On the representation of distributive algebraic lattices. II

$$
\text { A. P. HUHN }{ }^{*} \text {) }
$$

1. Introduction

Around 1980, H. Bauer found a result which implies that countable distributive semilattices with 0 can be represented as semilattices of compact congruences of a lattice, whence it also follows that every lower bounded distributive algebraic lattice with countably many compact elements is the congruence lattice of a lattice. This proof, however, was not published. In [2], we proved that if D_{1} and D_{2} are finite distributive semilattices with 0 such that D_{1} is a 0 -subsemilattice of D_{2}, then D_{1} and D_{2} have a simultaneous representation (in a sense precisely defined in [3]) as semilattices of compact congruences of lattices L_{1} and L_{2}, respectively. There we promised to show that this idea can be developed to a proof of the countable representation problem. Here we present this proof. We note that independently and by different methods H. Dobbertin [1] found another proof of the theorem.

It is easy to show that any finite subset of a distributive semilattice with 0 is contained in a finite distributive 0 -subsemilattice. Hence it follows that for any countable distributive semilattice D with 0 , there exist finite distributive semilattices $D_{1}, D_{2}, D_{3}, \ldots$ with 0 and embeddings $\varepsilon_{i}: D_{i} \rightarrow D_{i+1}, i=1,2, \ldots$, such that D is the direct limit of the family $\left(\left\{D_{i}\right\}_{i \in N},\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}\right)$. Now let D and $D_{i}, i=1,2, \ldots$, be as above and fixed once and for all. We prove the following

Theorem. There exist lattices $L_{i}, i=1,2, \ldots$, such that
(a) $D_{i} \cong \operatorname{Con}\left(L_{i}\right)$ under an isomorphism to be denoted by $\varphi_{i}, i=1,2, \ldots$,
(β) L_{i} has an embedding λ_{i} to $L_{i+1}, i=1,2, \ldots$,
(γ) if we denote by Con $\left(\lambda_{i}\right)$ the mapping of $\operatorname{Con}\left(L_{i}\right)$ to Con $\left(L_{i+1}\right)$ induced by λ_{i} (that is the one that maps $\Theta \in \operatorname{Con}\left(L_{i}\right)$ to the congruence generated by

[^0]$\left.\left\{\left(a \lambda_{i}, b \lambda_{i}\right) \in L_{i+1}^{2} \mid(a, b) \in \Theta\right\}\right)$, then the following diagram is commutative

where ε_{i} denotes the identical embedding of D_{i} to D_{i+1}. In other words Con $\left(\lambda_{i}\right)$ represents id_{i}.

Corollary. Every countable distributive semilattice with 0 is isomorphic to the semilattice of all compact congruences of a lattice.

To prove the Corollary from the Theorem, observe that the Con $\left(L_{i}\right)$'s form the same directed system (up to commuting isomorphisms) that the D_{i}^{\prime} 's, whence their direct limit is also isomorphic with D. On the other hand, the L_{i} 's also form a directed system and the congruence lattice of their direct limit is the direct limit of their congruence lattices (see Pudlák [3]). This proves the corollary.

