the elements of the interval are (1, z, z), z£Z)(l —y). Their 
meet is always formed componentwise and, using the previous description of the 
operation, is obvious, that the componentwise join is already invariant under 
and Now we are ready to define L}. Namely, similarly as the L(l-+j), all the 
L(i—j), i=2,...,j, have ideals isomorphic to D(i— l—j) and to D{i-*j) (the 
proof is the same), so we can "glue them together" as shown in Figure 1. More 
exactly we form the direct product of the L(i—y')'s. It has an ideal isomorphic to 
L(i-»j) for all i = l , . . . , / We glue the bottom of this direct product to the topi 

of f[ M(i—j). The latter has dual ideals isomorphic to for all i—2,...,j. 
¡=2 

Now we identify, for all z = l, 2 , . . . J - l , the ideal [(0,0,0), (0, 0,1)] of L(i-^j) 
( g / 7 £ ( W ) ) with the dual ideal [(0,0,1), (1,1,1)J of a copy of M{i+\^j). 

i 
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¿(1 - j ) 

M(2 j) 

/ \ 

/ ¿ K i - i ) \ 

L(2 - j) 

M{3 - » 

Figure 1 

We identify the ideal [(0,0,0), (0,0, 1)] of this copy with the dual ideal 

[(1, 0,0), (1, 1, 1)] of the copy of Mt(i+l-j) which is a dual ideal in ¡J M(k-j), 
fc= 2 

and we identify the dual ideal [(0,0,1), (1, 1, 1)] of this copy with the ideal 
[(0, 0,0), (0,0,1)] of a third copy of M(i+ \ Finally, we identify the dual 
ideal [(0,0,1), (1, 1, 1)] of this third copy with the ideal [(0,0,0), (1,0,0)] of J 

L(i+1 —7) (= ¡J L(k-~j)). The lattice we so obtain is Lj. 
k = l 

Now we have to prove (a). Consider any congruence a of Lj. First of all it splits 
into a join of congruences of the two direct products and of the joining M(i-~j)'s. 
By perspectivity, the generating pairs of these congruences can be transformed to j 
the upper part J] L(i—j), and there they factonze according to the direct 
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representation, thus a is generated by pairs contained in the L(i—j)'s (considered 
as ideals of J]L(i-+j)). We shall prove that a is generated by an ideal of the interval 
[(0, 0, 0), (0, 0, \)]~Dj of L(i-~j). As we mentioned, a is a join of principal 
congruences generated from the L(i—y)'s. We may assume that a itself is such 
a principal congruence (because the join of ideals of [(0,0,0), (0,0, 1)] £/(_/—j) 
itself is an ideal). 

Let a be generated by the pair ((x, y, z), (x', y', z')), where (x, y, z), (x', y', z')6 
ZL(k-»j), that is 

x,y,x',y'£D(k-l ^ j ) , z,z'£D(k-*j). 

Then, forming the meets with (I, 0, 0), (0, 1, 0), (0, 0, 1), we obtain 

(x, 0, 0) a (x', 0,0), (0, y, 0) a (0, y', 0), (0, 0, z) a (0,0, z'). ' 

Hence (x, 0, 0)Vl(0, 1, 0)=(x, 1, 0)~"=(x, 1, x)~ =(x, 1, x), thus we have 
(x, 1, x) a. (x', 1, x'). Forming the meet of both sides with (0,0, 1), we get 
(0, 0, x) a (0, 0, x')- Similarly (0, 0, y) a (0, 0, y'). Thus the congruence generated by 
((x,y,z), ( x ' , / , z ' ) ) contains the pairs ((0,0, x), (0,0, x')), ((0,y,0), ( 0 , / , 0 ) ) , 
((0, 0, z), (0, 0, z')). It is also generated by them. We refer to p. 241 of [2] with which 
our notation coincides. Now (0, 0, x), (0, 0, x'), etc. are contained in the copy 
D(k—l—j), which was used for the glueing in Figure 1. Hence a is generated from 
L(k-l—j) already (the generators can be transported by perspectivity), that is, 
by induction, it is generated from L(l->~j), and, finally, with the same computation 
as above, from 5(1—j). B(l—j) is Boolean, hence a is generated by an ideal, 
say, by the pair ((0, 0, 0), (i, 0, 0)), (0, 0, 0), (/, 0, 0 ) € £ ( W ) - Then it is also gen-
erated by 

((0, 0, 0), (t, 0,0))VL((0, 1, 0), (0, 1, 0)) = ((0, 1, 0), a , 1, 0), 
that is, by 

((0, 1, 0), (1,1, i))AL((0, 0, 1), (0,0, 1)) = ((0,0, 0), (0,0,1)), 

which is an ideal of D(l—j). By induction, it is generated by an ideal of D}, as 
claimed. 

