On additive functions taking values from a compact group

Z. DARÓCZY and I. KÁTAI

1. Let G be a metrically compact Abelian topological group, T be the onedimensional torus. A function $\varphi: \mathbf{N} \rightarrow G$ will be called additive if $\varphi(mn) = \varphi(m) + \varphi(n)$ holds for every coprime pairs m, n of natural numbers, while if $\varphi(mn) = = \varphi(m) + \varphi(n)$ holds for each couple of m, $n \in \mathbf{N}$ then we say that it is completely additive. Let \mathcal{A}_G , \mathcal{A}_G^* be the class of additive, and the class of completely additive functions, respectively.

Let $\{x_{\nu}\}_{\nu=1}^{\infty}$ be an infinite sequence in G. We shall say that it is of property D, if for any convergent subsequence x_{ν_n} the shifted subsequence x_{ν_n+1} has a limit, too. We say that it is of property Δ if $x_{\nu+1} - x_{\nu} \rightarrow 0$ ($\nu \rightarrow \infty$).

Let $\mathscr{A}_G(D)$, $\mathscr{A}_G(\Delta)$ be the set of those $\varphi \in \mathscr{A}_G$ for which the sequence $\{x_n = \varphi(n)\}$ is a property D, Δ , respectively. The classes $\mathscr{A}_G^*(D)$, $\mathscr{A}_G^*(\Delta)$ are defined as follows:

$$\mathscr{A}_{G}^{*}(D) = \mathscr{A}_{G}(D) \cap \mathscr{A}_{G}^{*}, \ \mathscr{A}_{G}^{*}(\Delta) = \mathscr{A}_{G}(\Delta) \cap \mathscr{A}_{G}^{*}.$$

It is obvious that $\mathscr{A}_G(\Delta) \subseteq \mathscr{A}_G(D)$, $\mathscr{A}_G^*(\Delta) \subseteq \mathscr{A}_G^*(D)$. In [1] we proved that $\mathscr{A}_G^*(\Delta) = \mathscr{A}_G^*(D)$. Recently E. WIRSING [4] proved that $\varphi \in \mathscr{A}_T(D)$ if and only if

(1.1)
$$\varphi(n) \equiv \tau \log n \pmod{1} \quad (n \in \mathbb{N})$$

for a $\tau \in \mathbf{R}$. By using Wirsing's theorem we proved in [2] the following assertion.

If $\varphi \in \mathscr{A}_{G}^{*}(\Delta)$ (= $\mathscr{A}_{G}^{*}(D)$) then there exists a continuous homomorphism $\psi : \mathbf{R}_{x} \to G$, \mathbf{R}_{x} denotes the multiplicative group of the positive reals, such that φ is a restriction of ψ on the set N, i.e. $\varphi(n) = \psi(n)$ for all $n \in \mathbb{N}$. The converse assertion is obvious. If $\psi : \mathbf{R}_{x} \to G$ is a continuous homomorphism, then $\varphi(n) := := \psi(n) \in \mathscr{A}_{G}^{*}(\Delta) \subseteq \mathscr{A}_{G}^{*}(D)$.

We should like to extend our results for the class $\mathscr{A}_G(D)$. This was done in [3] for G=T. Our aim in this paper is to characterize the class $\mathscr{A}_G(\Delta)$ for a general metrically compact Abelian group G.

Received January 15, 1986.

Let N₁, N₀ be the set of the odd and the even natural numbers, respectively. For a $\varphi \in \mathscr{A}_G$ let $S(N_j)$ be the set of limit points of $\{\varphi(n) \mid n \in N_j\}$ (j=1, 0), and let S(N) be the set of limit points of $\{\varphi(n) \mid n \in N\}$.

Theorem 1. Let $\varphi \in \mathscr{A}_G(D)$. Then $S(N_1)$ is a compact subgroup of G, $S(N_0) = = \gamma + S(N_1)$ with a suitable $\gamma \in G$. There exists a continuous homomorphism $\psi : \mathbb{R}_x \to G$ such that $\varphi(n) = \psi(n)$, $n \in \mathbb{N}_1$. The function $u(n) := \varphi(n) - \psi(n)$ is zero for $n \in \mathbb{N}_1$, and $u(2) = u(2^x)$ ($\alpha = 1, 2, ...$). If $u(2) \in S(\mathbb{N}_1)$, then 2u(2) = 0.

