On additive functions taking values from a compact group

Z. DARÓCZY and I. KÁTAI

1. Let G be a metrically compact Abelian topological group, T be the onedimensional torus. A function $\varphi: \mathbf{N} \rightarrow G$ will be called additive if $\varphi(m n)=\varphi(m)+$ $+\varphi(n)$ holds for every coprime pairs m, n of natural numbers, while if $\varphi(m n)=$ $=\varphi(m)+\varphi(n)$ holds for each couple of $m, n \in \mathbf{N}$ then we say that it is completely additive. Let $\mathscr{A}_{G}, \mathscr{A}_{G}^{*}$ be the class of additive, and the class of completely additive functions, respectively.

Let $\left\{x_{v}\right\}_{v=1}^{\infty}$ be an infinite sequence in G. We shall say that it is of property D, if for any convergent subsequence $x_{v_{n}}$ the shifted subsequence $x_{v_{n}+1}$ has a limit, too. We say that it is of property Δ if $x_{v+1}-x_{v} \rightarrow 0(v \rightarrow \infty)$.

Let $\mathscr{A}_{G}(D), \mathscr{A}_{G}(\Delta)$ be the set of those $\varphi \in \mathscr{A}_{G}$ for which the sequence $\left\{x_{n}=\varphi(n)\right\}$ is a property D, Δ, respectively. The classes $\mathscr{A}_{G}^{*}(D), \mathscr{A}_{G}^{*}(\Delta)$ are defined as follows:

$$
\mathscr{A}_{G}^{*}(D)=\mathscr{A}_{G}(D) \cap \mathscr{A}_{G}^{*}, \mathscr{A}_{G}^{*}(\Delta)=\mathscr{A}_{G}(\Delta) \cap \mathscr{A}_{G}^{*}
$$

It is obvious that $\mathscr{A}_{G}(\Delta) \subseteq \mathscr{A}_{G}(D), \mathscr{A}_{G}^{*}(\Delta) \subseteq \mathscr{A}_{G}^{*}(D)$. In [1] we proved that $\mathscr{A}_{G}^{*}(\Delta)=\mathscr{A}_{G}^{*}(D)$. Recently E. WIRsing [4] proved that $\varphi \in \mathscr{A}_{T}(D)$ if and only if

$$
\begin{equation*}
\varphi(n) \equiv \tau \log n(\bmod 1) \quad(n \in \mathbf{N}) \tag{1.1}
\end{equation*}
$$

for a $\tau \in \mathbf{R}$. By using Wirsing's theorem we proved in [2] the following assertion.
If $\varphi \in \mathscr{A}_{G}^{*}(\Delta)\left(=\mathscr{A}_{G}^{*}(D)\right)$ then there exists a continuous homomorphism $\psi: \mathbf{R}_{\boldsymbol{x}} \rightarrow G, \mathbf{R}_{\boldsymbol{x}}$ denotes the multiplicative group of the positive reals, such that φ is a restriction of ψ on the set \mathbf{N}, i.e. $\varphi(n)=\psi(n)$ for all $n \in \mathbf{N}$. The converse assertion is obvious. If $\psi: \mathbf{R}_{\boldsymbol{x}} \rightarrow G$ is a continuous homomorphism, then $\varphi(n):=$ $:=\psi(n) \in \mathscr{A}_{G}^{*}(\Delta) \subseteq \mathscr{A}_{G}^{*}(D)$.

We should like to extend our results for the class $\mathscr{A}_{G}(D)$. This was done in [3] for $G=T$. Our aim in this paper is to characterize the class $\mathscr{A}_{G}(\Delta)$ for a general metrically compact Abelian group G.

Received January 15, 1986.

Let $\mathbf{N}_{1}, \mathbf{N}_{\mathbf{0}}$ be the set of the odd and the even natural numbers, respectively. For a $\varphi \in \mathscr{A}_{G}$ let $S\left(\mathbf{N}_{j}\right)$ be the set of limit points of $\left\{\varphi(n) \mid n \in \mathbf{N}_{j}\right\}(j=1,0)$, and let $S(\mathrm{~N})$ be the set of limit points of $\{\varphi(n) \mid n \in \mathrm{~N}\}$.