3. The construction of the embeddings Xj. Proof of 0?) 

First of all we define embeddings 

/*„: 5 (1 - B( 1 1) and 5U : D(i - y ) -*D(i 1), 

whenever i ^ j , as follows: The atoms of 5(1—y) are of the form [ax, ..., a,-], a ^ ^ 
§ a 2 , a2

£2=fl3> •••> o r of the form [a2, ..., aj\, a2e2^a3, ..., aj^Sj^^ 
^ a j , and so on, or of the form [a,], where ax, ...,aj are join-irreducibles of 
Dlt..., Dj, respectively. (These atoms are unordered.) We associate with [a,-, ..., aj] 
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the join of all [ai} ..., a}, aJ+1] in 2?(1 — j+ l ) , where ajej^aj+1, and aj+l is a 
join-irreducible element in Dj+1. With the join of a set of atoms we associate the 
join of their images. This mapping is then denoted by clearly preserves 0 
and the lattice operations, thus we only have to prove that it is one-to-one. In 
other words we have to prove that the dual mapping under Stone's duality is onto. 
This dual mapping associates with the atom [a1( ..., a}, aj+1] the atom [a ls ..., aj\, 
that is, we have to show that, for every atom [ax, ..., aj] of B(l—j), there is an 
atom [alt..., aJt flJ+1] of 5(1—7+1) with a ; e , s a > + 1 , and this is evident as ajSj^0. 
Now we define <5i;-. The join-irreducibles of D(i—j) are of the form (at, ..., aj), 

• • • .ay- i^- i^f l / , or {ai+1, ...,aj), ai+1ei+1^ai+2, ..., a j ^ E j ^ a j , 
and so on, or (aj), and they are ordered componentwise. For x£D(i—j), let xSu 

be the join of all (ak, ..., aj), where (ak, ..., aj) is join-irreducible in D(i—j), 
(ak, ..., a j ) ^x , and a ^ S c i j + l . <5y is a 0-preserving lattice embedding. The proof 
is the same as for Pl}, but we have to prove Priestley's duality, rather than Stone's 
duality. We need the following lemmas. 

Lemma 1. Let x£.B(l —j). Then xblj=xblj. 

Lemma 2. Let x£D(i— l—j), i— 1</. Then xdij=x5i^1j. 

Proof of Lemma 1. Let (ax, ..., aj, aJ+1)£D(l -*j+1) such that 

(«1, aj, aj+l) =§ xSy and (alt ..., a}, aJ+1) 

is join-irreducible. Then (a ls ..., aj)dx. Hence there is a join-irreducible element 
(blt...tbj) in D(\ —y) such that (b1,..., bj)s(a1, ..., aj) and (bt,...,bj) occurs 
in the join-representation of x, that is, [bx,..., bj\ occurs in the join-representation of 
x. Then \blt..., bj]^x. Hence [bx,..., bs, aJ+l]^xf}1J, that is, (a l 5 . . . , a}, ay + l ) g 
^(b x , ..., bj, a j + l ^ x P y . Conversely, if (a l s ..., a,-, 0, + 1 )^x0^ , then 

(ax, ..., a}, aj +1) ^ (bx, ..., bj, bj +1), 

where (bL, ..., bj, bj + l) occurs in the join-representation of that is 
[61, ..., bj, bj +1] occurs in the join-representation of xPrj. Hence [bx, ..., bJy bj + 1 ] 

Then [bt, ...,bj]^x (see the definition of pi}), (bx, ..., bj)^x, thus 
(flj, and (a l5 . . . , i J y ,a y + 1)^x6 i ; . 

P r o o f of Lemma2. Let (at, ..., a}, aJ+1)^xSiJ, join-irreducible in D(i-~j+1). 
Then fa,..., d j )^x , that is, (at, ..., a^(bit..., bj), where {b^ bj) occurs 
in the join-representation of 3c, that is, for a suitable join-irreducible b i_1^D i_x 

with bi-iBi-x^bi, (6,_i, bt, ..., bj) occurs in the join-representation of x. Hence 
(b^, b„ ..., bj, aj+J^xSi-u, that is, (a„ ..., ajf aj+1)^(bi,..., bj, 
Conversely, (a f , . . . , a,-, Then (a f , . . . , a}, a y + 1 ) s (6 ; , . . . , bJybJ+j), 
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where (b¡, ..., bj, bJ+1) occurs in the join-representation of xd^xj, that is, for 
suitable ¿>¡_j with bi^i-i^bi, (b¡_x, b¡, ..., bJ+,) occurs in the join-representa-
tion of x<5¡_M. This means, that (b¡_ls b¡, ..., bj)^x. Hence (b¡, ..., bj)^x, that is 
(a¡, ..., aj, aJ+1)^(bi, ..., bj, aj+1)7sx5ij. 

