Relatively free bands of groups

P. G. TROTTER

The subvarieties of the variety CS of all completely simple semigroups, along with their free objects, have been studied by V. V. Rasin [15], P. R. Jones [9] and by M. Petrich and N. R. Reilly [14]. The lattice of subvarieties of the variety B of all bands has been constructed by A. P. Birjukov [1], J. A. Gerhard [6] and C. F. Fennemore [5]; the defining laws of these varieties are known.

In this paper we observe that any regular semigroup is a subdirect product of any idempotent separating homomorphic image by any idempotent pure homomorphic image. This enables the construction of free objects of subvarieties of the variety POBG of all pseudo orthodox bands of groups in terms of relatively free bands and relatively free completely simple semigroups. It is shown that in any subvariety \mathbf{V} of the variety $\mathbf{B G}$ of all bands of groups where $\mathbf{C S} \subseteq \mathbf{V} \Phi P O B G$, the \mathscr{H}-classes of elements on 3 or more generators of the free objects are not free in any group variety. It is also shown that the free completely simple semigroup on a finite set is a retract of the free object on a countable set in any variety of completely regular semigroups that contains CS.

The first section includes a subdirect product decomposition of a regular semigroup and some preliminary results on varieties; it is shown that RBG \cap POBG is a significant lower bound of the set of varieties $\mathbf{V}, \mathbf{C S} \subseteq \mathbf{V} \subseteq \mathbf{B G} \backslash \mathbf{P O B G}$, where RBG is the variety of all regular bands of groups. In the next section models of free objects in subvarieties of POBG are described, with an emphasis on those contained in RBG \cap POBG. The retract and \mathscr{H}-class results mentioned above are in the final section.

[^0]
1. Definitions and preliminary results

Suppose ϱ is a congruence on a regular semigroup S. Denote by $E(S)$ the set of idempotents of S. Define

$$
\text { trace of } \varrho=\operatorname{tr} \varrho=\varrho \mid E(S)
$$

and

$$
\text { kernel of } \varrho=\operatorname{ker} \varrho=\{u \in S ;(u, e) \in \varrho \text { for some } e \in E(S)\} .
$$

By Feigenbaum [4; Theorem 4.1], ϱ is completely determined by its trace and kernel. Note that if τ is also a congruence on S then $\operatorname{tr} \varrho \cap \operatorname{tr} \tau=\operatorname{tr}(\varrho \cap \tau)$. Also, by [8; proof of Lemma II.4.6], $\operatorname{ker} \varrho \cap \operatorname{ker} \tau=\operatorname{ker}(\varrho \cap \tau)$. By [10; Theorem 3.2], there exist least and greatest congruences on S with the same trace as ϱ (denoted respectively $\varrho_{\min }$ and $\varrho_{\max }$), or with the same kernel as ϱ (denoted respectively $\varrho^{\min }$ and $\varrho^{\max }$).

Lemma 1.1. Let ϱ, τ and λ. be congruences on a regular semigroup S such that $\varrho \subseteq \tau \subseteq \varrho_{\max }$ and $\varrho \subseteq \lambda \subseteq \varrho^{\max }$. Then S / ϱ is isomorphic to the subdirect product $\{(a \tau, a \hat{\lambda}) ; a \in S\}$ of S / τ by S / λ.

Proof. Since $\operatorname{ker} \lambda=\operatorname{ker} \varrho \subseteq \operatorname{ker} \tau$ and $\operatorname{tr} \tau=\operatorname{tr} \varrho \subseteq \operatorname{tr} \lambda$ then $\operatorname{ker}(\tau \cap \lambda)=\operatorname{ker} \varrho$ and $\operatorname{tr}(\tau \cap \lambda)=\operatorname{tr} \varrho$. So $\varrho=\tau \cap \lambda$ and the result follows (see [12; Proposition II.1.4]).

Throughout the paper \mathbf{U} will denote the variety of all semigroups that have a unary operation, and X will denote a countably infinite set. The free object on X in U is denoted by $F_{X}^{\mathrm{U}} . F_{X}^{\mathrm{U}}$ is the smallest subsemigroup of the free semigroup on $X \cup\left\{(,)^{-1}\right\}$ such that $X \subseteq F_{X}^{\mathrm{U}}$ and $(w)^{-1} \in F_{X}^{\mathrm{U}}$ for all $w \in F_{X}^{\mathrm{U}}$. We will write $w^{-1}=$ $=(w)^{-1}$ and $w^{0}=w w^{-1}$.

If \mathbf{V} is a subvariety of \mathbf{U} let $F_{X}^{\mathbf{V}}$ denote the free object in \mathbf{V} on X, and let $\varrho_{\mathbf{V}}$ be the fully invariant congruence on F_{X}^{U} such that $F_{X}^{V} \cong F_{X}^{\mathrm{U}} / \varrho_{\mathbf{V}}$. Denote by $L(\mathbf{V})$ the lattice of subvarieties of \mathbf{V} and by $C(\mathbf{V})$ the lattice of fully invariant congruences on F_{x}^{V} (both ordered by inclusion). There is a lattice anti-isomorphism between $L(\mathbf{V})$ and $C(\mathbf{V})$ given by $\mathbf{W} \rightarrow \varrho_{\mathbf{W}} / \varrho_{\mathbf{v}}$. For $\mathbf{V} \subseteq \mathbf{W}$ in $L(\mathbf{U})$ let $[\mathbf{V}, \mathbf{W}]=$ $=\{\mathbf{Z} \in L(\mathbf{U}) ; \mathbf{V} \subseteq \mathbf{Z} \subseteq \mathbf{W}\}$. For $Y \subseteq X$, let $F_{Y}^{\mathbf{V}}$ denote the subsemigroup of $F_{X}^{\mathbf{V}}$ gencrated in \mathbf{V} by $Y ; F_{Y}^{\mathbf{V}}$ is free on Y. We may regard $F_{X}^{\mathbf{V}}$ as being the set F_{X}^{U}, subject to the laws of \mathbf{V}.

A semigroup is completely regular if and only if it is a union of its subgroups. It is well known that the class CR of all completely regular semigroups is a subvariety of U defined by the laws $x x^{-1} x=x, x x^{-1}=x^{-1} x$ and $\left(x^{-1}\right)^{-1}=x$. So ϱ_{CR} is generated by $\left\{\left(u u^{-1} u, u\right),\left(u u^{-1}, u^{-1} u\right),\left(\left(u^{-1}\right)^{-1}, u\right) ; u \in F_{X}^{\mathrm{U}}\right\}$.

By [10; Theorems 3.6, 4.2 and 4.3], for any $\mathbf{V} \in L(\mathbf{C R})$ then $\left(\varrho_{\mathbf{V}} / \varrho_{\mathbf{C R}}\right)_{\min }$, $\left(\varrho_{\mathrm{V}} / \varrho_{\mathbf{C R}}\right)^{\min },\left(\varrho_{\mathrm{V}} / \varrho_{\mathbf{C R}}\right)_{\max }$ and $\left(\varrho_{\mathbf{V}} / \varrho_{\mathbf{C R}}\right)^{\max }$ are in $C(\mathbf{C R})$. Let $\mathbf{V}_{\max }, V^{\max }, \mathbf{V}_{\text {min }}$ and $\mathrm{V}^{\mathrm{min}}$ denote the varieties in $L(\mathbf{C R})$ that are respectively defined by these congruences.

It is usual when $\mathbf{V} \in L(\mathbf{B})$, the lattice of varieties of bands, to write $\mathbf{V G}$ for $\mathbf{V}_{\text {max }} . \mathbf{V G}$ is the variety of all semigroups $S \in \mathbf{C R}$ such that \mathscr{H} is a congruence on S and $S / \mathscr{H} \in \mathbf{V}$.

