On maximal clones of co-operations

Z. SZÉKELY

In this paper we determine all maximal clones of co-operations on a finite set, presenting a completeness criterion for co-operations in the spirit of Rosenberg's completeness theorem for operations on a finite set (cf. [3]). The result has some consequences for the theory of selective operations [2], too.

Our terminology is based on [1]. Here we present a short summary of the notions we use in this paper. For shortness, the set $\{0, 1, ..., l-1\}$ will be denoted by 1 for every natural number *l*. Let *A* stand for the finite set **n** for n>1 and let m>0 be an integer. An *m-ary co-operation f on A* is a mapping of *A* into the union of *m* disjoint copies of *A* which can be given by and hence identified with a pair of mappings $\langle f_0, f_1 \rangle$, where $f_0: A \rightarrow m$ is called the *labelling* and $f_1: A \rightarrow A$ is called the *mapping* of *f*. The *i-th m-ary coprojection* $p^{m,i}$ (a special kind of co-operation) is defined by $p_0^{m,i}(a)=i$ and $p_1^{m,i}(a)=a$ for each $a \in A$ ($i \in m$). The set of all co-operations and that of all *m*-ary co-operations on *A* are denoted by \mathcal{C}_A and \mathcal{C}_A^m , respectively. The *variables* of the co-operation $f=\langle f_0, f_1 \rangle \in \mathcal{C}_A^m$ are the disjoint copies of *A* where *f* maps to, indexed by the elements of m. The *i*-th copy of *A* is an *essential variable* of *f* if its intersection with the range of *f* is nonempty, i.e. $f_0(x)=i$ for some $x \in A$. The co-operation *f* is called *essentially k-ary* if $|f_0(A)|=k$. Omitting all non-essential variables of *f*, we obtain a *k*-ary co-operation f_e , called the *skeleton* of *f*. We call a co-operation *essential* if it is injective and essentially at least binary.

Let $f \in \mathscr{C}_A^m$ and $g^{(0)}, g^{(1)}, \dots, g^{(m-1)} \in \mathscr{C}_A$. The superposition $h := f(g^{(0)}, g^{(1)}, \dots, g^{(m-1)})$ of f with $g^{(0)}, g^{(1)}, \dots, g^{(m-1)}$ is the co-operation determined by the equalities $h_0(a) = = g_0^{(f_0(a))}(f_1(a))$ and $h_1(a) = g_1^{(f_0(a))}(f_1(a))$ for each $a \in A$. The co-operation f is called the *main component* in this superposition. A set of co-operations on A is called a *clone* if it contains all coprojections and is closed under superposition. The least clone containing a set C of co-operations is called *the clone generated by* C and denoted by [C]. C is complete if [C] equals \mathscr{C}_A . (A co-operation f is called Sheffer

Received February 28, 1986 and in revised form July 10, 1988.

if $\{f\}$ is complete.) The mappings of the set C generate a semigroup $\mathscr{G}(C)$ of selfmaps of A called the *semigroup of C*. We call C *transitive* if $\mathscr{G}(C)$ is transitive. Note that $\mathscr{G}(C) \subseteq \mathscr{G}[C]$.

We remark that the lattice of clones of co-operation on A is finite. This fact can be shown in an easy way using the following remarks:

(1) The relation \approx on \mathscr{C}_A defined for $f, g \in \mathscr{C}_A$ by $f \approx g$ if both of the skeletons of f and g are k-ary and $g_e = f_e(p^{k,0\pi}, p^{k,1\pi}, ..., p^{k,(k-1)\pi})$ for some permutation π of **k** is an equivalence relation with finitely many blocks. (Note that each block of the partition associated with \approx can be represented by an at most |A|-ary co-operation and the number of these co-operations is finite.)

(2) Every subclone of \mathscr{C}_A is a union of some blocks of the equivalence \approx defined above. (It is trivial noting that for a clone C from $f \in C$ it follows $g \in C$ for each $g \in \mathscr{C}_A$ with $f \approx g$.)

