
Acta Sci. Math., 53 (1989), 59—65 

On additive functions taking values from a compact group 

Z. DAROCZY and I. RATA! 

1. Let G be a metrically compact Abelian topological group, T be the one-
dimensional torus. A function q>: N—G will be called additive if (p(mn)=q>(m) + 
+(p(n) holds for every coprime pairs m, n of natural numbers, while if <p (mn) ~ 
=<p(m) + (p(n) holds for each couple of m,n£N then we say that it is completely 
additive. Let sJG, be the class of additive, and the class of completely additive 
functions, respectively. 

Let {xv}~=i be an infinite sequence in G. We shall say that it is of property D, 
if for any convergent subsequence xv the shifted subsequence xY + 1 has a limit, too. 
We say that it is of property A if xv+1—xv—0 (v— 

Let S&G(D), be the set of those (p£sfa for which the sequence {x„=<p(n)} 
is a property D, A, respectively. The classes S / g ( A ) are defined as follows: 

It is obvious that ¿¿G(A)Qs/G(D), In [1] we proved that 
stf*(A)=sfG(D). Recently E . W I R S I N G [ 4 ] proved that cp£s/T(D) if and only if 

(1.1) (¡d(m) = t log n (mod 1) (n€N) 

for a T£R. By using Wirsing's theorem we proved in [2] the following assertion. 
If <p£sdG(A) (=sfG(Dj) then there exists a continuous homomorphism 

i/r: RX—G, RX denotes the multiplicative group of the positive reals, such that cp 
is a restriction of i¡/ on the set N, i.e. (p(n)=il/(n) for all n£N. The converse asser-
tion is obvious. If rj/: R*—G is a continuous homomorphism, then (p(n):= 

We should like to extend our results for the class sfa(D). This was done in [3] 
for G=T. Our aim in this paper is to characterize the class SFA(A) for a general 
metrically compact Abelian group G. 
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Let NX, N0 be the set of the odd and the even natural numbers, respectively. 
For a <p£sfG let S(Nj) be the set of limit points of {<p(n) \ «€Ny} ( 7 = 1 , 0), and let 
S(N) be the set of limit points of {cp(n) | H£N}. 

Theorem 1. Let (p£sfG(D). Then ¿"(NJ is a compact subgroup of G, S(N0)= 
=y+iS(N1) with a suitable y£G. There exists a continuous homomorphism 1¡/: RX-*G 
such that (p{n)=\j/{n), /16 The function u(n):=(p(n)—\j/(n) is zero for 
and u(2)=u(2") ( a = l , 2,...). If u(2)£S(S1), then 2u(2)=0. 

Conversely, let \]/: RX—G be a continuous homomorphism. Let f}£G an ele-
ment for which f}£t{/(G) implies that 2)8=0. Let ue_stG be defined by the relation 

u(2") = 0 (a = 1, 2,...), u(n) = 0 for all n<EN,. 

Then (p—u+\j/: N—G belongs to s4G(A). 

2. To prove our theorem we need some auxiliary results that can be proved 
by a method that was used by E. WIRSING [4] and in our earlier papers [1], [2]. 

Lemma 1. If (pesfG and 

(2.1) (p(m + 2)-(p(m) - 0 (m ^0°, »¡eNj) 

then <p (nm)—cp (m)+(p (n) for each m,n£ NX. 

Proof . We need to prove only that 

(2.2) <P(P*)-<P(PX-1)-<P(P) = 0 (a = 1 , 2 , . . . ) 

for each odd prime p. From (2.1) we get that 

Em:= <p(p*m)-(p(p*m-2p) - 0, Fm:= cpip^m)-^"-1 m-2) - 0, 

as M€N X , Since for (m(m+2),2p) = l the relation 

Em = <p(px)-cp(p^1)-q>(p)+Fm 

holds, therefore (2.2) is true. 

Without any important modification of the proof of Wirsing's theorem one 
can get 

Lemma 2. If the conditions of Lemma 1 are satisfied, G=T, then (p(n)= 
=T log n (mod 1) for all «GNj, T€R. 
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Upon this result, in the same way as in [2] one can prove easily the next 

Lemma 3. Assume that the conditions of Lemma 1 hold. Then there exists a 
continuous homomorphism ¡¡J: R x - * G such that q>(n)=\f/(n) for each n£Nx. 

In the next section we shall prove that (p£j&g(A) implies (2.1). 
3. Let us assume that (p£jtfG(A). Let S denote the set of limit points of 

{<p(n)|«6N}, i.e. g£S if there exists n^n^...</!„£N, for which <p(nv)—g. 
Let (¡¡>(nv+l)—g'. In [1] we proved that g" is determined by g. So the cor-
respondence F: g—g' is a function. Furthermore, it is obvious that F(S)=S. 
Let p(n) and P(n) denote the smallest and the largest prime factor of n£N. 