Let \mathbf{G} denote the variety of all groups, $\mathbf{C S}$ is the variety of all completely simple semigroups, and let OBG be the variety of all bands of groups that are orthodox. Let POBG denote the variety (see [7; Proposition 4.1]) of all $S \in$ BG such that for each $e \in E(S)$, eSe is orthodox; S is called a pseudo orthodox band of groups. The following list, from [11], is of the bottom 15 varieties in $L(\mathbf{B})$ along with their defining laws as subvarieties of $\mathbf{B}: \mathbf{T}=$ trivial variety $(x=y) ; \mathbf{L Z}=$ left zero semigroups $(x y=x) ; \mathbf{R e B}=$ rectangular bands $(x y x=x) ; \mathbf{S L}=$ semilattices $(x y=y x)$; $\mathbf{L N B}=$ left normal bands $(x y z=x z y) ; \mathbf{N B}=$ normal bands $(x y z x=x z y x) ; \mathbf{L R B}=$ left regular bands $(x y=x y x) ; \mathbf{L Q N B}=$ left quasinormal bands $(x y z=x y x z) ; \mathbf{R B}=$ regular bands $(x y z x=x y x z x)$; LSNB $=$ left seminormal bands $(x y z=x y z x z)$; and the left-right duals RZ, RNB, RRB, RQNB and RSNB of LZ, LNB, LRB, LQNB and LSNB respectively. If $\mathbf{V} \in L(\mathbf{B})$ is not in the list then $\mathbf{V} \supseteq \operatorname{LSNB} \backslash \mathbf{R B}$ or $\mathbf{V} \supseteq$ RSNB \vee RB.

The following results are to be used later in the text. Define the content of $v \in F_{X}^{U}$ to be

$$
c(v)=\{\text { letters of } X \text { appearing in } v\}
$$

and for $\mathbf{V} \in L(\mathbf{C R})$ define

$$
\mathscr{D}_{\mathrm{V}}=\left\{(u, v) ; u, v \in F_{X}^{\mathrm{U}} \text { and } u \varrho_{\mathrm{v}} \mathscr{D} v \varrho_{\mathrm{v}}\right\}
$$

Theorem 1.2. (i) [2; Theorem 4.2]. For $u, v \in F_{X}^{U},(u, v) \in \mathscr{D}_{\mathrm{CR}}$ if and only if $c(u)=c(v)$.
(ii) $\mathscr{D}_{\mathbf{C R}}$ is a congruence on F_{X}^{U}. For $\mathrm{V} \in L(\mathbf{C R})$ either $\varrho_{\mathbf{v}} \subseteq \mathscr{D}_{\mathbf{C R}}$ and $\mathrm{V} \supseteq \mathbf{S L}$ or $\varrho_{\mathrm{V}} \Phi_{\mathscr{D}_{\mathrm{CR}}}$ and $\mathrm{V} \subseteq \mathbf{C S}$.

Proof. Since \mathscr{D} is the finest semilattice congruence on any completely regular semigroup then $\mathscr{D}_{\mathbf{C R}}$ is a congruence of F_{X}^{U} and $\varrho_{\mathbf{V}} \subseteq_{\mathscr{D}_{\mathbf{C R}}}$ if and only if $\mathbf{V} \supseteq \mathbf{S L}$. If $\mathbf{V} \subseteq \mathbf{C S}$ then $\mathbf{V} \nsubseteq \mathbf{S L}$ and hence $\varrho_{\mathbf{V}} \mathscr{I}_{\mathscr{D}_{\mathbf{C R}}}$. Suppose $\varrho_{\mathbf{V}} \subseteq_{\mathscr{D}_{\mathbf{C R}}}$. Then by (i) there exists $u, v \in F_{X}^{\mathrm{U}}$ such that $(u, v) \in \varrho_{\mathrm{V}}$ and $c(u) \neq c(v)$. We may assume that there exists $x \in c(u) \backslash c(v)$. Select finite subsets Y, Z of X and endomorphisms φ, ψ of F_{X}^{U} such that $c(x \varphi)=Y=c(z \psi)$ and $c(x \psi)=Z=c(z \varphi)$ for all $z \in X \backslash\{x\}$. Since $\varrho_{\mathbf{V}}$ is fully invariant and $(u, v) \in \varrho_{\mathbf{V}}$ then $\left(v \varphi,\left(u^{0} v\right) \varphi\right),\left(v \psi,\left(u^{0} v\right) \psi\right) \in \varrho_{\mathbf{V}}$ while $c(v \varphi)=Z, c(v \psi)=Y$ and $c\left(\left(u^{0} v\right) \varphi\right)=Y \cup Z=c\left(\left(u^{0} v\right) \psi\right)$. Hence by (i) $F_{X}^{\mathrm{U}} / \varrho_{\mathbf{V}}$ has just one \mathscr{D}-class and is therefore completely simple.

Theorem 1.3. Suppose $\mathbf{V} \in L(\mathbf{B G})$. Then
(i) $\mathbf{V}_{\max } \in L(\mathbf{O B G})$ if and only if $\mathbf{V} \cap \mathbf{B} \nsubseteq \mathbf{R e B}$,
(ii) $\mathbf{V}_{\max } \in L$ (POBG) if and only if $\mathrm{V} \cap \mathbf{B} \nexists \mathrm{RB}$, and
(iii) RBG \cap POBG is the greatest lower bound in L (POBG) of
[CS, BG $\backslash L$ (POBG).
Proof. Note that since \mathscr{H} is the greatest idempotent separating congruence on $F_{X}^{\mathbf{V}}$, and \mathscr{H} is a band congruence then $\mathbf{V}_{\text {min }}=\mathbf{V} \cap \mathbf{B}$. Also observe that if $\mathbf{Z} \supseteq \mathbf{W}$ in $L(\mathbf{C R})$ then $\mathbf{Z}_{\max } \supseteq \mathbf{W}_{\max }$.
(i) Since $\operatorname{ReB}_{\max }=\mathbf{C S} \Phi \mathbf{O B G}$ then $\mathbf{V}_{\max } \nsubseteq L(\mathbf{O B G})$ if $\mathbf{V} \cap B \supseteq \mathbf{R e B}$. Conversely suppose $V \cap B \nsupseteq \mathbf{R e B}$; then $\mathbf{L R B} \supseteq \mathbf{V} \cap \mathbf{B}$ or $\mathbf{R R B} \supseteq \mathbf{V} \cap B$. By duality, it suffices to assume $V=V_{\max }=\mathbf{L R B G}$, and to prove $\mathbf{V} \subseteq \mathbf{O B G}$. In this case \mathbf{V} is defined as a subvariety of BG by $(x y)^{0}=(x y x)^{0}$. So for any $e, f \in F_{X}^{U}$ where $e \varrho_{\mathbf{V}}$ and $f \varrho_{\mathrm{v}}$ are idempotents,

$$
e f \varrho_{\mathrm{v}} e f(e f)^{0} f \varrho_{\mathrm{v}} e f(e f e)^{0} f \varrho_{\mathrm{v}} e f(e f e)^{0} e f \varrho_{\mathrm{v}} e f(e f)^{0} e f \varrho_{\mathrm{v}} e f e f .
$$

Thus F_{X}^{v} is orthodox.
(ii) The free completely simple semigroup with adjoined identity, $\left(F_{X}^{C S}\right)^{\mathbf{1}}$, is not a pseudo-orthodox band of groups but it is a regular band of groups since it
satisfies the law $(x y z x)^{0}=(x y x z x)^{0}$. Conversely, suppose $\mathbf{V} \cap \mathbf{B I E B}$; so. $\mathbf{V} \cap \mathbf{B} \subseteq$ \subseteq ©SNB or $\mathbf{V} \cap B \subseteq R S N B$. By duality we may assume $\mathbf{V}=\mathbf{V}_{\max }=\mathbf{L S N B G}$. Suppose $e, f, g \in F_{X}^{\mathrm{U}}$ such that $e \varrho_{\mathrm{v}}, f \varrho_{\mathrm{v}}$ and $g \varrho_{\mathrm{v}}$ are idempotents and $(e f e, f),(e g e, g) \in \varrho_{\dot{v}}$: Since \mathbf{V} is defined in $L(\mathbf{B G})$ by $(x y z)^{0}=(x y z x z)^{0}$ then

$$
(f g)^{0} \varrho_{\mathbf{v}}(f g e)^{0} \varrho_{\mathrm{v}}(f g e f e)^{0} \varrho_{\mathrm{v}}(f g f)^{0} \varrho_{\mathrm{v}}(f g f)^{0} f \varrho_{\mathrm{v}}(f g)^{0} f^{\prime}
$$

so $f g \varrho_{\mathbf{v}} f g(f g)^{0} g \varrho_{\mathbf{v}} f g(\cdot f g)^{0} f g \varrho_{\mathrm{v}} f g f g$. Hence $F_{x}^{\mathbf{v}} \in \mathbf{P O B G}$ and the result follows.
(iii) By [7; Theorem 3.1 and Corollary 5.4], $L(\mathbf{B G})$ is modular and $\mathbf{P O B G}=$ $=\mathbf{C S} \vee$ B. Therefore, since RBG $\supseteq \mathbf{C S}$,

$$
\mathbf{P O B G} \cap \mathbf{R B G}=(\mathbf{C S} \vee \mathbf{B}) \cap \mathbf{R B G}=\mathbf{C S} \vee(\mathbf{B} \cap \mathbf{R B G})=\mathbf{C S} \vee \mathbf{R B} .
$$