2. The construction of L_{j}. Proof of (a)

First we define the following lattices, Let $i \leqq j$ be natural numbers. Let $D(i \rightarrow j)$ be the distributive lattice whose join-irreducibles are $\left(a_{i}, \ldots, a_{j}\right),\left(a_{i+1}, \ldots, a_{j}\right), \ldots,\left(a_{j}\right)$, where a_{i}, \ldots, a_{j} are join-irreducibles of D_{i}, \ldots, D_{j}, respectively, and $a_{i} \varepsilon_{i} \geqq$ $\geqq a_{i+1}, a_{i+1} \varepsilon_{i+1} \geqq a_{i+2}, \ldots$. Let these join-irreducibles be ordered componentwise, that is, let $\left(a_{k}, \ldots, a_{j}\right) \leqq\left(a_{l}^{\prime}, \ldots, a_{j}^{\prime}\right)$ iff $k \leqq l$ and $a_{l} \leqq a_{l}^{\prime}, \ldots, a_{j} \leqq a_{j}^{\prime}$. Clearly, the set of join-irreducibles and their ordering determines $D(i \rightarrow j)$. Let $B(1 \rightarrow j)$ be the Boolean lattice whose set of atoms is $\{[a] \mid a$ join-irreducible in $D(1 \rightarrow j)\}$. Of course, instead of $\left[\left(a_{1}, \ldots, a_{j}\right)\right]$ etc. we shall write $\left[a_{1}, \ldots, a_{j}\right]$. Now there are some natural $0-1$-embeddings. Each element of $D(i+1 \rightarrow j)$ can be identified with an element of $D(i \rightarrow j)$ as follows: $x \in D(i+1 \rightarrow j)$ is a join of join-irreducibles. These join-irreducibles are, however, join-irreducibles of $D(i \rightarrow j)$, too. Thus x can be identified with their join in $D(i \rightarrow j)$. This is a lattice $0-1$-embedding and from now on we shall consider $D(i+1 \rightarrow j)$ as a sublattice of $D(i \rightarrow j)$. Note that $D(j \rightarrow j) \cong D_{j}$ and will be identified with it. Furthermore, $D(1 \rightarrow j)$ can be considered as a 0 -1-sublattice of $B(1 \rightarrow j)$, namely $x \in D(1 \rightarrow j)$ can be identified with the join of all $[a], a \leqq x, a$ join-irreducible.

Now we define lattices $L(1 \rightarrow j)$ as follows. Let $M(1 \rightarrow j)$ consist of all triples $(x, y, z) \in(B(1 \rightarrow j))^{3}$ satisfying $x \wedge y=x \wedge z=y \wedge z$. Let $L(1 \rightarrow j)$ be the set of all those triples in $M(1 \rightarrow j)$ also satisfying $z \in D(1 \rightarrow j)$. Let $M(i \rightarrow j)(i>1)$ consist of all those triples $(x, y, z) \in(D(i-1 \rightarrow j))^{3}$ satisfying $x \wedge y=x \wedge z=y \wedge z$, and let
$L(i \rightarrow j)$ be the set of all those triples satisfying also $z \in D(i \rightarrow j)$. Now we describe the operations of $L(1 \rightarrow l)$ and $L(i \rightarrow j), i=2, \ldots, j$. The meet operations are the same as in $(B(1 \rightarrow j))^{3}$ and in $(D(i-1 \rightarrow j))^{3}$, respectively. We shall denote the joins in $(B(1 \rightarrow j))^{3}, M(1 \rightarrow j), L(1 \rightarrow j)$ by \vee, V_{M}, V_{L}, respectively and the join in $(D(i-1 \rightarrow j))^{3}, M(i \rightarrow j), L(i \rightarrow j)$ by \vee, \vee_{M}, \vee_{L}, respectively. This will cause no confusion. As $D(1 \rightarrow j)$ is a sublattice of $B(1 \rightarrow j)$, with every $z \in B(1 \rightarrow j)$ we can associate an element $\bar{z} \in D(1 \rightarrow j)$ which is the smallest element of $B(1 \rightarrow j)$ such that $z \leqq \bar{z}$. Also, with any $z \in D(i-1 \rightarrow j)(i>1)$ we can associate a $\bar{z} \in D(i \rightarrow j)$, which is the smallest element of $D(i \rightarrow j)$ such that $z \leqq \vec{z}$. Now it is proven in SCHmidT [4] that

$$
(x, y, z) \vee_{M}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x^{\vee} \vee x^{\prime}, y \vee y^{\prime}, z \vee z^{\prime}\right)^{\sim},
$$

where

$$
(x, y, z)^{\sim}=(x \vee(y \wedge z), y \vee(x \wedge z), z \vee(x \wedge y)) \quad \text { for } \quad(x, y, z) \in(B(1 \rightarrow j))^{3}
$$

and

$$
(x, y, z) \vee_{L}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x \vee x^{\prime}, y \vee y^{\prime}, z \vee z^{\prime}\right)^{\sim}
$$

where

$$
(x, y, z)^{\wedge}=(x \vee(y \wedge \bar{z}), y \vee(x \wedge \bar{z}), \bar{z}) \text { for }(x, y, z) \in M(1 \rightarrow j)
$$