Theorem 1. Let $\varphi \in \mathscr{A}_{G}(D)$. Then $S\left(\mathbf{N}_{1}\right)$ is a compact subgroup of $G, S\left(\mathbf{N}_{0}\right)=$ $=\gamma+S\left(\mathbf{N}_{1}\right)$ with a suitable $\gamma \in G$. There exists a continuous homomorphism $\psi: \mathbf{R}_{x} \rightarrow G$ such that $\varphi(n)=\psi(n), n \in \mathbf{N}_{1}$. The function $u(n):=\varphi(n)-\psi(n)$ is zero for $n \in \mathbf{N}_{1}$, and $u(2)=u\left(2^{x}\right)(\alpha=1,2, \ldots)$. If $u(2) \in S\left(\mathbf{N}_{1}\right)$, then $2 u(2)=0$.

Conversely, let $\psi: \mathbf{R}_{x} \rightarrow G$ be a continuous homomorphism. Let $\beta \in G$ an element for which $\beta \in \psi(G)$ implies that $2 \beta=0$. Let $u \in \mathscr{A}_{G}$ be defined by the relation

$$
u\left(2^{a}\right)=\beta \quad(\alpha=1,2, \ldots), \quad u(n)=0 \text { for all } n \in \mathbf{N}_{1} .
$$

Then $\varphi=u+\psi: N \rightarrow G$ belongs to $\mathscr{A}_{G}(\Delta)$.
2. To prove our theorem we need some auxiliary results that can be proved by a method that was used by E. WIRSING [4] and in our earlier papers [1], [2].

Lemma 1. If $\varphi \in \mathscr{A}_{G}$ and

$$
\begin{equation*}
\varphi(m+2)-\varphi(m) \rightarrow 0 \quad\left(m \rightarrow \infty, m \in \mathbf{N}_{1}\right) \tag{2.1}
\end{equation*}
$$

then $\varphi(n n)=\varphi(m)+\varphi(n)$ for each $m, n \in \mathbf{N}_{1}$.
Proof. We need to prove only that

$$
\begin{equation*}
\varphi\left(p^{x}\right)-\varphi\left(p^{\alpha-1}\right)-\varphi(p)=0 \quad(\alpha=1,2, \ldots) \tag{2.2}
\end{equation*}
$$

for each odd prime p. From (2.1) we get that

$$
E_{m}:=\varphi\left(p^{\alpha} m\right)-\varphi\left(p^{\alpha} m-2 p\right) \rightarrow 0, \quad F_{m}:=\varphi\left(p^{\alpha-1} m\right)-\varphi\left(p^{\alpha-1} m-2\right) \rightarrow 0
$$

as $m \in \mathbf{N}_{1}, m \rightarrow \infty$. Since for $(m(m+2), 2 p)=1$ the relation

$$
E_{m}=\varphi\left(p^{\alpha}\right)-\varphi\left(p^{\alpha-1}\right)-\varphi(p)+F_{m}
$$

holds, therefore (2.2) is true.
Without any important modification of the proof of Wirsing's theorem one can get

Lemma 2. If the conditions of Lemma 1 are satisfied, $G=T$, then $\varphi(n) \equiv$ $\equiv \tau \log n(\bmod 1)$ for all $n \in \mathbf{N}_{1}, \tau \in \mathbf{R}$.

Upon this result, in the same way as in [2] one can prove easily the next
Lemma 3. Assume that the conditions of Lemma 1 hold. Then there exists a continuous homomorphism $\psi: \mathbf{R}_{x} \rightarrow G$ such that $\varphi(n)=\psi(n)$ for each $n \in \mathbf{N}_{1}$.

In the next section we shall prove that $\varphi \in \mathscr{A}_{G}(\Delta)$ implies (2.1).
3. Let us assume that $\varphi \in \mathscr{A}_{G}(\Delta)$. Let S denote the set of limit points of $\{\varphi(n) \mid n \in \mathbb{N}\}$, i.e. $g \in S$ if there exists $n_{1}<n_{2}<\ldots<n_{v} \in \mathbf{N}$, for which $\varphi\left(n_{v}\right) \rightarrow g$. Let $\varphi\left(n_{v}+1\right) \rightarrow g^{\prime}$. In [1] we proved that g^{\prime} is determined by g. So the correspondence $F: g \rightarrow g^{\prime}$ is a function. Furthermore, it is obvious that $F(S)=S$. Let $p(n)$ and $P(n)$ denote the smallest and the largest prime factor of $n \in \mathbf{N}$.