By (ii) $\mathbf{C S} \vee$ RB is a lower bound for [CS, BG] $\backslash L(\mathbf{P O B G})$. Furthermore if $\mathbf{V} \in L(\mathbf{P O B G})$ is a lower bound for $[\mathbf{C S}, \mathbf{B G}] \backslash L(\mathbf{P O B G})$ then $\mathbf{V} \subseteq \mathbf{P O B G} \cap \mathbf{R B G}$.

Lemma 1.4. Suppose $\mathbf{V} \in L(\mathbf{C R})$, and $\mathbf{W} \in\left[\mathbf{V}, \mathbf{V}_{\max } \vee V^{\max }\right]$. Then $\mathbf{W}=$ $=\left(\mathbf{W} \cap \mathbf{V}_{\text {max }}\right) \vee\left(\mathbf{W} \cap \mathbf{V}^{\max }\right)$. Furthermore $\operatorname{ker}\left(\varrho_{\mathbf{W}} / \varrho_{\mathbf{C R}}\right)=\operatorname{ker}\left(\varrho_{\mathbf{W} \cap \mathbf{v}_{\text {max }}} / \varrho_{\mathbf{C R}}\right)$.

Proof. The first statement is by [10; Theorem 5.4]. The second statement is proved in the initial part of the proof of [10; Theorem 5.1].

2. Free pseudo orthodox bands of groups

The lattice $L(\mathbf{C S})$ of completely simple semigroup varieties has been studied by several authors. In particular $F_{X}^{\mathbf{V}}$ has been characterized for $\mathbf{V} \in L(\mathbf{C S})$ in [9], [14] and [15].

Write \leqq to mean "is embedded in", and omit the embedding details where they are obvious.

Theorem 2.1. (i) If $\mathbf{V} \in L(\mathbf{O B G})$ then

$$
F_{X}^{\mathrm{V}} \cong\left\{\left(u \varrho_{\mathrm{V} \cap \mathrm{~B}}, u \varrho_{\mathrm{V} \cap \mathrm{G}}\right) ; u \in F_{X}^{\mathrm{U}}\right\} \leqq F_{X}^{V} \mathbf{B}_{\mathrm{B}} \times F_{X}^{\mathrm{V} \cap \mathrm{G}}
$$

(ii) If $\mathbf{v} \in[\operatorname{ReB}, \mathrm{POBG}]$ then

$$
F_{X}^{\mathrm{V}} \cong\left\{\left(u \varrho_{\mathrm{v} \cap \mathrm{~B}}, u \varrho_{\mathrm{v} \cap \mathrm{cs}}\right) ; u \in F_{X}^{\mathrm{U}}\right\} \leqq F_{X}^{\mathrm{V} \cap \mathrm{~B}} \times F_{X}^{\mathrm{V} \cap \mathrm{cs}} .
$$

Proof. We have $\mathbf{T}_{\text {max }}=\mathbf{G}, \mathbf{T}^{\text {max }}=\mathbf{B}=$ ReB $^{\max }$ and $\mathrm{ReB}_{\text {max }}=\mathbf{C S}$. By [13; Lemma 1] and [7; Corollary 5.4], $\mathbf{O B G}=\mathbf{B} \vee \mathbf{G}$ and $\mathbf{P O B G}=\mathbf{B} \backslash C \mathbf{C S}$ respeectively. By Lemma 1.4 then $\mathbf{V} \supseteq \mathbf{V} \cap \mathbf{G} \supseteq \mathbf{V}^{\text {min }}$ in case (i) and $\mathbf{V} \supseteq \mathbf{V} \cap \mathbf{C S}^{\supseteq} \supseteq \mathbf{V}^{\text {min }}$ in case (ii). Since $\mathbf{V}_{\text {min }}=\mathbf{V} \cap \mathbf{B}$, the result is by Lemma 1.1.

This result can be refined, given more information on $F_{x}^{\mathrm{v} \cap \mathrm{B}}$ and $F_{x}^{\mathrm{v} \cap}$:
The head $h(v)$ of $v \in F_{X}^{\mathrm{U}}$ is the first letter of X to appear in v. Dually the tail
$t(v)$ is the last letter of X to appear in v. The initial part $i(v)$ of v is the word obtained from v by retaining only the first occurrence of each letter from X. Dually define the final part $f(v)$ of v. Define $I=\left\{i(v) ; v \in F_{X}^{\mathrm{U}}\right\}$; so $I \subseteq F_{X}^{\mathrm{U}}$ consists of finite strings of distinct letters from X. Then

$$
\begin{equation*}
\varrho_{\mathrm{LNB}}=\left\{(u, v) ; u, v \in F_{X}^{\mathrm{U}} \text { where } c(u)=c(v) \text { and } h(u)=h(v)\right\} . \tag{1}
\end{equation*}
$$

To see this note that the set is a fully invariant left normal band congruence on F_{X}^{U} that is contained in $\varrho_{\mathbf{S L}} \cap \varrho_{\mathbf{L Z}}$. Since the sublattice described in the diagram is convex, the congruence is ϱ_{LNB}.

Likewise

$$
\begin{gather*}
\varrho_{\mathrm{NB}}=\left\{(u, v) \in \varrho_{\mathrm{LNB}} ; t(u)=t(v)\right\}, \tag{2}\\
\varrho_{\mathrm{LRB}}=\left\{(u, v) ; u, v \in F_{\mathrm{X}}^{\mathbf{U}} \text { where } i(u)=i(v)\right\}, \tag{3}\\
\varrho_{\mathrm{LQNB}}=\left\{(u, v) \in \varrho_{\mathrm{LRB}} ; t(u)=t(v)\right\}, \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
\varrho_{\mathrm{RB}}=\left\{(u, v) \in \varrho_{\mathrm{LRB}} ; f(u)=f(v)\right\} . \tag{5}
\end{equation*}
$$

Along with the well known results we readily get the following.
Theorem 2.2. $F_{X}^{\mathrm{T}}=\{0\} ; F_{X}^{\mathrm{LZ}} \cong X$ with multiplication $x \cdot y=x$;
$F_{X}^{\mathrm{ReB}} \cong F_{X}^{\mathrm{LZ}} \times F_{X}^{\mathrm{RZ}} ; \quad F_{X}^{\mathrm{SL}} \cong\{Y \subseteq X ;|Y|<\infty\}$ under set union;
$F_{\mathrm{X}}^{\mathrm{LNB}} \cong\{(x, Y) ; x \in Y \subseteq X,|Y|<\infty\} \leqq F_{X}^{\mathrm{LX}} \times F_{X}^{\mathrm{SL}} ;$
$F_{X}^{\mathrm{NB}} \cong\{(x, y, Y) ; x, y \in Y \subseteq X,|\boldsymbol{Y}|<\infty\} \leqq F_{X}^{\mathrm{ReB}} \times F_{X}^{\mathrm{SL}}$,
$F_{X}^{\mathrm{LRB}} \cong I$ with multiplication $a \cdot b=i(a b)$;
$F_{X}^{\mathrm{LQNB}} \cong\{(a, x) ; a \in I, x \in c(a)\} \leqq F_{\boldsymbol{X}}^{\mathbf{L R B}} \times F_{X}^{\mathbf{R Z}} ; \quad$ and
$F_{X}^{\mathrm{RB}} \cong\{(a, b) \in I \times I ; c(a)=c(b)\} \leqq F_{X}^{\mathrm{LRB}} \times F_{X}^{\mathrm{RRB}}$.
The free objects in other varieties of bands are not so easy to model.
Corollary 2.3. Suppose $\mathbf{V} \in L$ (LRBG) and $\mathbf{W}=\mathbf{V} \cap \mathbf{G}$. If $\mathbf{V} \in[\mathbf{S L}, \mathbf{S L G}]$ then

$$
F_{X}^{\mathbf{V}} \cong\left\{(Y, g) ; g \in F_{X}^{\mathbf{W}}, c(g) \subseteq Y \subseteq X,|Y|<\infty\right\} \leqq F_{X}^{\mathrm{SL}} \times F_{X}^{\mathbf{W}}
$$