The same proof as in [4], pp. 82-86 yields that this description remains valid for $(x, y, z) \in D(i-1 \rightarrow j)$ as well as for $(x, y, z) \in M(i \rightarrow j)$. Now $L(1 \rightarrow j)$ has an ideal isomorphic to $D(1 \rightarrow j)$, namely the ideal $[(0,0,0),(0,0,1)]$, where 0 and 1 denote the bounds of $B(1 \rightarrow j)$. The ideals $[(0,0,0),(1,0,0)]$ and $[(0,0,0),(0,1,0)]$ are isomorphic to $B(1 \rightarrow j)$. Furthermore, the dual ideals $[(0,1,0),(1,1,1)]$ and $[(1,0,0),(1,1,1)]$ are isomorphic to $B(1 \rightarrow j)$. All these proofs can be carried out by using the description of the operation of $L(1 \rightarrow j)$. In fact, as an example, we prove that $[(1,0,0),(1,1,1)]$ is isomorphic to $D(1 \rightarrow j)$. The elements of this interval are the elements $(1, y, z)$ with $z \in D(1 \rightarrow j)$ and by $y \wedge 1=z \wedge 1=1 \wedge 1$ we have $y=z$, that is, the elements of the interval are $(1, z, z), z \in D(1 \rightarrow j)$. Their meet is always formed componentwise and, using the previous description of the operation, is obvious, that the componentwise join is already invariant under . and ${ }^{\wedge}$. Now we are ready to define L_{j}. Namely, similarly as the $L(1 \rightarrow j)$, all the $L(i \rightarrow j), i=2, \ldots, j$, have ideals isomorphic to $D(i-1 \rightarrow j)$ and to $D(i \rightarrow j)$ (the proof is the same), so we can "glue them together" as shown in Figure 1. More exactly we form the direct product of the $L(i \rightarrow j)$'s. It has an ideal isomorphic to $L(i \rightarrow j)$ for all $i=1, \ldots, j$. We glue the bottom of this direct product to the top of $\prod_{i=2}^{j} M(i \rightarrow j)$. The latter has dual ideals isomorphic to $M(i \rightarrow j)$ for all $i=2, \ldots, j$. Now we identify, for all $i=1,2, \ldots, j-1$, the ideal $[(0,0,0),(0,0,1)]$ of $L(i \rightarrow j)$ $\left(\subseteq \prod_{i} L(i \rightarrow j)\right)$ with the dual ideal $[(0,0,1),(1,1,1)]$ of a copy of $M(i+1 \rightarrow j)$.

Figure 1

We identify the ideal $[(0,0,0),(0,0,1)]$ of this copy with the dual ideal $[(1,0,0),(1,1,1)]$ of the copy of $M_{\varepsilon}(i+1 \rightarrow j)$ which is a dual ideal in $\prod_{k=2}^{j} M(k \rightarrow j)$, and we identify the dual ideal $[(0,0,1),(1,1,1)]$ of this copy with the ideal $[(0,0,0),(0,0,1)]$ of a third copy of $M(i+1 \rightarrow j)$. Finally, we identify the dual ideal $[(0,0,1),(1,1,1)]$ of this third copy with the ideal $[(0,0,0),(1,0,0)]$ of $L(i+1 \rightarrow j)\left(\subseteq \prod_{k=1}^{j} L(k \rightarrow j)\right)$. The lattice we so obtain is L_{j}.

Now we have to prove (α). Consider any congruence α of L_{j}. First of all it splits into a join of congruences of the two direct products and of the joining $M(i \rightarrow j)$'s. By perspectivity, the generating pairs of these congruences can be transformed to the upper part $\prod_{i=1}^{J} L(i \rightarrow j)$, and there they factorize according to the direct
representation, thus α is generated by pairs contained in the $L(i \rightarrow j)$'s (considered as ideals of $\Pi L(i \rightarrow j)$). We shall prove that α is generated by an ideal of the interval $[(0,0,0),(0,0,1)] \cong D_{j}$ of $L(i \rightarrow j)$. As we mentioned, α is a join of principal congruences generated from the $L(i \rightarrow j)$'s. We may assume that α itself is such a principal congruence (because the join of ideals of $[(0,0,0),(0,0,1)] \subseteq J(j \rightarrow j)$ itself is an ideal).