Conversely, let ψ : $\mathbf{R}_x \rightarrow G$ be a continuous homomorphism. Let $\beta \in G$ an element for which $\beta \in \psi(G)$ implies that $2\beta = 0$. Let $u \in \mathcal{A}_G$ be defined by the relation

 $u(2^{\alpha}) = \beta$ ($\alpha = 1, 2, ...$), u(n) = 0 for all $n \in \mathbb{N}_1$.

Then $\varphi = u + \psi$: $\mathbf{N} \rightarrow G$ belongs to $\mathscr{A}_G(\Delta)$.

2. To prove our theorem we need some auxiliary results that can be proved by a method that was used by E. WIRSING [4] and in our earlier papers [1], [2].

Lemma 1. If $\varphi \in \mathscr{A}_G$ and

(2.1)
$$\varphi(m+2) - \varphi(m) \rightarrow 0 \quad (m \rightarrow \infty, \ m \in \mathbf{N}_1)$$

then $\varphi(nm) = \varphi(m) + \varphi(n)$ for each $m, n \in \mathbb{N}_1$.

Proof. We need to prove only that

(2.2)
$$\varphi(p^{\alpha}) - \varphi(p^{\alpha-1}) - \varphi(p) = 0 \quad (\alpha = 1, 2, ...)$$

for each odd prime p. From (2.1) we get that

$$E_m := \varphi(p^{\alpha} \cdot m) - \varphi(p^{\alpha} \cdot m - 2p) \to 0, \quad F_m := \varphi(p^{\alpha-1} \cdot m) - \varphi(p^{\alpha-1} \cdot m - 2) \to 0,$$

as $m \in \mathbb{N}_1$, $m \to \infty$. Since for (m(m+2), 2p) = 1 the relation

$$E_m = \varphi(p^{\alpha}) - \varphi(p^{\alpha-1}) - \varphi(p) + F_m$$

holds, therefore (2.2) is true.

Without any important modification of the proof of Wirsing's theorem one can get

Lemma 2. If the conditions of Lemma 1 are satisfied, G=T, then $\varphi(n) \equiv \equiv \tau \log n \pmod{1}$ for all $n \in \mathbb{N}_1$, $\tau \in \mathbb{R}$.

Upon this result, in the same way as in [2] one can prove easily the next

Lemma 3. Assume that the conditions of Lemma 1 hold. Then there exists a continuous homomorphism $\psi: \mathbb{R}_x \rightarrow G$ such that $\varphi(n) = \psi(n)$ for each $n \in \mathbb{N}_1$.

In the next section we shall prove that $\varphi \in \mathscr{A}_G(\Delta)$ implies (2.1).

3. Let us assume that $\varphi \in \mathscr{A}_G(\Delta)$. Let S denote the set of limit points of $\{\varphi(n) \mid n \in \mathbb{N}\}$, i.e. $g \in S$ if there exists $n_1 < n_2 < \ldots < n_v \in \mathbb{N}$, for which $\varphi(n_v) \rightarrow g$. Let $\varphi(n_v+1) \rightarrow g'$. In [1] we proved that g' is determined by g. So the correspondence $F: g \rightarrow g'$ is a function. Furthermore, it is obvious that F(S) = S. Let p(n) and P(n) denote the smallest and the largest prime factor of $n \in \mathbb{N}$.

Let k be an arbitrary integer,

(3.1)
$$\mathbf{R} = \{R_1 < R_2 < ...\}$$

be a sequence of natural numbers. We shall say that R belongs to \mathscr{P}_k if for every $d \in \mathbb{N}$, d divides $R_v - k$ for every large v, i.e. if $v > v_0(\mathbb{R}, d)$. Let $\tilde{\mathscr{P}}_k \subseteq \mathscr{P}_k$ be the set of those $\mathbb{R} \in \mathscr{P}_k$ for which the limit $\lim_{n \to \infty} \varphi(R_n)$ exists. For an arbitrary sequence R let