If $\mathrm{V} \in[\mathrm{LNB}, \mathrm{LNBG}]$ then

$$
F_{X}^{\mathbf{V}} \cong\left\{(x, Y, g) ; g \in F_{X}^{\mathbf{W}},\{x\}, c(g) \subseteq Y \subseteq X,|Y|<\infty\right\} \leqq F_{X}^{\mathrm{LNB}} \times F_{X}^{\mathbf{W}}
$$

If $\mathrm{V} \in[$ [LRB, LRBG] then

$$
F_{X}^{\mathbf{V}} \cong\left\{(a, g) \in I \times F_{X}^{\mathbf{W}}, c(g) \subseteq c(a)\right\} \leqq F_{X}^{\mathrm{LRB}} \times F_{X}^{\mathbf{W}}
$$

Proof. With $F_{X}^{\mathbf{W}}$ replaced in these descriptions by $F_{X}^{\mathrm{U}} / \varrho_{\mathbf{W}}$ it can be easily seen by Theorems 2.1 and 2.2 that the respective isomorphisms áre given by $u \varrho_{\mathbf{v}} \rightarrow$ $\rightarrow\left(c(u), u \varrho_{W}\right), u \varrho_{\mathrm{V}} \rightarrow\left(h(u), c(u), u \varrho_{\mathrm{W}}\right)$ and $u \varrho_{\mathrm{V}} \rightarrow\left(i(u), u \varrho_{\mathrm{W}}\right)$.

Select $h \in X$ and let $\left\{p_{y z} ; y, z \in X \backslash\{h\}\right\}$ be a set in one to one correspondence with $X \backslash\{h\} \times X \backslash\{h\}$. Put $p_{y z}=e$ if $y=h$ or $z=h$. By [9], [14] or [15], $F_{X}^{\text {CS }} \cong$ $\cong \mathscr{M}(H, X, X, P)$, a Rees matrix semigroup, where H is the free group with identity e freely generated by $\left\{e x e, p_{y z} ; x, y, z \in X, y \neq h \neq z\right\}$, and P is the matrix with $p_{y z}$ in row y and column z. $\mathscr{M}(H, X, X, P)$ is freely generated in $\mathbf{C S}$ by $\{($ exe, $x, x) ; x \in X\}$.

Also by [9], [14] and [15], if $\mathbf{V} \in[\mathbf{R e B}, \mathbf{C S}$] then there is a unique normal subgroup N_{V} of H such that $F_{X}^{\mathbf{V}} \cong \mathscr{M}\left(H / N_{\mathrm{V}}, X, X, P / N_{\mathrm{V}}\right)$.

Let $\psi: F_{X}^{\mathrm{U}} \rightarrow \mathscr{M}(H, X, X, P)$ be the surjective homomorphism given by $x \psi=$ $=(e x e, x, x)$ for all $x \in X$. Define $\varphi: F_{X}^{\mathrm{U}} \rightarrow H$ by $u \psi=(u \varphi, h(u), t(u))$ for all $u \in F_{X}^{\mathrm{U}}$. Then $x \varphi=$ exe, $(x y) \varphi=x \varphi p_{x y}(y \varphi)$ and $u^{-1} \varphi=\left(p_{t(u) h(u)}(u \varphi) p_{t(u) h(u)}\right)^{-1}$ for any $x, y \in X$ and $u \in F_{X}^{\mathrm{U}}$. It follows that for $\mathrm{V} \in[\operatorname{ReB}, \mathbf{C S}]$ and $u, v \in F_{X}^{\mathrm{U}}$ then $(u, v) \in \varrho_{\mathrm{V}}$ if and only if $h(u)=h(v), t(u)=t(v)$ and $u \varphi N_{\mathrm{v}}=v \varphi N_{\mathrm{v}}$.

Corollary 2.4. Let $\mathbf{V} \in[\mathbf{N B}, \mathbf{R B G} \cap \mathbf{P O B G}]$ and $\mathbf{W}=\mathbf{V} \cap \mathbf{C S}$. If $\mathbf{V} \in[\mathbf{N B}, \mathbf{N B G}]$ then $F_{X}^{\mathbf{V}} \cong\left\{((x, y, Y),(g, x, y)) ; g \in H / N_{\mathrm{W}},\{x, y\}, c(g) \subseteq Y \subseteq X,|Y|<\infty\right\} \leqq F_{X}^{\mathrm{NB}} \times F_{X}^{\mathrm{W}}$.

If $\mathbf{V} \in[L Q N B, L Q N B G]$ then

$$
F_{X}^{\mathbf{V}} \cong\left\{((a, x),(g, h(a), x)) ; g \in H / N_{\mathbf{W}}, a \in I,\{x\}, c(g) \subseteq c(a)\right\} \leqq F_{X}^{\mathrm{LQNB}} \times F_{X}^{\mathrm{W}}
$$

If $\mathbf{V} \in[\mathbf{R B}, \mathbf{R B G} \cap \mathbf{P O B G}]$ then
$F_{X}^{\mathbf{V}} \cong\left\{((a, b),(g, h(a), t(b))) ; g \in H / N_{\mathrm{W}}, a, b \in I, c(g) \leqq c(a)=c(b)\right\} \leqq F_{X}^{\mathrm{RB}} \times F_{X}^{\mathrm{W}}$.
Proof. By Theorems 2.1 and 2.2 it can be readily checked that the respective isomorphisms are given by $u \varrho_{\mathrm{V}} \rightarrow\left((h(u), t(u), c(u)),\left(u \varphi N_{\mathrm{V}}, h(u), t(u)\right)\right), u \varrho_{\mathrm{V}} \rightarrow$ $\rightarrow\left((i(u), t(u)),\left(u \varphi N_{\mathrm{v}}, h(u), t(u)\right)\right)$ and $u \varrho_{\mathrm{v}} \rightarrow\left((i(u), f(u)),\left(u \varphi N_{\mathrm{V}}, h(u), t(u)\right)\right)$.

Note that there are repetitive symbols in the models; $h(a)$ and $t(b)$ are derivable from a and b. The repetitions are included so as to give a simple description of the multiplication.

Since the relatively free objects of LZG are known modulo G then by the corollaries the relatively free objects of RBG \cap POBG are known modulo CS and G.

By [12; Theorem IV.4.3], S is a normal band of groups if and only if S is a strong semilattice of completely simple semigroups. We can use Corollary 2.4 to characterize free objects of varieties in [NB, NBG] in these terms.

Suppose E is a semilattice and $\left\{S_{\alpha} ; \alpha \in E\right\}$ is a disjoint set of semigroups. Suppose there exists a set of injective homomorphisms $\psi_{\alpha_{,} \beta}: S_{a \rightarrow S_{\beta}}$ for all $\alpha, \beta \in E$ where $\alpha \geqq \beta$, such that $\psi_{\alpha, \alpha}$ is the identity map and $\psi_{\alpha, \beta} \psi_{\beta, \gamma}=\psi_{\alpha, \gamma}$ for all $\alpha, \beta, \gamma \in E$
where $\alpha \geqq \beta \geqq \gamma$. Then $S=\bigcup_{\alpha \in E} S_{\alpha}$ with multiplication $a \cdot b=a \psi_{\alpha, \alpha \beta} b \psi_{\beta, \alpha \beta}$ for $a \in S_{\alpha}$ and $b \in S_{\beta}$ is called a sturdy semilatice E of semigroups $S_{\alpha} ; \alpha \in E$ with transitive system $\left\{\psi_{\alpha, \beta} ; \alpha, \beta \in E\right\}$ (see [12]).