A maximal clone of co-operations on A is a proper subclone C of \mathscr{C}_A such that $C \subset D \subset \mathscr{C}_A$ for no clone D. Similarly to the case of algebras, a pair $\langle A, F \rangle$ with a nonempty set A and $F \subseteq \mathscr{C}_A$ is called a *coalgebra*. We say that $\langle A, F \rangle$ is a *finite* coalgebra if A is finite. $\langle A, F \rangle$ is called primal is F is complete. A co-operation $f \in \mathscr{C}_A$ is said to be constant if both f_0 and f_1 are constants. The coalgebra $\langle A, F \rangle$ is functionally complete if the union of F with the set of constant co-operations on A is complete.

There is a close connection between co-operations and regular selective operations, as follows. Let P and M be nonempty sets, let k be a natural number and let $f_0: P \rightarrow k$ and $f_1: P \rightarrow P$. The k-ary operation f on M^P is called a *regular selective* operation if for every $p \in P$ the p-component of the result of f is the f_1 -component of the f_0 -th operand. Observe that the mappings f_0 and f_1 can be considered as the labelling and the mapping of a k-ary co-operation on P. Moreover, for any nontrivial M and nonempty P this natural correspondence yields a bijection between the regular selective operations on M^P and the co-operations on P. This bijection is a clone isomorphism. Hence the lattice of clones of regular selective operations on a finite power of a set is isomorphic to the lattice of clones of co-operations on a finite set and our criterion for the maximality of a clone of co-operations provides a description of all maximal proper subclones of the clone of all regular selective operations on a set M^P with P finite (cf. [1], [2]).

Consider a nonempty subset T of A. We say that a co-operation $f \in \mathscr{C}_A$ preserves T if T is closed under the mapping f_1 . Let π be a partition of A. f preserves π if the labelling f_0 is constant on each block of π and f_1 preserves π in the usual sense (i.e. $f_1(a) \equiv_{\pi} f_1(b)$ holds for every $a, b \in A$ with $a \equiv_{\pi} b$, where \equiv_{π} is the equivalence associated with π).

We call a co-operation $f \in \mathscr{C}_A$ (x, y)-gluing for some distinct $x, y \in A$ if f(x) = = f(y) (i.e. $f_i(x) = f_i(y)$ for $i \in 2$). Note that an arbitrary superposition with an

(x, y)-gluing main component is also (x, y)-gluing. We say that f glues in $T \subseteq A$ if f is (x, y)-gluing for some $x, y \in T$. We write f || T for "f does not glue in T" (i.e., $f|_T$ is injective on T). Let M be a family of subsets of A. M is called *disjoint* if its members are pairwise disjoint and called *uniform* if all its members have the same cardinality. M is *regular* if it is nonempty, disjoint, uniform and distinct from $A^* := \{\{a\}: a \in A\}$. The set of regular families of subsets of A will be denoted by Rf(A). The family M determines the following relation \sim_M on $A: x \sim_M y$ if $x, y \in S$ for some $S \in M$. If M is disjoint, then \sim_M is an equivalence on the set $\bigcup M := \bigcup_{S \in M} S$. We remark that every member of Rf(A) can also be considered as a partial equivalence on A.

Let $M \in \operatorname{Rf}(A)$ and $S \in M$ be arbitrary. The co-operation f preserves S in M if f_0 is constant on S and f_1 maps S into a member of M, i.e. $f_0(x) = f_0(y)$ and $f_1(x) \sim_M f_1(y)$ for all $x, y \in S$. (Note that the property "f preserves S in M" is not equivalent to the simple property "f preserves S" even in the case of M singleton!) Further, (i) f weakly preserves S in M if either f preserves S in M or f glues in S, (ii) f (weakly) preserves M if f (weakly) preserves M in M, and (iii) a subset C of \mathscr{C}_A (weakly) preserves M if each $f \in C$ (weakly) preserves M. Denote by C_M the set of co-operations weakly preserving M.

