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Relatively free bands of groups 

P. G. TROTTER 

The subvarieties of the variety CS of all completely simple semigroups, along 
with their free objects, have been studied by V. V. RASIN [15], P. R . JONES [9] and 
by M. PETRICH and N. R . REILLY [14]. The lattice of subvarieties of the variety B 
of all bands has been constructed by A . P . BIRJUKOV [1], J. A . GERHARD [6] and 
C . F . FENNEMORE [5]; the defining laws of these varieties are known. 

In this paper we observe that any regular semigroup is a subdirect product 
of any idempotent separating homomorphic image by any idempotent pure ho-
momorphic image. This enables the construction of free objects of subvarieties 
of the variety POBG of all pseudo orthodox bands of groups in terms of relatively 
free bands and relatively free completely simple semigroups. It is shown that in 
any subvariety V of the variety BG of all bands of groups where CSQVigPOBG, 
the Jf-classes of elements on 3 or more generators of the free objects are not free 
in any group variety. It is also shown that the free completely simple semigroup 
on a finite set is a retract of the free object on a countable set in any variety of com-
pletely regular semigroups that contains CS. 

The first section includes a subdirect product decomposition of a regular semi-
group and some preliminary results on varieties; it is shown that RBGDPOBG 
is a significant lower bound of the set of varieties V, C S ^ V ^ B G \ P O B G , where 
RBG is the variety of all regular bands of groups. In the next section models of free 
objects in subvarieties of POBG are described, with an emphasis on those con-
tained in RBG fl POBG. The retract and -class results mentioned above are 
in the final section. 
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20 P. G. Trotter 

1. Definitions and preliminary results 

Suppose g is a congruence on a regular semigroup S. Denote by E(S) the set 
of idempotents of S. Define 

trace of Q = tr g = 
and 

kernel of g = kerg = (u, e)£ Q for some e£E(S)}. 

By FEIGENBAUM [4; Theorem 4.1], g is completely determined by its trace and kernel. 
Note that if x is also a congruence on S then tr ^Htr z = t r (oflx). Also, by [8; 
proof of Lemma II.4.6], ker o Piker t = k e r (oflx). By [10; Theorem 3.2], there exist 
least and greatest congruences on S with the same trace as Q (denoted respectively 
gmin and (?mM), or with the same kernel as g (denoted respectively gmin and emax). 

L e m m a 1.1. Let g, x and ). be congruences on a regular semigroup S such that 
gQxQgmax and QQAQQ™*. Then S/g is isomorphic to the subdirect product 
{(ax, aX); a£S} of Six by Sj?.. 

P r o o f . Since ker 2=ker g^ke r t and t r r = t r g g t r A then ker ( rPU)=ker Q 
and tr (Tfl/-)=tr g. So g = t PU and the result follows (see [12; Proposition 
II.1.4]). 

Throughout the paper U will denote the variety of all semigroups that have 
a unary operation, and X will denote a countably infinite set. The free object on X 
in U is denoted by F%. is the smallest subsemigroup of the free semigroup on 
XU {( , )"1} such that XGF% and ( w ) " 1 ^ for all w<iF%. We will write w~1 = 
= (w) - 1 and iv°=vvu'~3. 

If V is a subvariety of U let F% denote the free object in V on X, and let gv 

be the fully invariant congruence on such that F%szFx/gv. Denote by L(V) 
the lattice of subvarieties of V and by C(V) the lattice of fully invariant congruences 
on (both ordered by inclusion). There is a lattice anti-isomorphism between 
Z(V) and C(V) given by W F o r V g W in L(U) let [V,W] = 
= {Z£L(V); V g Z ^ W } . For YQX, let Fy denote the subsemigroup of gen-
erated in V by Y; Fy is free on Y. We may regard as being the set subject 
to the laws of V. 

A semigroup is completely regular if and only if it is a union of its subgroups. 
It is well known that the class CR of all completely regular semigroups is a sub-
variety of U defined by the laws xx_1x=x, xx~1=x~1x and ( x - 1 ) _ 1 = x . So 
gCR is generated by {(MW_1M, u), (MM-1, M_1M), ( ( M - 1 ) - 1 , M); 

By [10; Theorems 3.6, 4.2 and 4.3], for any V£JL (CR ) then (Qv/eCR)m-m, 
(8v/ead*"* (8y/eCR)™* and (EV /0CR)M A X are in C ( C R ) . Let V M A X , V M M , V M I N and 
Vmm denote the varieties in L(CR) that are respectively defined by these congruences. 
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It is usual when V£L(B), the lattice of varieties of bands, to write VG for 
Vmax. VG is the variety of all semigroups SgCR such that is a congruence on 
5 and S / j f e V . 