$$a(\mathbf{R}) = \lim_{v \to \infty} \varphi(\mathbf{R}_v)$$

if the limit exists. Furthermore, if R is an infinite subsequence of natural numbers increasing monotonically and k is an integer then R + k denotes the sequence of the positive elements of $R_v + k$ written in increasing order. It is obvious that $R + k \in \mathscr{P}_k$ if and only if $R \in \mathscr{P}_0$. Furthermore, if l < k, $R \in \tilde{\mathscr{P}}_l$, then $R + (k-l) \in \tilde{\mathscr{P}}_k$. If l > k, then $R \in \tilde{\mathscr{P}}_l$ implies only that $R + (k-l) \in \mathscr{P}_k$. In this case we can assert only that there exists a suitable subsequence of R + (k-l) that belongs to $\tilde{\mathscr{P}}_k$. Let

$$K_k := \{a(\mathsf{R}) | \mathsf{R} \in \tilde{\mathscr{P}}_k\}.$$

It is obvious that

(3.3)
$$F[K_k] = K_{k+1}$$

for every integer k, and that

$$(3.4) \qquad \bigcup_{k=-\infty}^{\infty} K_k \subseteq S.$$

Let now $g_1 \in K_k$, $g_2 \in K_l$, where $k \in \{1, -1\}$. Then there exist $\mathbb{R} \in \tilde{\mathscr{P}}_k$, $S \in \tilde{\mathscr{P}}_l$ such that $a(\mathbb{R}) = g_1$, $a(S) = g_2$. Since $k \in \{1, -1\}$, therefore $p(R_v) \to \infty$ ($v \to \infty$). Let now the sequence $Q_v = R_{j_v} \cdot S_v$ be defined as follows: $j_0 = 0$, $j_v > j_{v-1}$ such that $p(R_{j_v}) > P(S_v)$. Then $(R_{j_v}, S_v) = 1$, and so $\varphi(Q_v) = \varphi(R_{j_v}) + \varphi(S_v) \to g_1 + g_2$. But $Q_{\nu} \equiv kl \pmod{d}$ for every $d \in \mathbb{N}$ whenever $\nu > \nu_0(d)$, so $\{Q_{\nu}\} \in \tilde{\mathscr{P}}_{kl}$, i.e. $g_1 + g_2 \in K_{kl}$ So we proved

Lemma 4. For every integer 1

$$(3.5) K_1 + K_l \subseteq K_l,$$

 $(3.6) K_{-1}+K_l\subseteq K_{-l}.$

(3.5) gives that $K_1 + K_1 \subseteq K_1$, i.e. that K_1 is a semigroup in G. It is clear that K_1 is closed. The closedness of K_1 implies that K_1 is a compact semigroup in G, and so by [5] (9.16) it must be a group.

Lemma 5. Let $k \in \mathbb{N}$. Then

(3.7)
$$K_k = K_1 + \varphi(k), \quad K_{-k} = K_{-1} + \varphi(k).$$

Proof. Let $\tau \in K_k$, $\mathbb{R} \in \tilde{\mathscr{P}}_k$, $a(\mathbb{R}) = \tau$. Let $S_{\tau} := R_{j_{\tau}} - k$ be a subsequence of $\mathbb{R} - k$ for which $\mathbb{S} \in \tilde{\mathscr{P}}_0$. Then $R_{j_{\tau}}$ can be written as

 $R_{i_{y}} = k[A_{y}+1], \quad S_{y} = kA_{y}.$

The sequence $\{A_v\}\in \mathscr{P}_0$, therefore $(A_v+1, k)=1$ for every large v, so $\varphi(A_v+1)=\varphi(R_{j_v})-\varphi(k)$, consequently

$$\varphi(A_{\nu}+1) \to \tau - \varphi(k) \in K_1.$$

So we proved that $K_k - \varphi(k) \subseteq K_1$.

Let now $\varrho \in K_1$, $\mathbb{R} \in \tilde{\mathscr{P}}_1$ so that $a(\mathbb{R}) = \varrho$. Then the sequence $S_v = kR_v$ belongs to $\tilde{\mathscr{P}}_k$, $(k, R_v) = 1$ if v is large, $\lim \varphi(S_v) = \varphi(k) + \lim \varphi(R_v) = \varphi(k) + \varrho \in K_k$. This implies that $K_1 + \varphi(k) \subseteq K_k$.

The proof of the second relation of (3.7) is the same, and so we omit it.