Let α be generated by the pair $\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)$, where $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in$ $\epsilon L(k \rightarrow j)$, that is

$$
x, y, x^{\prime}, y^{\prime} \in D(k-1 \rightarrow j), \quad z, z^{\prime} \in D(k \rightarrow j) .
$$

Then, forming the meets with $(1,0,0),(0,1,0),(0,0,1)$, we obtain

$$
(x, 0,0) \alpha\left(x^{\prime}, 0,0\right), \quad(0, y, 0) \propto\left(0, y^{\prime}, 0\right), \quad(0,0, z) \propto\left(0,0, z^{\prime}\right)
$$

Hence $\quad(x, 0,0) \mathrm{V}_{L}(0,1,0)=(x, 1,0)^{\sim}=(x, 1, x)^{\wedge}=(x, 1, x)$, thus we have $(x, 1, x) \alpha\left(x^{\prime}, 1, x^{\prime}\right)$. Forming the meet of both sides with ($0,0,1$), we get $(0,0, x) \propto\left(0,0, x^{\prime}\right)$. Similarly $(0,0, y) \alpha\left(0,0, y^{\prime}\right)$. Thus the congruence generated by $\left((x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right)$ contains the pairs $\left((0,0, x),\left(0,0, x^{\prime}\right)\right),\left((0, y, 0),\left(0, y^{\prime}, 0\right)\right)$, $\left((0,0, z),\left(0,0, z^{\prime}\right)\right)$. It is also generated by them. We refer to p . 241 of $[2]$ with which our notation coincides. Now ($0,0, x$), ($0,0, x^{\prime}$), etc. are contained in the copy $D(k-1 \rightarrow j)$, which was used for the glueing in Figure 1. Hence α is generated from $L(k-1 \rightarrow j)$ already (the generators can be transported by perspectivity), that is, by induction, it is generated from $L(1 \rightarrow j)$, and, finally, with the same computation as above, from $B(1 \rightarrow j) . B(1 \rightarrow j)$ is Boolean, hence α is generated by an ideal, say, by the pair $((0,0,0),(t, 0,0)),(0,0,0),(t, 0,0) \in L(1 \rightarrow j)$. Then it is also generated by

$$
((0,0,0),(t, 0,0)) \vee_{L}((0,1,0),(0,1,0))=((0,1,0),(i, 1, i))
$$

that is, by

$$
((0,1,0),(i, 1, i)) \wedge_{L}((0,0,1),(0,0,1))=((0,0,0),(0,0, i))
$$

which is an ideal of $D(1 \rightarrow j)$. By induction, it is generated by an ideal of D_{j}, as claimed.

3. The construction of the embeddings $\boldsymbol{\lambda}_{\boldsymbol{j}}$. Proof of (β)

First of all we define embeddings

$$
\beta_{1 j}: B(1 \rightarrow j) \rightarrow B(1 \rightarrow j+1) \text { and } \delta_{i j}: D(i \rightarrow j) \rightarrow D(i \rightarrow j+1),
$$