Let G denote the variety of all groups, CS is the variety of all completely simple 
semigroups, and let OBG be the variety of all bands of groups that are orthodox. 
Let POBG denote the variety (see [7; Proposition 4.1]) of all BG such that 
for each e£E(S), eSe is orthodox; S is called a pseudo orthodox band of groups. 
The following list, from [11], is of the bottom 15 varieties in L{B) along with their 
defining laws as subvarieties of B: T=trivial variety (x =y); LZ=left zero semi-
groups (xy=.v); ReB=rectangular bands (xyx=x); SL=semilattices (xy=yx); 
LNB=left normal bands (xyz—xzy); NB=normal bands (xyzx=xzyx); LRB=left 
regular bands (xy=xyx); LQNB=left quasinormal bands (xyz=xyxz); RB=reg-
ular bands (xyzx=xyxzx ) ; LSNB=left seminormal bands (xyz=xyzxz); and 
the left-right duals RZ, RNB, RRB, RQNB and RSNB of LZ, LNB, LRB, LQNB 
and LSNB respectively. If V £ L ( B ) is not in the list then ViLSNBVRB or 
V^RSNBVRB. 

LSNB RSNB 

LQNB > RQNB 

LRB "RRB 

LNB RNB 

LZ RZ 
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The following results are to be used later in the text. Define the content of 
to be 

c(v) = {letters of X appearing in v), 

and for VeZ-(CR) define 
2ls = {(w, v); u,v£Fx and UQV 3I fgv}-

T h e o r e m 1.2. (i) [2; Theorem 4.2]. For u, v^F*, (u,v)e2>cR if and only if 
c(u)=c(v). 

(ii) is a congruence on For V£L(CR) either and V 3 S L 
or and V^CS. 

P r o o f . Since 3) is the finest semilattice congruence on any completely regular 
semigroup then 3>CVL is a congruence of and £>v=^CR if and only if V 3 S L . 
If V S C S then V ^ S L and hence Suppose T h e n b y (0 
there exists u, such that (u, v)(L Qv and c(u)^c(v). We may assume that 
there exists x£ c(u)\c(v). Select finite subsets Y, Z of X and endomorphisms 
(p, \ji of F^ such that c(x(p)=Y=c(ztp) and c(x\J/)=Z—c(z(p) for all z £ X \ { x ) . 
Since QV is fully invariant and (U,V)£Qv then (yep, (u°V)(p), (vip, (u° v)\J/)£ QV while 
c(vcp)=Z, c(vil/)=Y and c((u<>v)(p) = YUZ=c((ifiv)il/). Hence by (i) F°/ev has 
just one ^-class and is therefore completely simple. 

T h e o r e m 1.3. Suppose V£L(BG). Then 
(i) Vm„€L(OBG) if and only if V f l B ^ R e B , 

(ii) Vmax€L(POBG) if and only if V f l B ^ R B , and 
(iii) RBGDPOBG is the greatest lower bound in L(POBG) of 

[CS, BG]\L(POBG). 

P r o o f . Note that since J f is the greatest idempotent separating congruence 
on and ^ is a band congruence then V m i n =VDB. Also observe that if Z 3 W 
inX(CR) then Z m M i W m M . 

(i) Since ReBm M=CSgiOBG then Vm a x$i(OBG) if VDB3ReB. Con-
versely suppose V f l B ^ R e B ; then L R B 2 V H B or RRBSVf lB . By duality, 
it suffices to assume V=V m a x =LRBG, and to prove V ^ O B G . In this case V 
is defined as a subvariety of BG by (xy)°=(x>>.x)0. So for any e,f^F^ where eqv 

and fgv are idempotents, 

efev e f ( e f f f Q v e f ( e f e f f Q v e f ( e f e f e f Q s e f ( e f f e f Q w efef. 