Now we are ready to prove (/?). First we prove that L(\—-j) can be embedded 
to L(1 —7+1). Consider the elements (xfiu, yfirj, z<5l7-)£L(l —7'+1) with x, y£B( 1 —7), 
z£D(l —7°). These triples form a A-subsemilattice of L(1 —7+1). Now consider 
two such triples (x, y, z), (x\ y', z')£L(l —7), and let Xu denote the mapping 
(Pij> described above. Then 

[(*, y, z)Vl<.i-.j)(x', O R , - = {x\lx\ y\/y\ z V z T A y = 

(x,y,z)Xlj\lH1^n(x',y',zt)Xlj = (xftu, y f i j j , z§1J)yL(1^j)(x'^1j, y'Pij, z'du) = 

= [(xVx', y\Jy\ z\Zz')(Aj, Pu, <5i;)]" 

Now it is evident, that the operator " and ({¡LJ, Pxj, <5ly-) are permutable, and 
Lemma 1 shows that the same is true for ~ and (/?ly-, fixj, <5ly). 

Finally we remark that the embedding /.Lj- coincides with Pu on B(l —7) con-
sidered as the ideal [(0,0,0), (1,0,0)] of L(l—7) and coincides with 5 U on 
D(l—7) considered as the ideal [(0, 0, 0), (0,0, 1)] of L(l-7"). 

Now L(\ —7) can also be embedded to L{i-~j+\) (i~j) by the embedding 
/,.j=(Si_1j, <5¡-x,j). The proof is the same as above, but we have to use 
Lemma 2 instead of Lemma 1. Furthermore, X¡j coincides with d¡-ltJ on the copy 
of /)(/—1—7) used in the glueing of Figure 1 and it coincides with 5tj on the 
copy of D(i-*j) used in the glueing. Thus we can glue together the Ay's to get an 
embedding Xj of L} to Lj+1. 

4. Proof of (y) 

We need a last lemma. 

Lemma 3. Let x£Dj_x- Then x5j_1=xsJ_1, where ój_1 stands for ¿>j_lj_1 

and maps D}_x to DjQD(j— 1 —7). 

Proo f . Let a j be a join-irreducible element in D¡ such that a J ^ x S J _ 1 . Then 
Qj=bj for some bj in the join-representation of x<5,-_i. Thus, for some join-irreducible 
bj-x^Dj-1 with bj-xEj-x^bj, (6j_i, bj) is in the join-representation of x8j_-¡. 
Hence (6y_!, b j ) ^ x d j _ 1 , thus Now xsJ_1 is the Join of all d} with 

and b'j-x ( = x ) join-irreducible. Thus b^xEj_x , whence a ^ x e j - x -
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Conversely, let aj^xEj_x- Then a j ^ a j ^ j - i for some aJ_1 (=x) join-irreducible 
of Dj_lt which can be proved as follows, x is a join of join-irreducibles ay, y(LP, 
of Dj_x. fly=(V ar)eJ-_1=(V ayEj_j). As as is join-irreducible (hence join-prime), 

y V 

it is less than or equal to one of the components in this join. (Notice, that this is 
the point of the proof which cannot be generalized to arbitrary directed systems.) 
Hence (aj_x,aj)^x5j_i, that is, aJ^xdj_1. 

Now the proof of (y) is to prove that, for d£DJ_1, dsj-l(pJ=d<pJ_1 yj_x, where 
yy_i=Con Now d(pj_x is the congruence generated by [(0, 0, 0), (0, 0, d)] 
of the copy of L(J— 1—j— 1) used in Figure 1 (constructed with j— I instead of j, 
thatis representing Lj_x). takes this interval to the interval [(0, 0, 0), (0, 0, dSj-x)] 
of the copy of L(j— 1—j) used in the construction of Lj. Thus d(pJ_1yJ_l is gen-
erated by this interval. It is also generated (by perspectivity) by the interval 
[(0,0, 0), (dSj-x, 0, 0)] of L(j—j). But then further generating pairs are 

((0,0,0), (0,0, ddj.x))y((0, 1, 0), (0,1, 0)) = ((0, 1,0), (ddj-x, 0, 

and 

((0, 1, 0), (ddj .x , 0, ddj-X))A((0, 0, 1), (0, 0, 1)) = ((0, 0, 0), (0, 0, •_,)). 

Using Lemma 3, we have that d(pJ_lyj_1 is generated by ((0, 0, 0), (0, 0, dsj^x)). 
On the other hand, d&}_x <Pj-1 is evidently generated by the pair ((0,0,0), (0, 0, dsj-J) 
of the copy of L(j—j) used to construct Lj . This completes the proof. 
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