Let k be an arbitrary integer, 

(3.1) R = 

be a sequence of natural numbers. We shall say that R belongs to 0>k if for every 
d£N, d divides Ry—k for every large v, i.e. if v>v0(R, d). Let be the 
set of those for which the limit lim cp(R„) exists. For an arbitrary sequence 
R let 

o(R) = lim q>(Rv) V-»co 

if the limit exists. Furthermore, if R is an infinite subsequence of natural numbers 
increasing monotonically and k is an integer then R+A: denotes the sequence of 
the positive elements of Rv + k written in increasing order. It is obvious that 
R+ k£0>k if and only if R€&>0. Furthermore, if l<k, then R + (k-l)e&>k. 
If l=~k, then RZ&i implies only that R-}-(k—l)€&k . In this case we can assert 
only that there exists a suitable subsequence of R+(k—l) that belongs to &k. 

Let 

(3.2) Kk:= { f l ( R ) | R ^ J . 

It is obvious that 

(3.3) 

for every integer k, and that 

(3.4) 

Let now gi£Kk, g £ K u where k£{l, - 1} . Then there exist 
such that a(R)=^i , a(S)=g2 . Since k£{\, —1}, therefore p(Rv)-+<*> •=). Let 
now the sequence QV=R} -Sv be defined as follows: ja=0, jv>jv-i such that 
p(RJv)>P(Sv). Then (RjJ, Sv) = l, and so (p(Qv)=(p(RJ)+<p(Sv)^gl+g2. But 

F[Kk] = Kk+1 

u KkQS. 
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Qv=kl (mod d) for every d£N whenever v>v0(d), so {ő v}€^w , i.e. gi+g2€Kkl 

So we proved 

L e m m a 4. For every integer I 

( 3 . 5 ) A I + A J 

( 3 . 6 ) K ^ + K T Q K ^ . 

(3.5) gives that K^+K^K^, i.e. that KT is a semigroup in G. It is clear that KT 

is closed. The closedness of KT implies that KX is a compact semigroup in G, and 
so by [5] (9.16) it must be a group. 

Lemma 5. Let k£N. Then 

(3.7) Kk = K-i + cp (k), K-k = K^+cpik). 

P r o o f . Let TeK k , a(R)=t. Let Sv:=RJv~k be a subsequence of 
R—k for which S£áV Then R. can be written as 

Jv 

RJv=k[Av +1], Sv = kAv. 

The sequence {Av}e^0, therefore +1, A;)=1 for every large v, so 
<p(Av+l) = <p(Rj )—(p(k), consequently 

So we proved that Kk—tp(k 
Let now so that a(R) = o. Then the sequence Sv=kRv belongs 

to &>k, (k,Rv) = 1 if v is large, Um q>(Sv)=(p(k)+lim (p(Rv)=(p(k) + QeKk. This 
implies that K1+(p(k)QKk. 

The proof of the second relation of (3.7) is the same, and so we omit it. 

L e m m a 6. If g£K_2, then 

(3.8) F[g] + F2[g] = Fi[g + F* [*]]. 

Proof . Let us start from the identity 7 I ( N + 3 ) + 2 = ( « + l ) ( « + 2 ) . If (n, 3 ) = 1 , 

then (n, « + 3 ) = 1 , furthermore (K + 1 , « + 2 ) = 1 for every K £ N . Let {Mv}€^_2 such 
that a({nv})=g£K_2. Then 3f?jv, consequently (p(nv(nv+3))=(p(nv)+(p(nv+3), 
(p((nv+l)(nv+2))=<p(nv+l) + <p(nv+2). Since q>(nv+k)^Fk[g] (k=0, 1,2, 3), we 
get (3.8) immediately. 

Since 0£KL, there exists R € # L , A ( R ) = 0 . Let Rjv~3 be a subsequence of 
Rv—3 for which the limit lim q>(R^-3)=ri exists. Since {RJy-3}v€#_2, there-
fore and F3[RI]=0. Let us apply (3.8) with. g=rj . Then we get F[TJ]= 0 . 

S i n c e . t h e r e f o r e F[R\]E.K-%, consequently 0EK_X. Furthermore, 0 = F 3 [ R / ] = 

—F2 [ F [ / / ] ] = F 2 [0] . So we proved 
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№ 1 к 

Lemma 7. We have 
(3.9) F2[0] = 0, 

(3.10) 

L e m m a 8. We have 

(3.11) К - г = К х . 