Thus is orthodox. 
(ii) The free completely simple semigroup with adjoined identity, (F^ ) 1 , is 

not a pseudo-orthodox band of groups but. it is a regular band of groups since it 
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satisfies the law (xyzx)°=(xyxzx)°. Conversely, suppose VDBjgRB; so V i l B g 
QLSNB or Vf lBgRSNB. By duality we may assume V=Vm a x=LSNBG. Sup-
pose e, f Fx such that egw,fgw and ggv are idempotents and (efe,f), (ege, g)€ev-
Since V is defined in L(BG) by (xyz)°=(xyzxz)° then 

(fg)° 6v Сfgef Q\ (fgefef Qy(fgf)0 Qv ( f g f f f Q y (fg)% 

so fg g v f g ( f g f g 8vfg( fg)°fg Qsfgfg- Hence F ^ P O B G and the result follows. 
(iii) By [7; Theorem 3.1 and Corollary 5.4], L(BG) is modular arid POBG = 

=CSVB. Therefore, since RBG3CS, 

POBGHRBG = (CSVB)flRBG = CSV(BflRBG) = CSVRB. 

By (ii) CSVRB is a lower bound for [CS, BG]\L(POBG). Furthermore.; if 
V£L(POBG) is a lower bound for [CS, BG]\L(POBG) then VQjPOBGПRBG. 

L e m m a 1.4. Suppose V€L(CR) and W6[V, VmaxVVm"]. Then W ^ 
= ( w n v j v ( w n v ™ ) . Furthermore k e r ( Q w ! Q C R ) = t e r ( Q w n V m J g C R ) . 

P r o o f . The first statement is by [10; Theorem 5.4]. The second statement is 
proved in the initial part of the proof of [10; Theorem 5.1]. 

2. Free pseudo orthodox bands of groups 

The lattice L(CS) of completely simple semigroup varieties has been studied 
by several authors. In particular F^ has been characterized fór V£L(CS) in [9], 
[14] and [15]. 3 ' 

Write ^ to mean "is embedded in", and omit the embedding details where 
they are obvious. 

T h e o r e m 2.1. (i) If VeL(OBG) then 

^ - {(«evnB, wevnc); ^ 

(ii) If V€[ReB,POBG] then 

F j - {(«evna, M!?vncs); u ^ } ^ F ? n B X F j n C s . 

P r o o f . We have T m a x =G, T m a x = B = R e B m " and ReBmax=CS. By [13; 
Lemma 1] and [7; Corollary 5.4], OBG=BVG and POBG=BVCS respectively. 
By Lemma 1.4 then V i V n G i V m i n in case (i) and V 3 V n C S 2 V m i n in case (ii). 
Since V m i n = V n B , the result is by Lemma 1.1. 1 - ' 

This result can be.refined, given more information oii F ^ n B ànd F j n c s . 
The head h(v) of v£F% is the first letter of Jf to appear _io v. Dually the tail 
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t(v) is the last letter of X to appear in v. The initial part i(v) of v is the word obtained 
from v by retaining only the first occurrence of each letter from X. Dually define 
the final part f(v) of v. Define I={i(v); v^F^}', so / ^ F " consists of finite strings 
of distinct letters from X. Then 

( 1 ) 0LNB = { ( « . » ) ; u,v£Fx where c(u) = c(v) and h(u) = h(v)}. 

To see this note that the set is a fully invariant left normal band congruence on 
that is contained in gSL fï gLZ. Since the sublattice described in the diagram is 
convex, the congruence is £?LNB. 

Likewise 

(2) {?NB = {("> t(u) = t(v)}, 

(3) 0LRB = { ( " , ti,v£Fx where i(u) = i(v)}, 

(4) CLQNB = { ( « , t(u) = t(v)}, 

and 

(5) 5RB = { O , ^ 0 l r b ; / (") = / ( » } • 
Along with the well known results we readily get the following. 

T h e o r e m 2.2. F j={0} ; F^Z=X with multiplication x-y=x; 

F*eB s F^xF™; FxL = { r g X-, \Y\ under set union; 

Fx™ ~ {(*,Y); xiYQX, \Y\ < « ) s i f x F | L ; 

F?* 9£ {(x,y, Y); x , y e Y Q X, \Y\ S F£ e B XF| L , 

F£ r b S I with multiplication a-b = i(ab); 

FÎqnb - {(a, x); at I, xtc(a)} s F ^ x F f v and 

FP ~ {(a, b)£lxl; c(a) = c(b)} s F^xF™*. 