whenever $i \leqq j$, as follows: The atoms of $B(1 \rightarrow j)$ are of the form $\left[a_{1}, \ldots, a_{j}\right], a_{1} \varepsilon_{1} \geqq$ $\geqq a_{2}, a_{2} \varepsilon_{2} \geqq a_{3}, \ldots, a_{j-1} \varepsilon_{j-1} \geqq a_{j}$ or of the form $\left[a_{2}, \ldots, a_{j}\right], a_{2} \varepsilon_{2} \geqq a_{3}, \ldots, a_{j-1} \varepsilon_{j-1} \geqq$ $\geqq a_{j}$, and so on, or of the form [a_{j}], where a_{1}, \ldots, a_{j} are join-irreducibles of D_{1}, \ldots, D_{j}, respectively. (These atoms are unordered.) We associate with $\left[a_{i}, \ldots, a_{j}\right]$
the join of all $\left[a_{i}, \ldots, a_{j}, a_{j+1}\right]$ in $B(1 \rightarrow j+1)$, where $a_{j} \varepsilon_{j} \geqq a_{j+1}$, and a_{j+1} is a join-irreducible element in D_{j+1}. With the join of a set of atoms we associate the join of their images. This mapping is then denoted by $\beta_{1} . \beta_{1 j}$ clearly preserves 0 and the lattice operations, thus we only have to prove that it is one-to-one. In other words we have to prove that the dual mapping under Stone's duality is onto. This dual mapping associates with the atom $\left[a_{1}, \ldots, a_{j}, a_{j+1}\right]$ the atom $\left[a_{1}, \ldots, a_{j}\right]$, that is, we have to show that, for every atom $\left[a_{1}, \ldots, a_{j}\right]$ of $B(1 \rightarrow j)$, there is an atom $\left[a_{1}, \ldots, a_{j}, a_{j+1}\right.$] of $B(1 \rightarrow j+1)$ with $a_{j} \varepsilon_{j} \geqq a_{j+1}$, and this is evident as $a_{j} \varepsilon_{j} \neq 0$. Now we define $\delta_{i j}$. The join-irreducibles of $D(i \rightarrow j)$ are of the form $\left(a_{i}, \ldots, a_{j}\right)$, $a_{i} \varepsilon_{i} \geqq a_{i+1}, \ldots, a_{j-1} \varepsilon_{j-1} \geqq a_{j}, \quad$ or $\quad\left(a_{i+1}, \ldots, a_{j}\right), \quad a_{i+1} \varepsilon_{i+1} \geqq a_{i+2}, \ldots, a_{j-1} \varepsilon_{j-1} \geqq a_{j}$, and so on, or $\left(a_{j}\right)$, and they are ordered componentwise. For $x \in D(i \rightarrow j)$, let $x \delta_{i j}$ be the join of all $\left(a_{k}, \ldots, a_{j}\right)$, where $\left(a_{k}, \ldots, a_{j}\right)$ is join-irreducible in $D(i \rightarrow j)$, $\left(a_{k}, \ldots, a_{j}\right) \leqq x$, and $a_{j} \varepsilon_{j} \geqq a_{j}+1 . \delta_{i j}$ is a 0 -preserving lattice embedding. The proof is the same as for $\beta_{i j}$, but we have to prove Priestley's duality, rather than Stone's duality. We need the following lemmas.

Lemma 1. Let $x \in B(1 \rightarrow j)$. Then $\bar{x} \delta_{1 j}=\bar{x} \bar{\delta}_{1 j}$.
Lemma 2. Let $x \in D(i-1 \rightarrow j), i-1<j$. Then $\bar{x} \delta_{i j}=\overline{x \delta}_{i-1, j}$.
Proof of Lemma 1. Let $\left(a_{1}, \ldots, a_{j}, a_{j+1}\right) \in D(1 \rightarrow j+1)$ such that

$$
\left(a_{1}, \ldots, a_{j}, a_{j+1}\right) \leqq \bar{x} \delta_{1 j} \quad \text { and } \quad\left(a_{1}, \ldots, a_{j}, a_{j+1}\right)
$$

is join-irreducible. Then $\left(a_{1}, \ldots, a_{j}\right) \in \bar{x}$. Hence there is a join-irreducible element $\left(b_{1}, \ldots, b_{j}\right)$ in $D(1 \rightarrow j)$ such that $\left(b_{1}, \ldots, b_{j}\right) \geqq\left(a_{1}, \ldots, a_{j}\right)$ and $\left(b_{1}, \ldots, b_{j}\right)$ occurs in the join-representation of \bar{x}, that is, $\left[b_{1}, \ldots, b_{j}\right]$ occurs in the join-representation of x. Then $\left[b_{1}, \ldots, b_{j}\right] \leqq x$. Hence $\left[b_{1}, \ldots, b_{j}, a_{j}+1\right] \leqq x \beta_{1 j}$, that is, $\left(a_{1}, \ldots, a_{j}, a_{j}+1\right) \leqq$ $\leqq\left(b_{1}, \ldots, b_{j}, a_{j}+1\right) \leqq \overline{x \beta}_{1 j}$. Conversely, if $\left(a_{1}, \ldots, a_{j}, a_{j}+1\right) \leqq \overline{x \beta}_{1 j}$, then