Corollary 2.5. If $\mathbf{V} \in[\mathbf{N B}, \mathrm{NBG}]$ and $\mathbf{W}=\mathbf{V} \cap \mathbf{C S}$ then

$$
F_{X}^{\mathbf{V}} \cong\left\{(Y,(g, x, y)) ; g \in H / N_{\mathbf{W}},\{x, y\}, c(g) \subseteq Y \subseteq X,|Y|<\infty\right\} \leqq F_{X}^{\mathrm{SL}} \dot{\times} F_{X}^{\mathbf{W}}
$$

Hence $F_{X}^{\mathbf{V}}$ is a sturdy semilattice F_{X}^{SL} of semigroups $F_{Y}^{\mathbf{W}} ; Y \in F_{X}^{\mathrm{SL}}$ with transitive system $\left\{\psi_{Y, Z} ; Y, Z \in F_{X}^{S L}\right\}$ such that $\left\{x \psi_{\{x,, Y} ; x \in Y\right\}$ generates $F_{Y}^{\mathbf{W}}$. Conversely any such sturdy semilattices of semigroups is isomorphic to F_{X}^{W}.

Proof. The subdirect decomposition is immediate by Corollary 2.4. So $D_{Y}=$ $=\left\{(Y, g, x, y) ; g \in H / N_{\mathbf{W}},\{x, y\}, c(g) \subseteq Y\right\}$ is a \mathscr{D}-class of the model and $D_{Y} \cong F_{Y}^{\mathbf{W}}$. With $\psi_{Y, Z}: D_{Y} \rightarrow D_{Z}$ given by $(Y, g, x, y) \rightarrow(Z, g, x, y)$ for $Z \supseteqq Y$ we see that $F_{X}^{\mathbf{V}}$ is a sturdy semilattice of the required form. Now suppose S is a sturdy semilattice $F_{X}^{\text {SL }}$ of $F_{Y}^{\mathbf{W}} ; \quad Y \in F_{X}^{\text {SL }}$ with transitive system $\left\{\psi_{Y, Z}^{\prime} ; Y, Z \in F_{X}^{\text {SL }}\right\}$ such that $\left\{x \psi_{\{x), Y}^{\prime} ; x \in Y\right\}$ generates F_{Y}^{W} for all Y. Define an automorphism η_{Y} of $F_{Y}^{\mathbf{W}}$ by $x \psi_{\{x\}, Y} \eta_{Y}=x \psi_{\{x\}, Y}^{\prime}$ for all $x \in Y$. We have for $Z \supseteqq Y, \psi_{\{x\}, Y} \eta_{Y} \psi_{Y, Z}^{\prime}=\psi_{\{x\}, Y}^{\prime} \psi_{Y, Z}^{\prime}=$ $=\psi_{\{x\}, \mathrm{Z}}^{\prime}=\psi_{\{x\}, \mathrm{Z}} \eta_{\mathrm{Z}}$. By [12; Exercise III. 7.12.11] then $S \cong F_{X}^{\mathrm{V}}$.

3. Free non-pseudo orthodox bands of groups

This section begins with a description of \mathscr{D}-classes of relatively free completely regular semigroups that allows easy comparison of some properties of the relatively free objects.

Throughout, Y will denote a finite subset of X and $D_{Y}=\left\{u \in F_{X}^{\mathrm{U}} ; c(u)=Y\right\}$. D_{Y} is a unary subsemigroup of F_{X}^{U}. Let ϱ be a congruence on D_{Y} such that D_{Y} / ϱ is completely simple. Select $e_{Y}=w^{0}$ for some $w \in D_{Y}$; so $e_{Y} \varrho \in E\left(D_{Y} / \varrho\right)$. For $u, v \in F_{Y}^{U}$ define

$$
\begin{equation*}
e_{Y u, v}=u e_{Y}\left(e_{Y} v u e_{Y}\right)^{-1} e_{Y} v \tag{6}
\end{equation*}
$$

We have $E\left(D_{Y} / \varrho\right)=\left\{e_{Y u, v} \varrho ; u, v \in F_{Y}^{U}\right\}$ since $e_{Y u, v} \varrho$ is an idempotent and for $r \in D_{Y}$, $r^{0} \varrho e_{Y r, r}$. For notational convenience write $e_{Y-u}=e_{Y e_{Y}, u}$ and $e_{Y u-}=e_{Y u, e_{Y}}$. Define

$$
\begin{equation*}
p_{Y u, v}=e_{Y-u} e_{Y v-} ; \quad u, v \in F_{Y}^{U} \tag{7}
\end{equation*}
$$

By [3; Theorem 3.4], for any $u \in D_{Y}$ there is a unique $a \varrho$ such that $a \varrho \mathscr{H} e_{Y} \varrho$ and $u \varrho e_{Y u-} a e_{Y-u} . \quad$ In fact since $e_{Y u-\varrho} \mathscr{L} e_{Y} \varrho \mathscr{R} e_{Y-u} \varrho$ then $a \varrho \doteq\left(e_{Y} u e_{Y}\right) \varrho$; so $u \varrho e_{Y u-} e_{Y} u e_{Y} e_{Y-u}$. Let H_{Y} be the unary subsemigroup of F_{X}^{U} generated by

$$
\begin{equation*}
\left\{e_{Y} u e_{Y}, p_{Y u, v} ; u, v \in F_{Y}^{\mathrm{U}}\right\} \tag{8}
\end{equation*}
$$

Then by [3; Theorem 3.4], H_{Y} / ϱ is the \mathscr{H}-class of $e_{Y} \varrho$ in D_{Y} / ϱ and

$$
\left\{\left(e_{Y_{u-}-} h e_{Y-v}\right) \varrho ; h \in H_{Y}\right\}
$$

is the \mathscr{H}-class of $\left(e_{Y_{u-}} e_{Y-v}\right) \varrho, u, v \in D_{Y}$.
Suppose $\mathbf{V} \in[\mathbf{C S}, \mathbf{C R}]$. Let $S_{\mathbf{V Y}}$ be the completely simple subsemigroup of $D_{Y} / \varrho_{\mathbf{V}}$ that is generated by

$$
\left\{\left(e_{Y x-} e_{Y} x e_{Y} e_{Y-x}\right) \varrho_{V} ; x \in Y\right\}
$$

Let T be a subsemigroup of a semigroup S and $\psi: S \rightarrow T^{\prime}$ be a homomorphism. Then T is a retract subsemigroup of S under ψ if and only if there is an isomorphism $\varphi: T^{\prime} \rightarrow T$, and $\varphi \psi$ is the identity map.

Theorem 3.1. Let Y be a finite subset of X and $\mathbf{V} \in[\mathbf{C S}, \mathbf{C R}]$. Then $S_{\mathrm{V} Y}$ is a retract subsemigroup of $F_{X}^{\mathrm{U}} / \varrho_{\mathrm{V}}$ under $\left(\varrho_{\mathrm{CS}} / \varrho_{\mathrm{V}}\right)^{\text {I }}$. In particular $S_{\mathrm{V} Y} \cong F_{Y}^{\mathrm{CS}}$.

Proof. Let $\psi: F_{Y}^{\mathrm{U}} / \varrho_{\mathbf{V}} \rightarrow F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{CS}}$ be the surjective homomorphism determined by the action $\left(x \varrho_{\mathbf{V}}\right) \psi=x \varrho_{\mathbf{C S}}$ for each $x \in Y$. So $\psi \circ \psi^{-1}$ is the restriction of ($\varrho_{\mathbf{C S}} / \varrho_{\mathbf{V}}$) to the subsemigroup $F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{V}}$ of $F_{X}^{\mathrm{U}} / \varrho_{\mathrm{V}}$. We have $e_{Y x-} e_{Y} x e_{Y} e_{Y-x} \varrho_{\mathrm{V}} x e_{Y}\left(e_{Y} x e_{Y}\right)^{-1} e_{Y} x$, and $\left(x e_{Y}\left(e_{Y} x e_{Y}\right)^{-1} e_{Y}\right) \varrho_{\mathbf{C S}}$ is an idempotent that is \mathscr{R}-related to $x \varrho_{\mathbf{C S}}$. Hence $\left(\left(e_{Y x-} e_{Y} x e_{Y} e_{Y-x}\right) \varrho_{\mathrm{V}}\right) \psi=x \varrho_{\mathrm{V}} \psi$ and ψ maps $S_{\mathrm{V} Y}$ onto $F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{CS}}$. But $S_{\mathrm{V} Y} \in \mathbf{C S}$ so there is a surjective homomorphism $\varphi: F_{\mathrm{Y}}^{\mathrm{U}} / \varrho_{\mathrm{CS}} \rightarrow S_{\mathrm{VY}}$ given by $x \varrho_{\mathrm{CS}} \varphi=\left(e_{Y x} e_{Y} x e_{Y} e_{Y-x}\right) \varrho_{\mathrm{V}}$. The result follows.