The free objects in other varieties of bands are not so easy to model. 

C o r o l l a r y 2.3. Suppose V€L(LRBG) and W = V n G . If V€[SL, SLG] then 

Fx = g€FiT, c(g) g YQ X, \Y\ s F^xF?. 

If V£[LNB, LNBG] then 

FÏ ~ {(x, Y, g); giF?, {*}, c(g) QYQX, \Y\ s F^xF?. 

If V€[LRB,LRBG] then 

F? - {(a, gXIXFx, c(g) i c(a)} ^F^XF?. 
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P r o o f . With F™ replaced in these descriptions by F^/Qw it can be easily 
seen by Theorems 2.1 and 2.2 that the respective isomorphisms are given by UQv-~ 
-(c(w), UQw), ugv-+(h(u), c(u), ugw) and ugv^(i(u), ugw). 

Select h£X and let {/?>,,; y, z£X\{/i}} be a set in one to one correspondence 
with X\{h}XX\{h}. Put pyz=e if y=h or z=h. By [9], [14] or [15], 

Jt (H, X, X, P), a Rees matrix semigroup, where H is the free group with identity 
e freely generated by {exe, pyz; x, y, z£X, y^h^z}, and P is the matrix with pyz in 
row j and column z. Ji(H, X, X, P) is freely generated in CS by {(exe, x, x); xÇX}. 

Also by [9], [14] and [15], if V€[ReB, CS] then there is a unique normal sub-
group Nv of H such that F^Jl (H/Nw, X, X, P/Ny). 

Let i¡/: F^^Jt (H , X, X, P) be the surjective homomorphism given by x\[/ = 
=(exe,x,x) for all x£X. Define (p: by iif=(uq>, h(u), t(u)) for all 
u t T h e n x<p=exe, (xy)(p=x(ppxy{yq>) and m_1 ̂ =(/V)*«("<?>)/>,(«».(«)) for 
any x,y£X and It follows that for VÇ[ReB, CS] and u,v£F% then 
(u,v)£gv if and only if h(u)—h(v), t(u)=t(v) and u(pNv=vcpNv. 

Corollary 2.4. Let V<E [NB, RBG flPOBG] and W = V n CS. 7/V£ [NB, NBG] then 

FJ S {((X, Y), (g, x, >')); gdtyNw, \x, y}, c(g) QYQX, \Y\ ^ F?BXF?. 

If V£[LQNB, LQNBG] then 

Fx = {((a, x), (g, h(a), x)); gtH/Ny,, at I, {x}, c(g) Q c(a)} â F £ q n b x 

If V£[RB, RBG fl POBG] then 

Fx = {((fl, b), (g, h(a), t(b))); g£H/Nw, a, be], c(g) g c(a) = c(b)} ^ F*BXF™. 

P r o o f . By Theorems 2.1 and 2.2 it can be readily checked that the re-
spective isomorphisms are given by ugw—((h(u), t(u), c(u)), (u<pNy, h(u), t(u))), uov~* 
-((/(«), t(u)), (tt<pNv, h(u), t(u)j) and ugv-((i(u),f(u)), (ucpNv, h(u), t(u))). 

Note that there are repetitive symbols in the models; h (a) and t(b) are derivable 
from a and b. The repetitions are included so as to give a simple description of 
the multiplication. 

Since the relatively free objects of LZG are known modulo G then by the cor-
ollaries the relatively free objects of RBG fl POBG are known modulo CS and G. 

By [12; Theorem IV.4.3], S is a normal band of groups if and only if S is a 
strong semilattice of completely simple semigroups. We can use Corollary 2.4 to 
characterize free objects of varieties in [NB, NBG] in these terms. 

Suppose F is a semilattice and {5,; a£E} is a disjoint set of semigroups. 
Suppose there exists a set of injective homomorphisms Sx—Sp for all a, fidE 
where a§J?, such that ij/ttia is the identity map and for all a, ft, y£E 
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where a S ^ y . Then S=UxiESx with multiplication a-b=a^/XfIpb^PiXfi for Sx 

and b£Sfi is called a sturdy semilattice E of semigroups Sx; a.€£ with transitive 
system {¡¡/x>p; a, (see [12]). 

Co ro l l a ry 2.5. //V<E[NB, NBG] and W = v n C S then 

Fx = {(r, (g, x, y)); g£H/Nw, {x, y), c(g) QYQX, \Y\ S F^xF?. 