$$
\left(a_{1}, \ldots, a_{j}, a_{j}+1\right) \leqq\left(b_{1}, \ldots, b_{j}, b_{j}+1\right)
$$

where $\left(b_{1}, \ldots, b_{j}, b_{j}+1\right)$ occurs in the join-representation of $\overline{x \beta}_{1 j}$, that is $\left[b_{1}, \ldots, b_{j}, b_{j}+1\right]$ occurs in the join-representation of $x \beta_{1 j}$. Hence $\left[b_{1}, \ldots, b_{j}, b_{j}+1\right] \leqq$ $\leqq x \beta_{1 j}$. Then $\left[b_{1}, \ldots, b_{j}\right] \leqq x$ (see the definition of $\left.\beta_{1 j}\right),\left(b_{1}, \ldots, b_{j}\right) \leqq \bar{x}$, thus $\left(a_{1}, \ldots, a_{j}\right) \leqq \bar{x}$ and $\left(a_{1}, \ldots, a_{j}, a_{j+1}\right) \leqq \bar{x} \delta_{1 j}$.

Proof of Lemma 2. Let $\left(a_{i}, \ldots, a_{j}, a_{j+1}\right) \leqq \bar{x} \delta_{i j}$, join-irreducible in $D(i \rightarrow j+1)$. Then $\left(a_{i}, \ldots, a_{j}\right) \leqq \vec{x}$, that is, $\left(a_{i}, \ldots, a_{j}\right) \leqq\left(b_{i}, \ldots, b_{j}\right)$, where $\left(b_{i}, \ldots, b_{j}\right)$ occurs in the join-representation of \bar{x}, that is, for a suitable join-irreducible $b_{i-1} \in D_{i-1}$ with $b_{i-1} \varepsilon_{i-1} \geqq b_{i},\left(b_{i-1}, b_{i}, \ldots, b_{j}\right)$ occurs in the join-representation of x. Hence $\left(b_{i-1}, b_{i}, \ldots, b_{j}, a_{j+1}\right) \leqq x \delta_{i-1, j}$, that is, $\left(a_{i}, \ldots, a_{j}, a_{j+1}\right) \leqq\left(b_{i}, \ldots, b_{j}, a_{j+1}\right) \leqq \overline{x \delta}_{i-1, j}$. Conversely, $\left(a_{i}, \ldots, a_{j}, a_{j+1}\right) \leqq \overline{x \delta}_{i-1, j}$. Then $\left(a_{i}, \ldots, a_{j}, a_{j+1}\right) \leqq\left(b_{i}, \ldots, b_{j}, b_{j+1}\right)$,
where $\left(b_{i}, \ldots, b_{j}, b_{j+1}\right)$ occurs in the join-representation of $\overline{x \delta_{i-1, j}}$, that is, for suitable b_{i-1} with $b_{i-1} \varepsilon_{i-1} \geqq b_{i}$, $\left(b_{i-1}, b_{i}, \ldots, b_{j+1}\right)$ occurs in the join-representation of $x \delta_{i-1, j}$. This means, that $\left(b_{i-1}, b_{i}, \ldots, b_{j}\right) \leqq x$. Hence $\left(b_{i}, \ldots, b_{j}\right) \leqq \bar{x}$, that is $\left(a_{i}, \ldots, a_{j}, a_{j+1}\right) \leqq\left(b_{i}, \ldots, b_{j}, a_{j+1}\right) \leqq \bar{x} \delta_{i j}$.