The Theorem can be strengthened in the two variable case.
Theorem 3.2. If $\mathbf{V} \in L(\mathbf{B G})$ and $\mathbf{W}=\mathbf{V} \cap \mathbf{N B G}$ then $\cdot F_{\{x, y\}}^{\mathbf{V}} \cong F_{\{x, y\}}^{\mathbf{W}}$.
Proof. By [8; Lemma IV.4.6] it can be easily seen that auva ϱ_{B} avua for any $a, u, v \in F_{\{x, y\}}^{\mathrm{U}}$. So (auva) ${ }^{0} \varrho_{\mathrm{V}}(a v u a)^{0}$ and hence $F_{\{x, y\}}^{\mathbf{V}} \in \mathbf{W}$. But $F_{\{x, y\}}^{\mathbf{W}} \in \mathbf{V}$, so the homomorphism $F_{\{x, y\}}^{\mathrm{W}} \rightarrow F_{\{x, y\}}^{\mathrm{V}}$ such that $x \rightarrow x, y \rightarrow y$ is an isomorphism.

Now suppose $\mathbf{V} \in L(\mathbf{B G})$ and Y is a finite subset of X. Let $a, b, c, d \in F_{Y}^{\mathrm{U}}$. If $(a, b),(c, d) \in \varrho_{\mathbf{B}}$ then since $\operatorname{tr} \varrho_{\mathbf{B G}}=\operatorname{tr} \varrho_{\mathbf{B}}$ we have by (6) and (7), $\left(e_{Y a, c}, e_{Y b, d}\right) \in \varrho_{\mathbf{B G}}$, whence $\left(p_{\mathbf{Y a}, c}, p_{Y b, d}\right) \in \varrho_{\mathbf{B G}}$. So

$$
\begin{equation*}
\left(p_{Y a, c}, p_{Y b, d}\right) \in \varrho_{\mathbf{V}} \quad \text { if } \quad(a, b),(c, d) \in \varrho_{\mathbf{B}} . \tag{9}
\end{equation*}
$$

Also by (7) $p_{Y a, c} \varrho_{V}\left(e_{Y} a e_{Y}\right)^{-1} e_{Y} a c e_{Y}\left(e_{Y} c e_{Y}\right)^{-1}$ and since H_{Y} / ϱ_{V} is a group,

$$
\begin{equation*}
e_{Y} a c e_{Y} \varrho_{\mathbf{V}} e_{Y} a e_{Y} p_{Y a, c} e_{Y} c e_{Y} . \tag{10}
\end{equation*}
$$

By (9) and (10) $e_{Y} a e_{Y} \varrho_{V} e_{Y} a a^{0} e_{Y} \varrho_{V} e_{Y} a e_{Y} p_{Y a, a} e_{Y} a^{0} e_{Y}$ so

$$
\begin{equation*}
e_{Y} a^{0} e_{Y} \varrho_{\mathrm{V}} p_{\mathrm{Y} a, a}^{-1} \tag{11}
\end{equation*}
$$

Also $e_{Y} a e_{Y} \varrho_{V} e_{Y} a^{2} a^{-1} e_{Y} \varrho_{V} e_{Y} a e_{Y} p_{Y a, a} e_{Y} a e_{Y} p_{Y a, a} e_{Y} a^{-1} e_{Y}$ so

$$
\begin{equation*}
e_{Y} a^{-1} e_{Y} \varrho_{V}\left(p_{Y a, a} e_{Y} a e_{Y} p_{Y a, a}\right)^{-1} \tag{12}
\end{equation*}
$$

Also note that since $\left(a^{0},(h(a) t(a))^{0}\right) \in \varrho_{\mathrm{CS}}$ while $e_{Y a-} \varrho_{\mathrm{CS}}$ and $e_{Y-b} \varrho_{\mathrm{CS}}$ are idempotents then by (6), $\left(e_{Y a-}, e_{Y h(a)-}\right),\left(e_{Y-b}, e_{Y-t(b)}\right) \in \varrho_{\mathrm{CS}}$, so by (7)

$$
\begin{equation*}
p_{Y a, b} \varrho_{\mathrm{CS}} p_{Y t(a), h(b)} . \tag{13}
\end{equation*}
$$

Lemma 3.3. Suppose $\mathbf{V} \in[\mathbf{C S}, \mathbf{B G}]$. Then $\mathbf{V} \in L(\mathbf{P O B G})$ if and only if $\left(p_{Y a, b}, p_{Y t(a), h(b)}\right) \in \varrho_{\mathbf{V}}$ for some finite subset Y of X such that $|Y| \geqq 3$ and for all $a, b \in F_{Y}^{\mathrm{U}}$.

Proof. As noted in the proof of Theorem 2.1, $\mathbf{P O B G}=\mathbf{R e B}_{\max } \vee \mathbf{R e B}^{\max }$. Then by [10; Theorem 3.4], $\mathbf{P O B G}=\left(\operatorname{ReB}_{\max }\right)^{\max } \cap\left(\operatorname{ReB}^{\max }\right)_{\max }$. Since $\mathbf{R e B}_{\max }=\mathbf{C S}$ then POBG $\in\left[\mathbf{C S}, \mathbf{C S}{ }^{\max }\right]$ so ker $\varrho_{\text {POBG }} / \varrho_{\mathbf{C R}}=$ ker $\varrho_{\mathbf{C S}} / \varrho_{\mathbf{C R}}$. Thus if $\mathbf{C S} \subseteq \mathbf{V} \subseteq \mathbf{P O B G}$ then ker $\varrho_{\mathbf{C S}} / \varrho_{\mathbf{C R}}=\operatorname{ker} \varrho_{\mathbf{V}} / \varrho_{\mathbf{C R}}$. Then by (13), since $p_{Y a, b} \varrho_{\mathbf{C R}}$ and $p_{\mathbf{Y t}(a), h(b)} \varrho_{\mathbf{C R}}$ are \mathscr{H}-related, $\left(p_{\mathbf{Y}, a, a}^{-1} p_{Y t(a), h(b)}\right) \varrho_{\mathbf{C R}} \in \operatorname{ker} \varrho_{\mathbf{V}} / \varrho_{\mathbf{C R}}$ so $\left(p_{Y a, b}, p_{Y t(a), h(b)}\right) \in \varrho_{\mathbf{V}}$ for all $a, b \in F_{Y}^{\mathbf{U}}$.