Hence F% is a sturdy semilattice F^h of semigroups F™; Y^F^ with transitive 
system {^Y.ZI Y,Z£F^} such that {xip^Y; x£ Y) generates F™. Conversely any 
such sturdy semilattices of semigroups is isomorphic to F™. 

Proof . The subdirect decomposition is immediate by Corollary 2.4. So Dr = 
={(T, g, x, y); gZH/Ny,, {x, y}, c(gy} is a 0-class of the model and DY==F™. 
With F>y^D7 given by (Y, g, x, y)—(Z,g, x, y) for Z 5 7 we see that 
Fx is a sturdy semilattice of the required form. Now suppose S is a sturdy semi-
lattice F | l of F?; with transitive system {ip'r z-, Y, Z<= f | L } such that 
{^{x}. Y! generates F™ for all Y. Define an automorphism r\Y of F™ by 

for all x€Y. We have for Z^Y, ¡¡IW.YVYVY.Z^U,YVY.Z = 
= z = ^ { x } , z 1z• By [12; Exercise III.7.12.11] then S = F ^ . 

3. Free non-pseudo orthodox bands of groups 

This section begins with a description of ^-classes of relatively free completely 
regular semigroups that allows easy comparison of some properties of the relatively 
free objects. 

Throughput, Y will denote a finite subset of X and DY = {u£F^; c(u)—Y}. 
Dr is a unary subsemigroup of Let Q be a congruence on Dr such that DR/G is 
completely simple. Select eY=wn for some vv(EDY; so eYQ^E(DY!g). For u, FY 

define 

(6) eYUtV = ueY{eYvueY)~1eYv. 

We have E(DY/g)={eYu,„g; u,v£FY) since eYUt0g is an idempotent and for r£DY, 
r° Q eYrr. For notational convenience write eY_u=eYe^ a and eYa_=eY„ e^. Define 

(7) pYu,v = eY-ueYc-; u, v£FY . 

By [3; Theorem 3.4], for any u£DY there is a unique ag such that ag eYg and 
u Q eYu..aeY_tt. In fact since eYu_ Q £CeYG eY_UO then ag=(eYueY)g; so 
u g eYu_eYueYeY_a. Let HY be the unary subsemigroup of F^ generated by 

(8) {erueY, pYu>0; u,viFY}. 
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Then by [3; Theorem 3.4], HY/g is the ^f-class of eYg in DY/g and 

{(eYu.heY_v)g\ h£Hr} 

is the ^f-class of (eYu~eY-v)g, u, v£DY. 
Suppose V£[CS, CR]. Let SVY be the completely simple subsemigroup of 

DY/gy that is generated by 

{(eYx-eYxeYeY-x)gv; x<EK}. 

Let T be a subsemigroup of a semigroup S and ij/: S-<-T' be a homomorphism. 
Then T is a retract subsemigroup of S under ij/ if and only if there is an isomorphism 
(p: T'-*T, and <p\]/ is the identity map. 

T h e o r e m 3.1. Let Y be a finite subset of X and V€[CS, CR]. Then SVY is 
a retract subsemigroup of F^/gv under (gcslgv)$. In particular SVY = 

Proof . Let xjj: FYjgy->-FYjgcs be the surjective homomorphism determined 
by the action (xgy)il/=xgcs for each x£Y. So ipoip"1 is the restriction of (gcs/gv) 
to the subsemigroup FY/gv of F^/gv. We have eYx__eYxeYeY_XQwxeY(eYxeY)~1eYx, 
and (xe Y (e Y xe Y )~ 1 e Y )g c s is an idempotent that is -related to xgcs. Hence 
((eYx_eYxeYeY_x)gv)\l/=xgv\¡/ and \j/ maps SWY onto FY/gcs. But S v r i C S so there 
is a surjective homomorphism cp: FYJgcs->~SVY given by xgcs(p=(eYx_eYxeYeY_x)gy. 
The result follows. 

The Theorem can be strengthened in the two variable case. 

T h e o r e m 3.2. If V£Z,(BG) and W = V f l N B G then F ^ ^ F ^ y 

Proof . By [8; Lemma IV.4.6] it can be easily seen that auva oB avua for any 
a,u,v€Ffx y}. So (auva)0 gy (avuaf and hence i ^ i y } eW. But F"xy)eV, so the 
homomorphism F^^—F^^ such that x—x, y-*y is an isomorphism. 