Now we are ready to prove (β). First we prove that $L(1 \rightarrow j)$ can be embedded to $L(1 \rightarrow j+1)$. Consider the elements $\left(x \beta_{1 j}, y \beta_{1 j}, z \delta_{1 j}\right) \in L(1 \rightarrow j+1)$ with $x, y \in B(1 \rightarrow j)$, $z \in D(1 \rightarrow j)$. These triples form a \wedge-subsemilattice of $L(1 \rightarrow j+1)$. Now consider two such triples $(x, y, z),\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in L(1 \rightarrow j)$, and let $\lambda_{1 j}$ denote the mapping ($\beta_{1 j}, \beta_{1 j}, \delta_{1 j}$) described above. Then

$$
\begin{gathered}
{\left[(x, y, z) \vee_{L(1 \rightarrow j)}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right] \lambda_{1 j}=\left(x \vee x^{\prime}, y \vee y^{\prime}, z \vee z^{\prime}\right)^{\sim \wedge} \lambda_{1 j}=} \\
=\left[\left(x \vee x^{\prime}, y \vee y^{\prime}, z \vee z^{\prime}\right)^{\sim \wedge}\right]\left(\beta_{1 j}, \beta_{1 j}, \delta_{1 j}\right), \\
(x, y, z) \lambda_{1 j} \vee_{L(1 \rightarrow j)}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \lambda_{1 j}=\left(x \beta_{1 j}, y \beta_{1 j}, z \delta_{1 j}\right) \vee_{L(1 \rightarrow j)}\left(x^{\prime} \beta_{1 j}, y^{\prime} \beta_{1 j}, z^{\prime} \delta_{1 j}\right)= \\
=\left[\left(x \vee x^{\prime}, y \vee y^{\prime}, z \vee z^{\prime}\right)\left(\beta_{1 j}, \beta_{1 j}, \delta_{1 j}\right)\right]^{\sim} .
\end{gathered}
$$

Now it is evident, that the operator ${ }^{\sim}$ and $\left(\beta_{1 j}, \beta_{1 j}, \delta_{1 j}\right)$ are permutable, and Lemma 1 shows that the same is true for ${ }^{\wedge}$ and ($\beta_{1 j}, \beta_{1 j}, \delta_{1 j}$).

Finally we remark that the embedding $\lambda_{1 j}$ coincides with $\beta_{1 j}$ on $B(1 \rightarrow j)$ considered as the ideal $[(0,0,0),(1,0,0)]$ of $L(1 \rightarrow j)$ and coincides with $\delta_{1 j}$ on $D(1 \rightarrow j)$ considered as the ideal $[(0,0,0),(0,0,1)]$ of $L(1 \rightarrow j)$.

Now $L(1 \rightarrow j)$ can also be embedded to $L(i \rightarrow j+1)(i \leqq j)$ by the embedding $\lambda_{i j}=\left(\delta_{i-1, j}, \delta_{i-1, j}, \delta_{i-1, j}\right)$. The proof is the same as above, but we have to use Lemma 2 instead of Lemma 1. Furthermore, $\lambda_{i j}$ coincides with $\delta_{i-1, j}$ on the copy of $D(i-1 \rightarrow j)$ used in the glueing of Figure 1 and it coincides with $\delta_{i j}$ on the copy of $D(i \rightarrow j)$ used in the glueing. Thus we can glue together the $\lambda_{i j}$'s to get an embedding λ_{j} of L_{j} to L_{j+1}.

4. Proof of (γ)

We need a last lemma.
Lemma 3. Let $x \in D_{j-1}$. Then $x \delta_{j-1}=x \varepsilon_{j-1}$, where δ_{j-1} stands for $\delta_{j-1, j-1}$ and ε_{j-1} maps D_{j-1} to $D_{j} \cong D(j-1 \rightarrow j)$.

Proof. Let a_{j} be a join-irreducible element in D_{j} such that $a_{j} \leqq \overline{x \delta} \bar{\delta}_{j-1}$. Then $a_{j} \leqq b_{j}$ for some b_{j} in the join-representation of $\overline{x \delta}_{j-1}$. Thus, for some join-irreducible $b_{j-1} \in D_{j-1}$ with $b_{j-1} \varepsilon_{j-1} \geqq b_{j},\left(b_{j-1}, b_{j}\right)$ is in the join-representation of $x \delta_{j-1}$. Hence $\left(b_{j-1}, b_{j}\right) \leqq x \delta_{j-1}$, thus $b_{j-1} \leqq x$. Now $x \varepsilon_{j-1}$ is the goin of all a_{j}^{\prime} with $b_{j-1}^{\prime} \varepsilon_{j-1} \geqq a_{j}^{\prime}$ and $b_{j-1}^{\prime}(\leqq x)$ join-irreducible. Thus $b_{j} \leqq x \varepsilon_{j-1}$, whence $a_{j} \leqq x \varepsilon_{j-1}$.