Let $f \in \mathscr{C}_A^m$, $T \subseteq A$ and $|f_0(T)| = k$. We put $\operatorname{ess}_T(f) := k$ and $\operatorname{ess}(f) := \operatorname{ess}_A(f)$. Let $g^{(0)}, g^{(1)}, \ldots, g^{(m-1)} \in \mathscr{C}_A$. The superposition $h = f(g^{(0)}, g^{(1)}, \ldots, g^{(m-1)})$ is called *disjoint* if the ranges of $g_0^{(0)}, g_0^{(1)}, \ldots, g_0^{(m-1)}$ are pairwise disjoint. The following fact is obvious:

Lemma 1. Let $h=f(g^{(0)}, g^{(1)}, ..., g^{(m-1)})$ be a disjoint superposition, let $T \subseteq A$ and for $i \in \mathbf{m}$ put $T_i := T \cap f_0^{-1}(i) = \{x \in T: f_0(x) = i\}$. If $f \parallel T$ and $g^{(i)} \parallel f_1(T_i)$ (in particular, if $g^{(i)}$ is non-gluing) for each $i \in m$, then $h \parallel T$ and $\operatorname{ess}(h) \ge \operatorname{ess}(f)$.

A disjoint superposition of form

 $h = f(p^{k,0}, ..., p^{k,j-1}, g(p^{k,j}, ..., p^{k,j+m'-1}), p^{k,j+m'}, ..., p^{k,k-1})$

will be denoted shortly by $h=f(...,g,...)_j$. Here $h\in \mathscr{C}_A^k$ where k=m+m'-1 for $f\in \mathscr{C}_A^m$ and $g\in \mathscr{C}_A^{m'}$. Obviously we have:

Lemma 2. Let $T \subseteq A$, $f \in \mathscr{C}_A^m$ and $g \in \mathscr{C}_A^{m'}$. If both f and g preserve T then $f(\dots, g, \dots)_j$ preserves T.

We shall also use the following trivial facts:

Lemma 3. Let T and T' be proper distinct subsets of A and let $C = \{f \in \mathcal{C}_A : f \text{ preserves } T\}$. Then there is an $f \in C$ not preserving T'.

Lemma 4. Let C_1 be a set of selfmaps of A. The semigroup generated by C_1 is transitive if and only if no non-trivial subset of A is preserved by C_1 .

We need some other preparations, as follows:

Lemma 5. For arbitrary $M \in Rf(A)$ the set C_M is a proper subclone of \mathscr{C}_A .

Proof. First observe that $C_M \neq \mathscr{C}_A$ (indeed, there is some $f \in \mathscr{C}_A$ not preserving weakly M). We show that C_M is a clone. Clearly the coprojections preserve M and so it is enough to show the closedness under superposition, i.e. to prove that $h=f(g^{(0)},g^{(1)},\ldots,g^{(m-1)})\in C_M$ for arbitrary *m*-ary $f\in C_M$ and $g^{(0)},g^{(1)},\ldots,g^{(m-1)}\in C_M$.

In order to do so consider a subset $S \in M$. The definition of C_M implies that either f glues in S or f preserves S in M. If f(x)=f(y) for two distinct $x, y \in S$ then $h(x)=g^{(f_0(x))}(f_1(x))=g^{(f_0(y))}(f_1(y))=h(y)$, i.e. h glues in S too. Thus assume f||S. Then $f_0(S)=i$ for some $i \in m$, f_1 is injective on S and $f_1(S) \subseteq S'$ for some $S' \in M$. However, |S'|=|S|, whence f_1 maps S bijectively onto S'. If $g^{(i)}$ glues in S', i.e. $g^{(i)}(u)=g^{(i)}(v)$ for two distinct $u, v \in S'$ then (as f maps S onto S') $f_1(x)=u$ and $f_1(y)=v$ for some $x, y \in S$ and so $h(x)=g^{(f_0(x))}(f_1(x))=g^{(i)}(u)=g^{(i)}(v)=$ $=g^{(f_0(y))}(f_1(y))=h(y)$, i.e. h glues in S too. Thus assume $g^{(i)}||S'$. Then $g^{(i)}$ preserves S' in M, i.e. $g_0^{(i)}$ is constant on S' and $g_1^{(i)}$ maps S' onto some S'' $\in M$. Since for all $x \in S$, $h_0(x)=g_0^{(i)}(f_1(x))$, we see that h_0 is constant on S and, similarly, $h_1(x)=$ $=g_1^{(i)}(f_1(x))$ for all $x \in S$ shows $h_1(S) \subseteq S''$, i.e. h preserves S in M. Therefore, h weakly preserves S in M.