Let k be an arbitrary integer,

$$
\begin{equation*}
\mathrm{R}=\left\{R_{1}<R_{2}<\ldots\right\} \tag{3.1}
\end{equation*}
$$

be a sequence of natural numbers. We shall say that R belongs to $\mathscr{P}_{\boldsymbol{k}}$ if for every $d \in \mathbf{N}, d$ divides $R_{v}-k$ for every large v, i.e. if $v>v_{0}(R, d)$. Let $\tilde{\mathscr{P}}_{k} \subseteq \mathscr{P}_{k}$ be the set of those $R \in \mathscr{P}_{k}$ for which the limit $\lim _{n \rightarrow \infty} \varphi\left(R_{n}\right)$ exists. For an arbitrary sequence R let

$$
a(\mathrm{R})=\lim _{v \rightarrow \infty} \varphi\left(R_{v}\right)
$$

if the limit exists. Furthermore, if R is an infinite subsequence of natural numbers increasing monotonically and k is an integer then $R+k$ denotes the sequence of the positive elements of $R_{v}+k$ written in increasing order. It is obvious that $\mathrm{R}+k \in \mathscr{P}_{k}$ if and only if $\mathrm{R} \in \mathscr{P}_{0}$. Furthermore, if $l<k, R \in \tilde{\mathscr{P}}_{l}$, then $\mathrm{R}+(k-l) \in \tilde{\mathscr{P}}_{k}$. If $l>k$, then $R \in \tilde{\mathscr{P}}_{l}$ implies only that $R+(k-l) \in \mathscr{P}_{k}$. In this case we can assert only that there exists a suitable subsequence of $R+(k-l)$ that belongs to $\tilde{\mathscr{P}}_{k}$.

Let

$$
\begin{equation*}
K_{k}:=\left\{a(\mathrm{R}) \mid \mathrm{R} \in \tilde{\mathscr{P}}_{k}\right\} \tag{3.2}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
F\left[K_{k}\right]=K_{k+1} \tag{3.3}
\end{equation*}
$$

for every integer k, and that

$$
\begin{equation*}
\bigcup_{k=-\infty}^{\infty} K_{k} \subseteq S . \tag{3.4}
\end{equation*}
$$

Let now $g_{1} \in K_{k}, g_{2} \in K_{l}$, where $k \in\{1,-1\}$. Then there exist $R \in \tilde{\mathscr{F}}_{k}, S \in \tilde{\mathscr{P}}_{l}$ such that $a(\mathrm{R})=g_{1}, a(\mathrm{~S})=g_{2}$. Since $k \in\{1,-1\}$, therefore $p\left(R_{v}\right) \rightarrow \infty(v \rightarrow \infty)$. Let now the sequence $Q_{v}=R_{j_{v}} \cdot S_{v}$ be defined as follows: $j_{0}=0, j_{v}>j_{v-1}$ such that $p\left(R_{j_{v}}\right)>P\left(S_{v}\right)$. Then $\left(R_{j_{v}}, S_{v}\right)=1$, and so $\varphi\left(Q_{v}\right)=\varphi\left(R_{j_{v}}\right)+\varphi\left(S_{v}\right) \rightarrow g_{1}+g_{2}$. But
$Q_{v} \equiv k l(\bmod d)$ for every $d \in \mathbf{N}$ whenever $v>v_{0}(d)$, so $\left\{Q_{v}\right\} \in \tilde{\mathscr{P}}_{k l}$, i.e. $g_{1}+g_{2} \in K_{k l}$ So we proved

Lemma 4. For every integer I

$$
\begin{align*}
K_{1}+K_{l} & \subseteq K_{l} \tag{3.5}\\
K_{-1}+K_{l} & \cong K_{-i} \tag{3.6}
\end{align*}
$$

(3.5) gives that $K_{1}+K_{1} \subseteq K_{1}$, i.e. that K_{1} is a semigroup in G. It is clear that K_{1} is closed. The closedness of K_{1} implies that K_{1} is a compact semigroup in G, and so by [5] (9.16) it must be a group.