Now suppose V£L(BG) and Y is a finite subset of X. Let a, b, c, d£ FY . If 
(a, b), (c, d)£gB then since tr e B G =t r qb we have by (6) and (7), (eY„tC, eYbtj)£gBG, 
whence (pY„lC,pYb,dKQBG- So 

(9) (pYa,c, Prb,d)£Q\ ^ (a,b),(c,d)£gB. 

Also by (7) pYacgy(eYaeY)~1eYaceY(eYceY)~1 and since HY/gy is a group, 

(10) eYaceY gy eYaeYpYa-ceYceY. 

By (9) and (10) eYaeY gy eYacfieY gy eYaeYpYaiaeYd>eY so 

( 1 1 ) eYa0eYgv pYla. 
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Also eYaeYgveYa-a 1eY gv eYaeYpY„taeYaeYpYaiaeYa 1eY so 

(12) e r a s e r i?v 

Also note that since (a0, (h(a)t(a))°)£gcs while eYa_ qcs and eY_bgcs are 
idempotents then by (6), (eYa_, ,<„,_), (eY_b, eY_,(b))£Qcs, so by (7) 

(13) PYa.b 0CS Prt(a),h(b)-

L e m m a 3.3. Suppose V£[CS,BG]. Then V^L(POBG) if and only if 
(PYa,b> PYtw,h(b))€Qv for some finite subset Y of X such that \ 7| and for all 
a,bkf?. 

Proo f . As noted in the proof of Theorem 2.1, POBG=ReBmaxVReBmax. Then 
by [10; Theorem 3.4], POBG=(ReBmax)max D (ReBmax)max. Since ReB m a i =CS then 
POBG€[CS,CSmax] so ker oP O B G /gC R=ker e c s /o C R . Thus if C S g V Q P O B G then 
ker e C s / ö c R = k e r QVIQCR- T h e n b y (13)> s i n c e Pra.bQcr a n d Prm.imQCR ARE -^-RE-

lated, (PrlttpYm,h(b))6cr£ker Qv/Qck s o (PYa.b, Py^k^Qw for all a,b£F]?. 
Conversely suppose and (pYa,b> PYi(a),h(b))£Qv for all a,b£FY. Then 

by (8), (10), (11) and (12), HY/gv is the group generated by 

{(eYxeY)qv, pYx,ygv; x, y£Y}. 

We begin by showing that ker ((qcsIgy)\(FYjgv))=E(FYlov). Recall that SVY is a com-
pletely simple subsemigroup of DY/gv generated by {(eYx~eYxeYeY_x)gy; x£ F}. So 
there is a subgroup KVY of HY/gv such that for each x,y£Y, {(eYx-keY_y)gv; k£KyY} 
is an Ji?-class in SVY. We have (e Y xe Y )g y £K V Y . Also, by (7), (eYy-pYx yeY_x)Qv 

is an idempotent; it is ^-related to (eYy_eYyeYe_yY)gv and ¿'-related to 
(eYx_eYxeYeY_x) qv so it is in SVY. Hence pYx,yQv(zKVY. It follows that HYjgw — 
=KVY, so the -classes of SVY are tf -classes of DY/gv. Hence, since Dr/gv£ CS 
and ker((gcs/gy)\SVY)=E(SVY) by Theorem 3.1 then ker ((gcs/gv)\(DY/gv)) = 
=E(D,ley). 

Suppose ZQ Y. There is an endomorphism \j/ of f y such that x\p=x if x € Z 
and xi]/£ Z if x£ Y\Z. Since gy is fully invariant then ip induces an endomorphism 
ip of FYJgv given by agv(p=aij/gy. Define ez=eY\¡/, so ezov=eYgv<p is an 
idempotent in Dzlgy. Construct pZlliV by (7) for u,v£Fz. Then 

PYU, VQ\(P ={(eYueY)-1eYuveY(eYveY)~1)gv(p = pZU>VQV. 

Hence (Pzu,v>PztM,h(v))£Qv for all u,v£F%, and as above we get 

ker((ecs/ev)l(^z/ev)) = F(Dz/Qv). 