Conversely, let $a_{j} \leqq x \varepsilon_{j-1}$. Then $a_{j} \leqq a_{j-1} \varepsilon_{j-1}$ for some $a_{j-1}(\leqq x)$ join-irreducible of D_{j-1}, which can be proved as follows. x is a join of join-irreducibles $a_{y}, \gamma \in P$, of $D_{j-1} \cdot a_{j} \leqq\left(\underset{\gamma}{\vee} a_{y}\right) \varepsilon_{j-1}=\left(\underset{\gamma}{\vee} a_{7} \varepsilon_{j-1}\right)$. As a_{j} is join-irreducible (hence join-prime), it is less than or equal to one of the components in this join. (Notice, that this is the point of the proof which cannot be generalized to arbitrary directed systems.) Hence $\left(a_{j-1}, a_{j}\right) \leqq x \delta_{j-1}$, that is, $a_{j} \leqq \bar{x} \delta_{j-1}$.

Now the proof of (γ) is to prove that, for $d \in D_{j-1}, d \varepsilon_{j-1} \varphi_{j}=d \varphi_{j-1} \gamma_{j-1}$, where $\gamma_{j-1}=\operatorname{Con}\left(\lambda_{j-1}\right)$. Now $d \varphi_{j-1}$ is the congruence generated by $[(0,0,0),(0,0, d)]$ of the copy of $L(j-1 \rightarrow j-1)$ used in Figure 1 (constructed with $j-1$ instead of j, that is representing $\left.L_{j-1}\right) . \lambda_{j-1}$ takes this interval to the interval $\left[(0,0,0),\left(0,0, d \delta_{j-1}\right)\right]$ of the copy of $L(j-1 \rightarrow j)$ used in the construction of L_{j}. Thus $d \varphi_{j-1} \gamma_{j-1}$ is generated by this interval. It is also generated (by perspectivity) by the interval $\left[(0,0,0),\left(d \delta_{j-1}, 0,0\right)\right]$ of $L(j \rightarrow j)$. But then further generating pairs are

$$
\left((0,0,0),\left(0,0, d \delta_{j-1}\right)\right) \vee((0,1,0),(0,1,0))=\left((0,1,0),\left({\overline{d \delta_{j-1}}}_{\left.\left.j, 0, \overline{d \delta}_{j-1}\right)\right)}\right.\right.
$$

and

$$
\left((0,1,0),\left(\overline{d \delta_{j-1}}, 0, \overline{d \delta}_{j-1}\right)\right) \wedge((0,0,1),(0,0,1))=\left((0,0,0),\left(0,0, \overline{d \delta}_{j-1}\right)\right) .
$$

Using Lemma 3, we have that $d \varphi_{j-1} \gamma_{j-1}$ is generated by $\left((0,0,0),\left(0,0, \bar{d}_{j-1}\right)\right)$. On the other hand, $d \varepsilon_{j-1} \varphi_{j-1}$ is evidently generated by the pair $\left((0,0,0),\left(0,0, \overline{d \varepsilon}_{j-1}\right)\right)$ of the copy of $L(j \rightarrow j)$ used to construct L_{j}. This completes the proof.

References

[1] H. Dobbertin, Vaught measures and their applications in lattice theory, J. Pure Appl. Algebra, 43 (1986), 27-51.
[2] A. P. Huhn, On the representation of distributive algebraic lattices. II, Acta Sci. Math., 45 (1983), 239-246.
[3] P. Pudlák, On the congruence lattices of lattices, Algebra Universalis, 20 (1985), 96-114.
[4] E. T. Schmidt, A Survey on Congruence Lattice Representations, Teubner-Texte zur Mathematik (Leipzig, 1982).

[^0]: *) This paper was left behind by András Huhn in the form of a first draft of a manuscript. Hans Dobbertin was kind to prepare it for publication.