Conversely suppose $|Y| \geqq 3$ and $\left(p_{Y a, b}, p_{Y t(a), h(b)}\right) \in \varrho_{\mathbf{V}}$ for all $a, b \in F_{Y}^{\mathrm{U}}$. Then by (8), (10), (11) and (12), $H_{Y} / \varrho_{\mathrm{V}}$ is the group generated by

$$
\left\{\left(e_{Y} x e_{Y}\right) \varrho_{V}, p_{Y x, y} \varrho_{V} ; x, y \in Y\right\}
$$

We begin by showing that $\operatorname{ker}\left(\left(\varrho_{\mathrm{CS}} / \varrho_{V}\right)\left(F_{Y}^{\mathrm{U}} / \varrho_{V}\right)\right)=E\left(F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{V}}\right)$. Recall that $S_{V Y}$ is a completely simple subsemigroup of D_{Y} / ϱ_{V} generated by $\left\{\left(e_{Y x}-e_{Y} x e_{Y} e_{Y-x}\right) \varrho_{V} ; x \in Y\right\}$. So there is a subgroup $K_{\mathbf{V} Y}$ of $H_{Y} / \varrho_{\mathbf{V}}$ such that for each $x, y \in Y,\left\{\left(e_{Y x-} k e_{Y-y}\right) \varrho_{V} ; k \in K_{\mathbf{V} Y}\right\}$ is an \mathscr{H}-class in $S_{\mathbf{V} Y}$. We have $\left(e_{Y} x e_{Y}\right) \varrho_{Y} \in K_{\mathbf{V} Y}$. Also, by (7), $\left(e_{Y_{y}-} p_{Y x, y}^{-1} e_{Y-x}\right) \varrho_{\mathbf{V}}$ is an idempotent; it is \mathscr{R}-related to $\left(e_{Y_{y}-} e_{Y} y e_{Y} e_{-y Y}\right) \varrho_{\mathbf{V}}$ and \mathscr{L}-related to $\left(e_{Y x-} e_{Y} x e_{Y} e_{Y-x}\right) \varrho_{\mathbf{V}}$ so it is in $S_{\mathrm{V} Y}$. Hence $p_{Y x, y} \varrho_{\mathrm{V}} \in K_{\mathrm{V} Y}$. It follows that $H_{Y} / \varrho_{\mathbf{V}}=$ $=K_{\mathrm{VY}}$, so the \mathscr{H}-classes of $S_{\mathbf{V Y}}$ are \mathscr{H}-classes of $D_{Y} / \varrho_{\mathbf{V}}$. Hence, since $D_{\mathbf{Y}} / \varrho_{\mathbf{V}} \in \mathbf{C S}$ and $\operatorname{ker}\left(\left(\varrho_{\mathbf{C S}} / \varrho_{\mathrm{V}}\right) \mid S_{\mathrm{VY}}\right)=E\left(S_{\mathrm{VY}}\right)$ by Theorem 3.1 then $\operatorname{ker}\left(\left(\varrho_{\mathrm{CS}} / \varrho_{\mathrm{V}}\right) \mid\left(D_{Y} / \varrho_{\mathrm{V}}\right)\right)=$ $=E\left(D_{Y} / \varrho_{\mathrm{V}}\right)$.

Suppose $Z \subseteq Y$. There is an endomorphism ψ of F_{Y}^{U} such that $x \psi=x$ if $x \in Z$ and $x \psi \in Z$ if $x \in Y \backslash Z$. Since ϱ_{V} is fully invariant then ψ induces an endomorphism φ of $F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{V}}$ given by $a \varrho_{\mathrm{V}} \varphi=a \psi \varrho_{\mathrm{V}}$. Define $e_{Z}=e_{Y} \psi$, so $e_{\mathrm{Z}} \varrho_{\mathrm{V}}=e_{Y} \varrho_{\mathrm{V}} \varphi$ is an idempotent in $D_{Z} / \varrho_{\mathrm{V}}$. Construct $p_{\mathrm{Z} u, v}$ by (7) for $u, v \in F_{\mathrm{Z}}^{\mathrm{U}}$. Then

$$
p_{Y u, v} \varrho_{V} \varphi=\left(\left(e_{Y} u e_{Y}\right)^{-1} e_{Y} u v e_{Y}\left(e_{Y} v e_{Y}\right)^{-1}\right) \varrho_{V} \varphi=p_{Z u, v} \varrho_{V}
$$

Hence $\left(p_{Z u, v}, p_{Z_{t(u), h(v)}}\right) \in \varrho_{\mathrm{v}}$ for all $u, v \in F_{Z}^{\mathrm{U}}$, and as above we get

$$
\operatorname{ker}\left(\left(\varrho_{\mathrm{CS}} / \varrho_{\mathrm{V}}\right)\left(D_{\mathrm{Z}} / \varrho_{\mathrm{V}}\right)\right)=E\left(D_{\mathrm{Z}} / \varrho_{\mathrm{V}}\right)
$$

Hence $\left.\operatorname{ker}\left(\left(\varrho_{\mathrm{CS}}\right) / \varrho_{\mathrm{V}}\right) \mid\left(F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{V}}\right)\right)=E\left(F_{Y}^{\mathrm{U}} / \varrho_{\mathrm{V}}\right)$.

Since $\left(x^{0} F_{Y}^{\mathrm{U}} x^{0}\right) / \varrho_{\mathbf{C S}} \in \mathbf{O B G}$ it now. follows that $\left(x^{0} F_{Y}^{\mathrm{U}} x^{0}\right) / \varrho_{\mathbf{V}} \in \mathbf{O B G}$. But then $\left(x^{0} y x^{0} x^{0} z x^{0}\right)^{0} \varrho_{V}\left(x^{0} y x^{0}\right)^{0}\left(x^{0} z x^{0}\right)^{0}$ for any $x, y, z \in Y$. So $\left(x^{0} y x^{0} x^{0} z x^{0}\right)^{0}=$ $=\left(x^{0} y x^{0}\right)^{0}\left(x^{0} z x^{0}\right)^{0}$ is a law in V and $V \in L$ (POBG).

The major result of this section can now be proved.
Theorem 3.4. Suppose $V \in[P O B G \cap \mathbf{R B G}, \mathbf{B G}] \backslash L(P O B G)$, and Y is a finite subset of X such that $|Y| \geqq 3$. Then any \mathscr{H}-class of $F_{X}^{\mathrm{U}} / \varrho_{\mathrm{V}}$ in the \mathscr{D}-class $D_{Y} / \varrho_{\mathrm{V}}$ is not a free group.

Proof. Suppose $v \in Y$ and $u, w \in F_{Y}^{\mathbf{U}}$. By (9), (10) and (11) we have

$$
\begin{gather*}
e_{Y} u v w e_{Y} \varrho_{V} e_{Y} u e_{Y} p_{Y u, v w} e_{Y} v e_{Y} p_{Y v, w} e_{Y} w e_{Y}, \tag{14}\\
e_{Y} u v w e_{Y} \varrho_{V} e_{Y} u v^{0} e_{Y} p_{Y u v, v w} e_{Y} v w e_{Y}, \tag{15a}\\
e_{Y} u v w e_{Y} \varrho_{V} e_{Y} u v e_{Y} p_{Y u v, v w} e_{Y} v^{0} w e_{Y}, \tag{15b}\\
e_{Y} u v^{0} e_{Y} \varrho_{V} e_{Y} u e_{Y} p_{Y u, v} e_{Y} v^{0} e_{Y} \varrho_{V} e_{Y} u e_{Y} p_{Y u, v} p_{\overline{Y v, v}}^{1} \tag{16a}\\
e_{Y} v^{0} w e_{Y} \varrho_{V} p_{Y v, v}^{1} p_{Y v, w} e_{Y} w e_{Y} \tag{16b}
\end{gather*}
$$

Then by (15a), (16a) and (14)

$$
\begin{align*}
& p_{Y u v, v w} e_{Y} v w e_{Y} \varrho_{\mathrm{V}}\left(e_{Y} u v^{0} e_{Y}\right)^{-1} e_{Y} u v w e_{Y} \\
& \varrho_{\mathrm{V}} p_{Y v, v} p_{Y u, v}^{1} p_{Y u, v w} e_{Y} v e_{Y} p_{Y v, w} e_{Y} w e_{Y} . \tag{17a}
\end{align*}
$$

Likewise by (15b), (16b) and (14)

$$
\begin{equation*}
e_{Y} u v e_{Y} p_{Y u v, v w} \varrho_{\mathrm{V}} e_{Y} u e_{Y} p_{Y u, v w} e_{Y} v e_{Y} p_{Y v, v} \tag{17b}
\end{equation*}
$$

So by (10) and (17a), and (10) and (17b) respectively

$$
\begin{equation*}
e_{Y} u v^{2} w e_{Y} \varrho_{\mathrm{V}} e_{Y} u v e_{\mathrm{Y}}\left(p_{Y u v, v w} e_{Y} v w e_{Y}\right) \tag{18a}
\end{equation*}
$$

$$
\begin{gather*}
\varrho_{\mathrm{V}} e_{Y} u e_{Y} p_{Y u, v} e_{Y} v e_{Y} p_{Y v, v} p_{Y v, v}^{1} p_{Y u, v w} e_{Y} v e_{Y} p_{Y v, w} e_{Y} w e_{Y}, \\
e_{Y} u v^{2} w e_{Y} \varrho_{V}\left(e_{Y} u v e_{Y} p_{Y u v, v w}\right) e_{Y} v w e_{Y} \tag{18b}
\end{gather*}
$$

$$
\varrho_{\mathrm{V}} e_{Y} u e_{Y} p_{Y u, v w} e_{Y} v e_{Y} p_{Y v, v} e_{Y} v e_{Y} p_{Y v, w} e_{Y} w e_{Y}
$$