Lemma 5. Let $k \in \mathbf{N}$. Then

$$
\begin{equation*}
K_{k}=K_{1}+\varphi(k), \quad K_{-k}=K_{-1}+\varphi(k) . \tag{3.7}
\end{equation*}
$$

Proof. Let $\tau \in K_{k}, R \in \tilde{\mathscr{P}}_{k}, a(\mathrm{R})=\tau$. Let $S_{v}:=R_{j_{v}}-k$ be a subsequence of $\mathrm{R}-k$ for which $\mathrm{S} \in \tilde{\mathscr{P}}_{0}$. Then $R_{j_{v}}$ can be written as

$$
R_{j_{v}}=k\left[A_{v}+1\right], \quad S_{v}=k A_{v}
$$

The sequence $\left\{A_{v}\right\} \in \mathscr{P}_{0}$, therefore $\left(A_{v}+1, k\right)=1$ for every large v, so $\varphi\left(A_{v}+1\right)=\varphi\left(R_{j_{v}}\right)-\varphi(k)$, consequently

$$
\varphi\left(A_{v}+1\right) \rightarrow \tau-\varphi(k) \in K_{1} .
$$

So we proved that $K_{k}-\varphi(k) \subseteq K_{1}$.
Let now $\varrho \in K_{1}, R \in \tilde{\mathscr{P}}_{1}$ so that $a(\mathrm{R})=\varrho$. Then the sequence $S_{v}=k R_{v}$ belongs to $\tilde{\mathscr{P}}_{k}, \quad\left(k, R_{v}\right)=1$ if v is large, $\lim \varphi\left(S_{v}\right)=\varphi(k)+\lim \varphi\left(R_{v}\right)=\varphi(k)+\varrho \in K_{k}$. This implies that $K_{1}+\varphi(k) \subseteq K_{k}$.

The proof of the second relation of (3.7) is the same, and so we omit it.
Lemma 6. If $g \in K_{-2}$, then

$$
\begin{equation*}
F[g]+F^{2}[g]=F^{2}\left[g+F^{3}[g]\right] \tag{3.8}
\end{equation*}
$$

Proof. Let us start from the identity $n(n+3)+2=(n+1)(n+2)$. If $(n, 3)=1$, then $(n, n+3)=1$, furthermore $(n+1, n+2)=1$ for every $n \in \mathbf{N}$. Let $\left\{n_{v}\right\} \in \tilde{\mathscr{P}}_{-2}$ such that $a\left(\left\{n_{v}\right\}\right)=g \in K_{-2}$. Then $3 \bigcap_{v}$, consequently $\varphi\left(n_{v}\left(n_{v}+3\right)\right)=\varphi\left(n_{v}\right)+\varphi\left(n_{v}+3\right)$, $\varphi\left(\left(n_{v}+1\right)\left(n_{v}+2\right)\right)=\varphi\left(n_{v}+1\right)+\varphi\left(n_{v}+2\right)$. Since $\varphi\left(n_{v}+k\right) \rightarrow F^{k}[g](k=0,1,2,3)$, we get (3.8) immediately.

Since $0 \in K_{1}$, there exists $R \in \tilde{\mathscr{P}}_{1}, a(\mathrm{R})=0$. Let $R_{j_{v}}-3$ be a subsequence of $R_{v}-3$ for which the limit $\lim _{v} \varphi\left(R_{j_{v}}-3\right)=\eta$ exists. Since $\left\{R_{j_{v}}-3\right\}_{v} \in \tilde{\mathscr{P}}_{-2}$, therefore $\eta \in K_{-2}$, and $F^{3}[\eta]=0$. Let us apply (3.8) with. $g=\eta$. Then we get $F[\eta]=0$. Since. $\eta \in K_{-2}$, therefore $F[\eta] \in K_{-1}$, consequently $0 \in K_{-1}$. Furthermore, $0=F^{3}[\eta]=$ $=F^{2}[F[\eta]]=F^{2}[0]$. So we proved

Lemma 7. We have

$$
\begin{gather*}
F^{2}[0]=0, \tag{3.9}\\
0 \in K_{-1} .
\end{gather*}
$$

Lemma 8. We have

$$
\begin{equation*}
K_{-1}=K_{1} . \tag{3.11}
\end{equation*}
$$

Proof. Put $l=1$ in (3.6). We get $K_{-1}+K_{1} \subseteq K_{-1}$. Since $0 \in K_{-1}$, we deduce that $K_{1} \subseteq K_{-1}$. Let now $l=-1$. Then $K_{-1}+K_{-1} \subseteq K_{1}$. Since $0 \in K_{-1}$ we get that $K_{-1} \subseteq K_{1}$. Consequently (3.11) is true.