Lemma 6. If $g \in K_{-2}$, then

(3.8)
$$F[g] + F^{2}[g] = F^{2}[g + F^{3}[g]].$$

Proof. Let us start from the identity n(n+3)+2=(n+1)(n+2). If (n,3)=1, then (n, n+3)=1, furthermore (n+1, n+2)=1 for every $n \in \mathbb{N}$. Let $\{n_{\nu}\} \in \tilde{\mathscr{P}}_{-2}$ such that $a(\{n_{\nu}\})=g\in K_{-2}$. Then $\exists n_{\nu}$, consequently $\varphi(n_{\nu}(n_{\nu}+3))=\varphi(n_{\nu})+\varphi(n_{\nu}+3)$, $\varphi((n_{\nu}+1)(n_{\nu}+2))=\varphi(n_{\nu}+1)+\varphi(n_{\nu}+2)$. Since $\varphi(n_{\nu}+k) \to F^{k}[g]$ (k=0, 1, 2, 3), we get (3.8) immediately.

Since $0 \in K_1$, there exists $\mathbb{R} \in \tilde{\mathscr{P}}_1$, $a(\mathbb{R}) = 0$. Let $R_{j_v} - 3$ be a subsequence of $R_v - 3$ for which the limit $\lim_{v} \varphi(R_{j_v} - 3) = \eta$ exists. Since $\{R_{j_v} - 3\}_v \in \tilde{\mathscr{P}}_{-2}$, therefore $\eta \in K_{-2}$, and $F^3[\eta] = 0$. Let us apply (3.8) with $g = \eta$. Then we get $F[\eta] = 0$. Since $\eta \in K_{-2}$, therefore $F[\eta] \in K_{-1}$, consequently $0 \in K_{-1}$. Furthermore, $0 = F^3[\eta] = F^2[F[\eta]] = F^2[0]$. So we proved Lemma 7. We have

(3.9) $F^2[0] = 0,$ (3.10) $0 \in K_{-1}.$

Lemma 8. We have

$$(3.11) K_{-1} = K_1.$$

Proof. Put l=1 in (3.6). We get $K_{-1}+K_1\subseteq K_{-1}$. Since $0\in K_{-1}$, we deduce that $K_1\subseteq K_{-1}$. Let now l=-1. Then $K_{-1}+K_{-1}\subseteq K_1$. Since $0\in K_{-1}$ we get that $K_{-1}\subseteq K_1$. Consequently (3.11) is true.

Since $F^2[K_l] = K_{l+2}$ holds for every integer l, we get that $K_{2n+1} = K_1$ for every $n \in \mathbb{N}$. From (3.7) we get that $\varphi(2n+1) \in K_1$. Consequently $S(\mathbb{N}_1) \subseteq K_1$. On the other hand, it is obvious that $K_1 \subseteq S(\mathbb{N}_1)$. So we know that

$$S(\mathbf{N}_1) = K_1.$$

Since $F[K_m] = K_{m+1}$, we get that $K_1 = K_{2n}$ $(n \in \mathbb{N})$, i.e. that $\varphi(2n) - \varphi(2) \in K_1$ for all $n \in \mathbb{N}$, and so $\varphi(2^{\alpha}) - \varphi(2) \in K_1$ $(\alpha = 1, 2, ...)$. So we get that

$$S = \begin{cases} K_1 \cup \{\varphi(2) + K_1\} & \text{if } \varphi(2) \notin K_1, \\ K_1 & \text{if } \varphi(2) \notin K_1. \end{cases}$$

Lemma 9. The function $F: S \rightarrow S$ is continuous.

For the proof of this quite obvious assertion see [1].

Lemma 10. If $g \in K_1$, then

(3.13)

$$F[g] = g + F[0].$$

If $h \in K_2$, then

(3.14)

 $F^2[h] = h + C,$

where

(3.15)
$$C = \varphi(4) - 2\varphi(2) + F[0].$$

Proof. Let $k \in \mathbb{N}_1$, $\mathbb{M} \in \tilde{\mathscr{P}}_1$, $a(\mathbb{M}) = -\varphi(k)$. Then $(k, M_v) = 1$, and so $\varphi(kM_v) \to 0$, $\varphi(kM_v+k) \to F^k[0] = F[0]$. Furthermore, $(k, M_v+1) = 1$, therefore $\varphi(kM_v+k) = = \varphi(k) + \varphi(M_v+1)$, $\varphi(M_v+1) \to F[-\varphi(k)]$. This implies that

(3.16)
$$F[-\varphi(k)] = -\varphi(k) + F[0].$$

 $\{\varphi(k)|k\in\mathbb{N}_1\}$, and so $\{-\varphi(k)|k\in\mathbb{N}_1\}$ is everywhere dense in K_1 , F is continuous on K_1 , therefore (3.13) is true.