Lemma 6. Let $M \in Rf(A)$ and suppose that the common cardinality of the members of M equals k>1. Consider the m-ary co-operation $f \in \mathscr{C}_A \setminus C_M$ and put $D := [C_M \cup \{f\}]$. Let S be an arbitrary member of M which is not weakly preserved by f. Then for every $\{u, v\} \subseteq S$ there is a co-operation $f^* \in D$ such that f^* preserves S, $f^* || S$ and $f_0^*(u) \neq f_0^*(v)$.

Proof. It will be done in several steps.

Claim 0. For every permutation \bar{h} of S there exists a unary co-operation $h' \in C_M$ preserving the set S, such that h'_1 extends \bar{h} .

Indeed, put $h'_0(x)=0$ for all $x \in A$, $h'_1(x)=\overline{h}(x)$ for $x \in S$ and $h'_1(x)=x$ on $A \setminus S$. Then h' obviously preserves M.

Claim 1. There are $\{x, y\} \subseteq S$ and $f' \in D$ such that $f' \parallel S$ and $f'_0(x) \neq f'_0(y)$. Indeed, from the choice of S it follows $f \parallel S$. Furthermore, clearly it suffices to consider the case of f_0 constant on S, i.e. $f_0(S) = j$ for $j \in \mathbf{m}$ and $f_1(x) \not\sim_M f_1(y)$ for some $x, y \in S$. Consider the co-operation h defined as follows:

Suppose $M = \{S_0, S_1, ..., S_{q-1}\}$ and $A \setminus \bigcup M = \{w_0, w_1, ..., w_{r-1}\}$ where $0 \le \le r \le n-qk \le n-k$. Let $h \in C_M$ from \mathscr{C}_A^{q+k} defined by

.

(*)
$$h_0(x) = \begin{cases} i & \text{if } x \in S_i \quad (i \in q) \\ q+j & \text{if } x = w_j \quad (j \in r) \end{cases} \text{ and } h_1 = \mathrm{id}_A.$$

Obviously $h_0(f_1(x)) \neq h_0(f_1(y))$. Put $f' = f(..., h, ...)_j$. According to Lemma 1 $f' \| S$ and $f'_0(x) = h_0(f_1(x)) \neq h_0(f_1(y)) = f'_0(y)$.

Claim 2. There are $x, y \in S$ and $f'' \in D$ such that f'' preserves the set S, f'' || S and $f_0''(x) \neq f_0''(y)$.

Indeed, consider x, y and f' from Claim 1. Suppose $f' \in \mathscr{C}_A^{m'}$, put $J:=f'_0(S)$ and, for each $j \in J$, put $R_j := \{u \in A : f'_0(z) = j \text{ and } f'_1(z) = u \text{ for some } z \in S\}$. Further, for each $j \in J$ let $h^{(j)} \in C_M$ be a unary co-operation such that $h^j_0(x) = j$ for all $x \in R_j$, $h^{(j)} || R_j$ and $h^{(j)}_1(A) \subseteq S$. Such an $h^{(j)}$ exists, because $|R_j| \leq |S|$. Form the disjoint superposition $f'' = f'(g^{(0)}, g^{(1)}, \dots, g^{(m'-1)})$, where $g^{(j)} = h^{(j)}(p^{m',j})$ for $j \in J$ and $g^{(j)} = p^{m',j}$ otherwise. Lemma 1 implies f'' || S. As $h^{(j)}$ preserves S for each $j \in J$, from the definition of R_j it follows that f'' also preserves S. Furthermore, $f''_0 = f'_0$, hence $f''_0(x) \neq f''_0(y)$ holds too.

To prove the assertion of the lemma consider two arbitrary distinct elements $u, v \in S$. Let x, y and f'' satisfy Claim 2. As $x \neq y$, Claim 0 implies that there exists a unary $h' \in C_M$ with $h'_1(u) = x$ and $h'_1(v) = y$. Put $f^* := h'(f'')$. Since it is a disjoint superposition, f^* preserves S and $f^* || S$ by virtue of Lemmas 1 and 2. Furthermore, $f_0^*(u) = f_0''(x) \neq f_0''(y) = f_0^*(v)$, as needed.