Since $F^{2}\left[K_{l}\right]=K_{l+2}$ holds for every integer l, we get that $K_{2 n+1}=K_{1}$ for every $n \in \mathbf{N}$. From (3.7) we get that $\varphi(2 n+1) \in K_{1}$. Consequently $S\left(\mathbf{N}_{\mathbf{1}}\right) \subseteq K_{\mathbf{1}}$. On the other hand, it is obvious that $K_{1} \sqsubseteq S\left(\mathbf{N}_{1}\right)$. So we know that

$$
\begin{equation*}
S\left(\mathbf{N}_{1}\right)=K_{1} . \tag{3.12}
\end{equation*}
$$

Since $F\left[K_{m}\right]=K_{m+1}$, we get that $K_{1}=K_{2 n}(n \in \mathbb{N})$, i.e. that $\varphi(2 n)-\varphi(2) \in K_{1}$ for all $n \in \mathbf{N}$, and so $\varphi\left(2^{\alpha}\right)-\varphi(2) \in K_{1}(\alpha=1,2, \ldots)$. So we get that

$$
S= \begin{cases}K_{1} \cup\left\{\varphi(2)+K_{1}\right\} & \text { if } \varphi(2) £ K_{1}, \\ K_{1} & \text { if } \varphi(2) \in K_{1} .\end{cases}
$$

Lemma 9. The function $F: S \rightarrow S$ is continuous.
For the proof of this quite obvious assertion see [1].
Lemma 10. If $g \in K_{1}$, then

$$
\begin{equation*}
F[g]=g+F[0] . \tag{3.13}
\end{equation*}
$$

If $h \in K_{2}$, then

$$
\begin{equation*}
F^{2}[h]=h+C, \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\varphi(4)-2 \varphi(2)+F[0] . \tag{3.15}
\end{equation*}
$$

Proof. Let $k \in \mathrm{~N}_{1}, \mathrm{M} \in \tilde{\mathscr{P}} 1, a(\mathrm{M})=-\varphi(k)$. Then $\left(k, M_{v}\right)=1$, and so $\varphi\left(k M_{v}\right) \rightarrow 0$, $\varphi\left(k M_{v}+k\right) \rightarrow F^{k}[0]=F[0]$. Furthermore, $\left(k, M_{v}+1\right)=1$, therefore $\varphi\left(k M_{v}+k\right)=$ $=\varphi(k)+\varphi\left(M_{v}+1\right), \varphi\left(M_{v}+1\right) \rightarrow F[-\varphi(k)]$. This implies that

$$
\begin{equation*}
F[-\varphi(k)]=-\varphi(k)+F[0] . \tag{3.16}
\end{equation*}
$$

$\left\{\varphi(k) \mid k \in \mathbf{N}_{1}\right\}$; and so $\left\{-\varphi(k) \mid k \in \mathbf{N}_{1}\right\}$ is everywhere dense in K_{1}, F is continuous on K_{1}, therefore (3.13) is true.

Let now $h=\varphi(2)-\varphi(k), k$ and M as above. Then $\varphi\left(M_{v}\right) \rightarrow-\varphi(k)=h$. Since $2^{2} \mid\left(2 M_{v}+2\right), 2^{3} \nmid\left(2 M_{v}+2\right)$, we have

$$
\varphi\left(2 M_{v}+2\right)=\varphi(4)-\varphi(2)+\varphi\left(M_{v}+1\right)
$$

and so that

$$
F^{2}[h]=\varphi(4)-\varphi(2)+F[-\varphi(k)] .
$$

Since $-\varphi(k) \in K_{1}$, from (3.13) we get that $F[-\varphi(k)]=-\varphi(k)+F[0]$, and so that $F^{2}[h]=h+C, h=\varphi(2)-\varphi(k)$ with the C defined in (3.15).