Comparing (18a) and (18b) then
whence

$$
p_{Y u, v} e_{Y} v e_{Y} p_{Y v, v} p_{\bar{Y} u, v}^{-1} p_{Y u, v w} \varrho_{V} p_{Y u, v w} e_{Y} v e_{Y} p_{Y v, v}
$$

$$
\begin{equation*}
\left(e_{Y} v e_{\boldsymbol{Y}} p_{Y v, v}\right)\left(p_{\bar{Y} u, v}^{1} p_{Y u, v w}\right) \varrho_{V}\left(p_{Y_{u, v}}^{-1} p_{Y u, v w}\right)\left(e_{\boldsymbol{Y}} v e_{Y} p_{Y v, v}\right) \tag{19}
\end{equation*}
$$

Alternatively we may repeat the above calculation with (14) replaced by $e_{Y} u v w e_{Y} \varrho_{V} e_{Y} u e_{Y} p_{Y u, v} e_{Y} v e_{Y} p_{Y v v, w} e_{Y} w e_{Y}$ to get

$$
\begin{equation*}
\left(p_{Y v, v} e_{Y} v e_{Y}\right)\left(p_{Y u v, w} p_{Y v, w}^{-1}\right) \varrho_{V}\left(p_{Y u v, w} p_{Y v, w}^{-1}\right)\left(p_{Y v, v} e_{Y} v e_{Y}\right) \tag{20}
\end{equation*}
$$

Let

$$
\alpha=e_{Y} v e_{Y} p_{Y v, v}, \quad \beta=p_{Y u, v}^{1} p_{Y u, v w}, \quad \gamma=p_{Y v, v} e_{Y} v e_{Y}, \quad \delta=p_{Y u v, w} p_{Y v, w}^{-1}
$$

Note that $\alpha \varrho_{\mathrm{v}}$ is not an idempotent. To see this observe that for $v \in Y$ then as in the proof of Theorem 3.1, $\left(e_{Y v-} e_{Y} v e_{Y} e_{Y-v}\right) \varrho_{\mathrm{CS}}=v \varrho_{\mathrm{CS}}$ which is not an idempotent in $F_{Y}^{\mathbf{U}} / \varrho_{\mathbf{C S}}$. But $\left(e_{\mathbf{Y v}}-p_{\bar{Y}, v}^{-1} e_{\mathbf{Y - v}}\right) \varrho_{\mathbf{C S}}$ is the idempotent \mathscr{H}-related to $v \varrho_{\mathbf{C S}}$. Hence $\left(e_{Y} v e_{Y}, p_{Y v, v}^{-1}\right) \notin \varrho_{\mathbf{C S}}$, so $\alpha \varrho_{\mathbf{C S}} \neq e_{Y} \varrho_{\mathbf{C S}}=\alpha^{0} \varrho_{\mathbf{C S}}$. Likewise $\gamma \varrho_{\mathbf{C S}} \neq \gamma^{0} \varrho_{\mathbf{C S}}$.

Let A and B denote the subgroups of the \mathscr{H}-class $H_{Y} / \varrho_{\mathbf{V}}$ of $e_{Y} \varrho_{\mathbf{V}}$ that are respectively generated by $\left\{\alpha \varrho_{\mathbf{v}}, \beta \varrho_{\mathbf{v}}\right\}$ and $\left\{\gamma \varrho_{\mathbf{v}}, \delta \varrho_{\mathbf{v}}\right\}$. Assume $H_{Y} / \varrho_{\mathbf{v}}$ is a free group. By (19) and (20), $\left\{\alpha \varrho_{\mathrm{v}}, \beta \varrho_{\mathrm{v}}\right\}$ and $\left\{\gamma \varrho_{\mathrm{v}}, \delta \varrho_{\mathrm{v}}\right\}$ are not sets of free generators of free groups, so A and B are free cyclic groups. Say $\lambda \varrho_{\mathrm{V}}$ generates A for some $\lambda \in F_{Y}^{U}$ and $\alpha \varrho_{\mathbf{V}} \lambda^{m}, \beta \varrho_{\mathbf{V}} \lambda^{n}$. But $\alpha \varrho_{\mathrm{CS}}$, and $\lambda \varrho_{\mathrm{CS}}$, are not idempotents while by (13) $\beta \varrho_{\mathrm{CS}}=\lambda^{n} \varrho_{\mathrm{CS}}$ is idempotent, so $n=0$. Therefore ($p_{Y u, v w}, p_{Y u, v}$) $\in \varrho_{\mathrm{V}}$, and likewise $\left(p_{Y u v, w}, p_{Y v, w}\right) \in \varrho_{\mathrm{V}}$ for any $u, w \in F_{Y}^{\mathrm{U}}$ and $v \in Y$. Of course $v=h(v w)=t(u v)$ so by (9) we now have $\left(p_{Y a, b}, p_{Y t(a), h(b)}\right) \in \varrho_{V}$ for all $a, b \in F_{Y}^{\mathrm{U}}$; thus by Lemma 3.3 $\mathbf{V} \in L$ (POBG). This is a contradiction. Thus $H_{Y} / \varrho_{\mathbf{v}}$ is not a free group.

Remark. Since the subgroup $S_{V Y}$ of F_{X}^{U} / ϱ_{V} is isomorphic to $F_{Y}^{\text {CS }}$ then for $|Y| \geqq 2$ and \mathscr{H}-class of $S_{V Y}$ is a free group on more than $|Y|$ free generators; that is, it generates the variety \mathbf{G} of all groups. Hence any \mathscr{H}-class in $D_{\mathbf{Y}} / \varrho_{\mathbf{V}}$ generates \mathbf{G} and thus lies in no proper subvariety of \mathbf{G}.

References

[1] A. P. Birjukov, Varieties of idempotent semigroups, Transl. Algebra i Logika, 9 (1970), 255273 (in Russian).
[2] A. H. Clifford, The free completely regular semigroup on a set, J. Algebra, 59 (1979), 434451.
[3] A. H. Clipford and G. B. Preston, The algebraic theory of semigroups, Vol. 1, Amer. Math. Soc. (Providence, 1961).
[4] R. Feigenbaum, Regular semigroup congruences, Semigroup Forum, 17 (1979), 373-377.
[5] C. F. Fennemore, All varieties of bands, Math. Nachr., 48 (1971); I: 237-252, II: 253-262.
[6] J. A. Gerhard, The lattice of equational classes of idempotent semigroups, J. Algebra, 15 (1970), 195-224.
[7] T. E. Hall and P. R. Jones, On the lattice of varieties of bands of groups, Pacific J. Math., 91 (1980), 327-337.
[8] J. M. Howie, An introduction to semigroup theory, Academic Press (London-New York, 1976).
[9] P. R. Jones, Completely simple semigroups: free products, free semigroups and varieties, Proc. Royal Soc. Edinburgh, 88A (1981), 293-313.
[10] F. J. Pastijn and P. G. Trotter, Lattices of completely regular semigroup varieties, Pacific J. Math., 119 (1985), 191-214.
[11] M. Petrich, A construction and classification of bands, Math. Nachr., 48 (1971), 263-274.
[12] M. Petrich, Introduction to semigroups, Merrill (Columbus, 1973).
[13] M. Petrich, Varieties of orthodox bands of groups, Pacific J. Math., 58 (1975), 209-217.
[14] M. Petrich and N. R. Reilly, Varieties of groups and of completely simple semigroups, Bull. Austral. Math. Soc., 23 (1981), 339-359.
[15] V. V. Rasin, Free completely simple semigroups, Ural. Gos. Univ. Mat. Zap., 11 (1979), no. 3, 140-151.
[16] P. G. Trotter, Free completely regular semigroups, Glasgow Math. J., 25 (1984), 241-254.

[^0]: Received December 13, 1984 and in revised form May 21, 1986.