Lemma 7. Let D and S be the same as in Lemma 6. For every i=1, 2, ..., k there are an i-element subset H of S and $g \in D$ such that g preserves the set S, $g \parallel S$ and g_0 is injective on H.

Proof. We proceed by induction on i=1, 2, ..., k. The assertion is trivial for i=1.

Let $1 \le i < k$. Assume the statement is valid for H_i and $g^{(i)} \in \mathscr{C}_A^{m_i}$. Choose an arbitrary element $x \in S \setminus H_i$ and let $H_{i+1} := H_i \cup \{x\}$. If $g_0^{(i)}$ is injective on H_{i+1} , we can put $g^{(i+1)} := g^{(i)}$.

Assume $g_0^{(i)}(y) = g_0^{(i)}(x) = j(\in \mathbf{m}_i)$ for some $y \in H_i$. As $g^{(i)} || S$, the elements $u = g_1^{(i)}(x)$ and $v = g_1^{(i)}(y)$ are distinct. Hence by Lemma 6 there exists an m^* -ary co-operation $f^* \in D$ such that f^* preserves the set S, $f^* || S$ and $f^*(u) \neq f^*(v)$. Now put $g^{(i+1)} = g^{(i)}(\dots, f^*, \dots)_j$, where $g^{(i+1)} \in \mathscr{C}_A^{m_{i+1}}$ for $m_{i+1} = m_i + m^* - 1$. Lemma 1 and 2 imply that $g^{(i+1)}$ preserves S and $g^{(i+1)} || S$. The definition of $g^{(i+1)}$ yields that $g_0^{(i+1)}(x) = f_0^*(u) \neq f_0^*(v) = g_0^{(i+1)}(y)$. As $g^{(i+1)}$ is a disjoint superposition and, for $z_1, z_2 \in H_i, g_0^{(i)}(z_1) \neq g_0^{(i)}(z_2)$ implies $g_0^{(i+1)}(z_1) \neq g_0^{(i+1)}(z_2)$, we conclude that $g_0^{(i+1)}$ is injective on H_{i+1} and the lemma is proved.

Corollary 8. Let the conditions of Lemma 6 be satisfied. Then there exists a co-operation $g \in D$ such that g_0 is injective on S.

The promised Rosenberg-type criterion for completeness of sets of co-operations is the following. Theorem. A set C of co-operations on a finite set A is complete if and only if no regular family of subsets of A is weakly preserved by C.

Proof. We shall prove the following claim, which is equivalent to the theorem: A set $C \subseteq \mathscr{C}_A$ is a maximal clone if and only if $C = C_M$ for some $M \in \operatorname{Rf}(A)$.

1. Sufficiency. Let $M \in Rf(A)$. In accordance with Lemma 5, C_M is a proper subclone of \mathscr{C}_A . We verify that C_M is maximal by showing that for arbitrary $f \in \mathscr{C}_A \setminus C_M$ the clone $D := [C_M \cup \{f\}]$ equals \mathscr{C}_A . This will be done in two parts.

(i) Suppose that $M \neq A^*$ consists of singletons. Put $\overline{M} := \bigcup M$. Then $h \in \mathscr{C}_A$ weakly preserves M iff it preserves \overline{M} . If H is a proper subset of A distinct from \overline{M} , then in accordance with Lemma 3 there is a $g \in C_M$ not preserving H. Clearly f does not preserve \overline{M} , thus $C_M \cup \{f\}$ preserves no proper subset of A. Then $C_M \cup \{f\}$ is transitive as a consequence of Lemma 4. Further, C_M obviously contains an essentially *n*-ary co-operation and thus applying Proposition 2 from [1] we obtain that $C_M \cup \{f\}$ is complete, as required.