Since $\left\{-\varphi(k) \mid k \in \mathbf{N}_{1}\right\}$ is everywhere dense in K_{1}, therefore $\left\{\varphi(2)-\varphi(k) \mid k \in \mathbf{N}_{1}\right\}$ is everywhere dense in K_{2}, F^{2} being a continuous function, we get (3.14) immediately.

For a sequence x_{n} let $\Delta x_{n}:=x_{n+1}-x_{n}, \Delta^{2} x_{n}:=x_{n+2}-x_{n}$.
Lemma 11. We have

$$
\begin{align*}
& \lim _{m \in \mathbb{N}_{2}} \Delta \varphi(m)=F[0], \tag{3.16}\\
& \lim _{m \in \mathbb{N}_{0}} \Delta^{2} \varphi(m)=C, \tag{3.17}\\
& \lim _{m \in \mathbb{N}_{2}} \Delta^{2} \varphi(m)=0 . \tag{3.18}
\end{align*}
$$

Furthermore, $C=0$.
Proof. Assume that (3.16) is not true. Then there exists a subsequence $2 n_{v}+1$ of positive integers such that $\varphi\left(2 n_{v}+2\right)-\varphi\left(2 n_{v}+1\right) \rightarrow \delta, \delta \neq F[0]$. Then for a suitable subsequence $2 n_{j_{v}}+1$ there exists the limit $\lim \varphi\left(2 n_{j_{\nu}}+1\right)=\alpha \in K_{1}$, and $F[\alpha]=\alpha+\delta$. This contradicts (3.13).

The proof of (3.17) is the same and so we omit it.
Since $\Delta^{2} \varphi(2 n-1)=\Delta^{2} \varphi(4 n-2)+\Delta^{2} \varphi(4 n)$, from (3.17) we get that

$$
\begin{equation*}
\Delta^{2} \varphi(2 n-1) \rightarrow 2 C . \tag{3.19}
\end{equation*}
$$

Observe that

$$
\Delta \varphi(2 n-1)-\Delta \varphi(2 n-1)=\Delta^{2} \varphi(2 n)-\Delta^{2} \varphi(2 n-1) .
$$

From (3.16), (3.17), (3.19) we get that $0=F[0]-F[0]=C-2 C$, and so that $C=0$. This proves (3.18).
4. We have almost finished the proof. We know that $\Delta^{2} \varphi(2 n-1) \rightarrow 0$. The condition of Lemma 1 is satisfied. Then, by Lemma 3 there exists a continuous homomorphism $\psi: \mathbf{R}_{\boldsymbol{x}} \rightarrow G$ such that $\varphi(n)=\psi(n)$ for all $n \in \mathbf{N}_{1}$. Let $u(n):=\varphi(n)-$
$-\psi(n)$. Then $u \in \mathscr{A}, u(n)=0$ for all $n \in \mathbf{N}_{1}$. Since ψ is continuous, therefore $\psi(n+k)-\psi(n)=\psi(1+k / n) \rightarrow 0$ as $n \rightarrow \infty$ for every fixed k. From (3.16) we get that $u(2 n+2) \rightarrow F(0)$ as $n \rightarrow \infty$, that is $u(2)=u\left(2^{\alpha}\right)=F[0](\alpha=1,2, \ldots)$.

If, in addition, $F[0] \in K_{1}$, then $S=K_{1}$, and (3.13) can be applied twice. This gives $F^{2}[g]=F[F[g]]=F[g+F[0]]=g+2 F[0]$, that by $F^{2}[0]=0$ gives that $2 F[0]=0$.

By this the first assertion in our Theorem is proved. The converse is obvious.

References

[1] Z. Daróczy-I. Kátal, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Math., 28 (1985), 288-292.
[2] Z. Daróczy-I. Kátal, On additive arithmetical functions with values in topological groups, Publ. Math. Debrecen, to appear.
[3] Z. Daróczy-I. KÁtai, On additive arithmetical functions with values in the circle group, Publ. Math. Debrecen, to appear.
[4] E. Wirsing, The proof is given in a letter to I. Kátai (9.3. 1984).
[5] E. Hewttt-K. A. Ross, Abstract harmonic analysis, Springer (Berlin, 1963).
(I. K.)

DEPARTMENT OF MATHEMATICS
L. EÖTVÓS UNIVERSITY

1088 BUDAPEST, HUNGARY