P roof . Put 1=1 in (3.6). We get К_Х+КХЯK_x . Since 0€AT_i, we deduce 
that KxQK^ . Let now / = - 1 . Then K ^ + K ^ Q K ^ Since 0 w e get 
that K ^ Q K , . Consequently (3.11) is true. 

Since F'2[Kl]=Kl+2 holds for every integer /, we get that K2n+1=K1 for 
every TJ€N. From (3.7) we get that cp(2n + l)£K1. Consequently S i ^ Q ^ . On 
the other hand, it is obvious that ^j^S^Nx). So we know that 

(3.12) 

Since F[Km]=Km+1, we get that Kx=K2n (n£N), i.e. that cp(2n)-(p(2)£K1 

for all 7i€N, and so <р{2а)-(р(2)£К1 (oc = l, 2,. . .) . So we get that 

^ U t o O + t f ! } if (p{2)iKx, 
if <P(2)€^. 

Lemma 9. The function F: S-»S is continuous. 

For the proof of this quite obvious assertion see [1]. 

Lemma 10. If gdKx, then 

(3.13) F [g ]= i r+F[0] . 

If h£K2, then 

(3.14) F2[A] = h+C, 

where 

(3.15) С = <p(4)-2cp(2)+F[ 0]. 

P roof . Let k£Nls M€#l , a(M)= -cp(k). Then (k, Mv)=1, and so (p(kMv)-~0, 
<p(kMv+k)^-Fk[0]=F[0]. Furthermore, (k, M v + l ) = l , therefore <p(kMy+k)= 
==0(k)+cp(Mv + i), cp(My + l)-+ F[—<p(k)]. This implies that 

(3.16) F[-</>(fc)]=-<KA:)+F[0]. 

, and so {—<p(£)|A:6N,} is everywhere dense in Kx, F is con-
tinuous on Kx, therefore (3.13) is true. 
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Let now h=(p(2)—(p(k), k and M as above. Then <p(Mv)-*—<p(k)=h. Since 
22|(2Mv+2), 23f(2Afv+2), we have 

(p(2Mv+2) = (p(4)—(p(2)+cp(Mv + l), 
and so that 

F*[h] = (p{4)—(p(2)+F[—(p(k)]. 

Since -q>(k)£Klt from (3.13) we get that F[—<p(k)] = —<p(k) + F[0], and so that 
F2[h]=h+C, h=(p(2)-(p{k) with the C defined in (3.15). 

Since {—(¡»WlfciNi} is everywhere dense in Klt therefore {q>(2)—^(/^I^GNJ 
is everywhere dense in K2, F2 being a continuous function, we get (3.14) immediately. 

For a sequence xn let Axn:-xn+1-xn, A2xn:=xn+2-xn. 

Lemma 11. We have 

(3.16) lim Acp(m) = F[0], 
M€N, 

(3.17) lim Aicp(m) = C, 
M€NA 

(3.18) lim A2<p(m) = 0. 
OI€N, 

Furthermore, C=0. 

Proof . Assume that (3.16) is not true. Then there exists a subsequence 2wu+1 
of positive integers such that <p(2n,+2)—<p (2ny + 1)—<5, <M F[0]. Then for a suitable 
subsequence 2tij + 1 there exists the limit lim <p(2rij +1 )=tx£Kl, and F[a ]=a+5 . 
This contradicts (3.13). 

The proof of (3.17) is the same and so we omit it. 
Since A2<p(2n-1)=A2<p(4n-2)+A2<p(4n), from (3.17) we get that 

(3.19) A2cp(2n-l) - 2 C . 

Observe that 

A(p(2n — 1)—A<p(2n—1) = A2<p(2n)—A2q>(2n — 1). 

From (3.16), (3.17), (3.19) we get that 0 = F [ 0 ] - F [ 0 ] = C - 2 C , and so that C=0. 
This proves (3.18). 

4. We have almost finished the proof. We know that A2cp(2n — 1)—0. The 
condition of Lemma 1 is satisfied. Then, by Lemma 3 there exists a continuous 
homomorphism >]/: RX-*G such that q>(n)=\p(n) for all « i N j . Let u(n):=<p(n) — 



Additive functions taking values from a compact group 65 

—ij/(n). Then u£si, u(n)=0 for all n^Nj. Since i¡/ is continuous, therefore 
\ l / ( n + k ) — 0 as for every fixed k. From (3.16) we get 
that u(2n+2)-F(0) as that is u(2)=u(2a)=F[0] (a = l , 2,.. .). 

If, in addition, then S = K l t and (3.13) can be applied twice. This 
gives F2[g] = F[F[g]]=:F[g+F[0]]=?+2F[()] , that by F2[0]=0 gives that 
2F[0]=0. 

By this the first assertion in our Theorem is proved. The converse is obvious. 
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