(ii) Now suppose that the common cardinality of the members of M equals k>1. Then C_M is transitive as C_M contains all the constants in \mathscr{C}_A (as each of them glues in every $S \in M$). We shall construct an essentially *n*-ary co-operation in D. Let S be an arbitrary member of M being not weakly preserved by f (there is such an S as $f \notin C_M$), and let \overline{f} be a selfmap of A, which maps each member of M bijectively onto S. Consider the unary co-operation \overline{f} with mapping \overline{f}_1 , equal to \overline{f} on $\bigcup M$ and to the identity map otherwise. Clearly $\overline{f} \in C_M$. Take the co-operation h defined by (*) and the co-operation g from Corollary 8. Form the disjoint superposition

$$g^* := h(\tilde{f}(g(p^{n,0}, p^{n,1}, \dots, p^{n,k-1})), \dots$$
$$\dots, \tilde{f}(g(p^{n,(q-1)k}, p^{n,(q-1)k+1}, \dots, p^{n,qk-1})), p^{n,qk}, p^{n,qk+1}, \dots, p^{n,qk+r-1}) \in C_M,$$

where q and r are the same as in (*). From the properties of h, \vec{f} and g it follows $ess_{S'}(g^*) = |S'| = k$ for each $S' \in M$. Also we see that $ess_{A \setminus \bigcup M}(g^*) = ess_{A \setminus \bigcup M}(h) =$ $= |A \setminus \bigcup M| = r$. As g^* is a disjoint superposition, its essential arity can be obtained additively: $ess(g^*) = ess_{(\bigcup M) \cup (A \setminus \bigcup M)}(g^*) = \sum_{S' \in M} ess_{S'}(g^*) + ess_{A \setminus \bigcup M}(g^*) = \sum_{S' \in M} |S'| +$ $+ |A \setminus \bigcup M| = kq + r = n$. This completes the proof of the sufficiency.

Remark. For $M = \{A\}$ the clone C_M is called the Słupecki clone of co-operations on A. It consists of all non-essential co-operations. We see that it is a maximal clone, which occurs in the coalgebraic counterpart of Słupecki's completeness criterion for operations (Proposition 4 in [1]).

2. Necessity. Consider an arbitrary maximal clone C in \mathscr{C}_A . We verify that there exists a family $M \in \operatorname{Rf}(A)$ weakly preserved by C. This is enough, since then $C \subseteq C_M \subset \mathscr{C}_A$ from Lemma 5 and thus C has to equal the clone C_M .

(i) If C is not transitive, then in virtue of Lemma 4 there is a nonempty subset $T \subset A$ preserved by C. However, then $M := \{\{a\} \subset A : a \in T\} \in Rf(A)$ is preserved by C too.

(ii) Assume in the sequel that C is transitive. Observe that the clone of all gluing co-operations on A is a proper subset of the Słupecki clone on A. Thus C being maximal, it contains a non-gluing co-operation, for else C would be complete according to Proposition 2 in [1].

Consider an (*m*-ary) non-gluing co-operation $f \in C$ with maximal essential arity for the set of non-gluing co-operations of C. Denote by π the partition of Ainduced by f_0 and let M_1 be the set of blocks of π with maximal number of elements. The members of M_1 are not singletons, else π would be trivial and hence fessentially *n*-ary. It follows that $M_1 \in Rf(A)$.

Claim 0. For arbitrary $T \in M_1$, the restriction of f_1 to T is a bijection from T onto some $T' \in M_1$.

Let $j:=f_0(T)(\in m)$ and put $f':=f(\ldots,f,\ldots)_j\in C$. Obviously, for any $z\in A$, $f'_1(z)$ equals $f_1(f_1(z))$ if $f_0(z)=j$ and $f_1(z)$ otherwise. Lemma 1 implies f'||A and ess $(f') \ge \ge \operatorname{ess}(f)$. It is easy to realize that $\operatorname{ess}(f') > \operatorname{ess}(f)$ iff there are $x, y\in A$ such that $f_0(x)=f_0(y)=j$ and $f_0(f_1(x)) \neq f_0(f_1(y))$, i.e. $f_1(x) \equiv_{\pi} f_1(y)$ does not hold for some $x, y\in T$. Then it follows from the choice of f that $f_1(x) \equiv_{\pi} f_1(y)$ for each $x, y\in T$. Further, f is injective, thus f_1 is 1-1 on T, whence $|f_1(T)|=|T|$. Then $T':=f_1(T)\in M_1$, as needed.

Put the set $M_2 := \{T \in M_1: f_1(\bigcup M_1) \cap T \neq \emptyset\}$ and let $M := \{S \in M_1: \text{ there is } g \in C \text{ and } S' \in M_2 \text{ such that the restriction of } g_1 \text{ to } S' \text{ is a bijection from } S' \text{ onto } S\}.$

Due to Claim 0, M_2 is nonempty. On the other hand, $M_2 \subseteq M$; thus M is also nonempty and $M \in Rf(A)$.