Hence ker ( ( e C s ) / M ( ^ v ) ) = £ ( ^ / i ? v ) -
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Since (x°^x°) /e c s eOBG it now follows that (x° F^ X")IQv£OBG. But 
then (x>x0x°zx0)0 QV (x°jx0)n(x0zx0)0 for any x,y,z(=Y. So (x°^0x0zx°)0 = 
^ixPyxOf^zx?)0 is a law in V and V€i(POBG). 

The major result of this section can now be proved. 

Theo rem 3.4. Suppose V€[POBGflRBG, BG]\L(POBG), and Y is a finite 
subset of X such that |7|s3. Then any №-class of F^/GV in the ¿¿-class Dy/QV is 
not a free group. 

Proof . Suppose v£ Y and it, By (9), (10) and (11) we have 

(14) eYuvweY Qv eYiteYpY„vw eYveYpYVtWeYweY, 

(15a) eYuvweY Qy eYuv°eYpYuVtVWeYvweY, 

(15b) eYuvweY Qy eYuveYpYuv-vweYv°weY, 

(16a) eYuv°eY QyeYueYpYu>veYv°eY QveYueYpYUtVpY^v, 

(16b) erv°weYQwpYJ;vpYViWeYweY. 

Then by (15a), (16a) and (14) 

(17a) 
Pvuv, vw eY vweY qv (eY uv° eY) 1 eY uvweY 

8\PYV,VPYU,VPYU,VWEYver PY»,WEY WEY • 

Likewise by (15b), (16b) and (14) 

(17b) eYuveYpYuVtVW Qy eYueYpYUiVweYveYpYOiV. 

So by (10) and (17a), and (10) and (17b) respectively 

eYuv2weY Qy eYuveY(pYuv,vweYvweY) uv, vw 
(18a) 

Qy eYueYpYll) „eYveYpYv,vpYv\vpYu,vweYveYpYVtw eYweY, 

eYuv-weY Qy (eYuveYpYuVtVJeYvweY 
(18b) 

Qy eYueYpYlltvw eYveYpYv> v eYveYpYv>weYweY. 

Comparing (18a) and (18b) then 

PYU, v ^Y^YPYV, vPYu.vPYu , ww Qv PYU, t'w eyVeYpYv, 

(eYveYpYVi v) (pYu) vpYUt ,„,) QY (PVU.VPYU, VJ {eYveYpYVt „). 
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Alternatively we may repeat the above calculation with (14) replaced by 
eYuvweY gyeyueYpyUiCeYveYpyUViWeYwey to get 

(20) (j>Yv,veYvey)(pYuo , WPYV, W ) e\ (PYUV, WPYV. W)(PYV, v EYveY). 

Let 

a = eYveYpYe_v, P = pYu,vpyu,vw, f = pYv,veYveY, S = pYuv,wpYv\w. 

Note that agv is not an idempotent. To see this observe that For Y then as in 
the proof of Theorem 3.1, (eYv_eY veYeY_„) gcs=vgcs which is not an idempotent 
in Fy/Qcs. But (eYv-pYlveY_V)GCS is the idempotent JP-related to vgcs. Hence 
(eYvey,pYl„)igcs, so agcs^eYgcs=ofigcs. Likewise ygcs9±y°qcs. 

Let A and B denote the subgroups of the -class HY/gy of eYgy that are 
respectively generated by { a g y , p g y ) and c>ov}. Assume HY/gy is a free 
group. By (19) and (20), (agy, pgy} and {yev> <5gv} are not sets of free generators 
of free groups, so A and B are free cyclic groups. Say ).Qy generates A for some 
).dFY and a gy Xm, p gy But a g c s , and Xgcs, are not idempotents while by 
(13) PgCs—^tt6cs is idempotent, so «=0 . Therefore (pYUlVW,pYu,v)£gy, and like-
wise (Pyuv,w>Pyv,w)€ 8v f ° r a n y M, 'fC Fy and v£ Y. Of course v=h(vw)—t(uv) 
so by (9) we now have (pYa,b> PYt(a%h(b))£Qv for all a, b£FY; thus by Lemma 3.3 
V£Z,(POBG). This is a contradiction. Thus HY/gy is not a free group. 

R e m a r k . Since the subgroup SVY of F^/gy is isomorphic to F f s then for 
| Y| ^ 2 and -class of Syr is a free group on more than | Y\ free generators; that 
is, it generates the variety G of all groups. Hence any ¿^-class in Drlgy generates 
G and thus lies in no proper subvariety of G. 
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