We show that M is weakly preserved by C. This property will be obtained as a result of two claims. Let $S \in M$ be arbitrary and let $g \in C$ and $S' \in M_2$ be associated with S in the definition of M. Note that g can be chosen to be unary. Now Claim 0 guarantees that a suitable restriction of f_1 is a bijection onto S' from some $S'' \in M_1$. Let $k := f_0(S'')$.

Claim 1. If $h \in C$ and $h \parallel S$, then h_0 is constant on S.

Indeed, put $f^*:=f(...,g(h),...)_k \in C$. Then, for arbitrary $z \in A$, $f_1^*(z)$ equals $h_1(g_1(f_1(z)))$ if $f_0(z)=k$ and $f_1(z)$ otherwise. From Lemma 1 it follows $f^*||A$ and ess $(f^*) \ge ess(f)$. Similarly to the discussion of f' above, ess $(f^*) > ess(f)$ iff $h_0(g_1(f_1(x))) = h_0(g_1(f_1(y)))$ does not hold for some $[x, y \in S'']$. As f_1 and g_1 are 1-1 when restricted to S'' resp. S', this condition is equivalent to $h_0(u) \ne h_0(v)$ for some $u, v \in S$. However, the choice of f implies that this condition does not hold, as asserted.

4

Claim 2. If $h \in C$ and $h \parallel S$ then the restriction of h_1 to S is a bijection from S onto some $S_0 \in M$.

Indeed, assume $h \in \mathscr{C}_A^{m_0}$ and let $k_0 := h_0(S) \in m_0$. Put $h' := h(..., f, ...)_{k_0} \in C$. Obviously $h'_0(z) = f_0(h_1(z)) + k_0$ and $h'_1(z) = f_1(h_1(z))$ for $z \in S$. Lemma 1 implies h' || S, thus it follows from Claim 1 that h'_0 is constant on S, whence for each $x, y \in S$ we have $f_0(h_1(x)) = f_0(h_1(y))$, i.e. $h_1(x) \equiv_{\pi} h_1(y)$. Note that h_1 is injective on S, since h || S and h_0 is constant on S. Then, as S is a block of maximal size in π , the restriction of h_1 to S is a bijection from S onto some $S_0 \in M_1$. Now consider $S' \in M_2$. The restriction of the mapping of the co-operation $g^* := g(h) \in C$ to S' is the product of the bijections $g_1|_{S'}$ and $h_1|_S$, hence $g_1^*|_{S'}$ is a bijection from S' to S_0 . Thus $S_0 \in M$, as required.

This completes the proof of the theorem.

We list some easy consequences of the Theorem (we omit their proofs).

Corollary 9. (Proposition 3 in [1].) A co-operation on \mathbf{n} is Sheffer if and only if it preserves neither non-least partitions nor nonempty proper subsets of \mathbf{n} .

Corollary 10. A finite coalgebra $\langle A, F \rangle$ is

(i) primal if and only if no regular family of subsets of A is weakly preserved by F;

(ii) functionally complete if and only if no regular family of nonsingleton subsets of A is weakly preserved by F.

Corollary 11. No distinct maximal clones of co-operations on a finite set have the same semigroups.

The last corollary is the coalgebraic counterpart of the well-known fact that maximal clones of operations on a finite set are uniquely determined by the (semigroup of) unary operations they contain.

Acknowledgements. I am deeply indebted to professor Béla Csákány who firstly studied this topic. I have enjoyed his inspiring encouragement and help in my work. I am also grateful to the referee for his helpful comments.

References

[1] B. CSÁKÁNY, Completeness in coalgebras, Acta Sci. Math., 48 (1985), 75-84.

 [2] B. CSÁKÁNY, Selective algebras and compatible varieties, Studia Sci. Math. Hungar., 19 (1984), 431-436.

 [3] I. G. ROSENBERG, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpr. ČSAV Řada Mat. Přir. Věd, 80, 4 (1970), 3–93.

BOLYAI INSTITUTE ARADI VERTANÚK TERE 1 6720 SZEGED, HUNGARY