Z. Daróczy and I. Kátai

Let now $h=\varphi(2)-\varphi(k)$, k and M as above. Then $\varphi(M_v) \rightarrow -\varphi(k)=h$. Since $2^2|(2M_v+2), 2^3|(2M_v+2)$, we have

$$\varphi(2M_{\nu}+2)=\varphi(4)-\varphi(2)+\varphi(M_{\nu}+1),$$

and so that

$$F^{2}[h] = \varphi(4) - \varphi(2) + F[-\varphi(k)].$$

Since $-\varphi(k) \in K_1$, from (3.13) we get that $F[-\varphi(k)] = -\varphi(k) + F[0]$, and so that $F^2[h] = h + C$, $h = \varphi(2) - \varphi(k)$ with the C defined in (3.15).

Since $\{-\varphi(k)|k\in\mathbb{N}_1\}$ is everywhere dense in K_1 , therefore $\{\varphi(2)-\varphi(k)|k\in\mathbb{N}_1\}$ is everywhere dense in K_2 , F^2 being a continuous function, we get (3.14) immediately.

For a sequence x_n let $\Delta x_n := x_{n+1} - x_n$, $\Delta^2 x_n := x_{n+2} - x_n$.

Lemma 11. We have

- (3.16) $\lim_{m \in \mathbf{N}_1} \Delta \varphi(m) = F[0],$
- $\lim_{m\in \mathbf{N}_0}\Delta^2\varphi(m)=C,$

$$\lim_{m \in \mathbf{N}_1} \Delta^2 \varphi(m) = 0.$$

Furthermore, C=0.

Proof. Assume that (3.16) is not true. Then there exists a subsequence $2n_v+1$ of positive integers such that $\varphi(2n_v+2)-\varphi(2n_v+1)-\delta$, $\delta \neq F[0]$. Then for a suitable subsequence $2n_{j_v}+1$ there exists the limit $\lim \varphi(2n_{j_v}+1)=\alpha \in K_1$, and $F[\alpha]=\alpha+\delta$. This contradicts (3.13).

The proof of (3.17) is the same and so we omit it.

Since $\Delta^2 \varphi(2n-1) = \Delta^2 \varphi(4n-2) + \Delta^2 \varphi(4n)$, from (3.17) we get that

(3.19)

$$\Delta^2 \varphi(2n-1) \to 2C.$$

Observe that

$$\Delta \varphi(2n-1) - \Delta \varphi(2n-1) = \Delta^2 \varphi(2n) - \Delta^2 \varphi(2n-1).$$

From (3.16), (3.17), (3.19) we get that 0 = F[0] - F[0] = C - 2C, and so that C = 0. This proves (3.18).

4. We have almost finished the proof. We know that $\Delta^2 \varphi(2n-1) \rightarrow 0$. The condition of Lemma 1 is satisfied. Then, by Lemma 3 there exists a continuous homomorphism $\psi \colon \mathbf{R}_x \rightarrow G$ such that $\varphi(n) = \psi(n)$ for all $n \in \mathbf{N}_1$. Let $u(n) := \varphi(n) - \varphi(n)$

 $-\psi(n)$. Then $u \in \mathscr{A}$, u(n)=0 for all $n \in \mathbb{N}_1$. Since ψ is continuous, therefore $\psi(n+k)-\psi(n)=\psi(1+k/n)\to 0$ as $n\to\infty$ for every fixed k. From (3.16) we get that $u(2n+2)\to F(0)$ as $n\to\infty$, that is $u(2)=u(2^{\alpha})=F[0]$ ($\alpha=1,2,...$).

If, in addition, $F[0] \in K_1$, then $S = K_1$, and (3.13) can be applied twice. This gives $F^2[g] = F[F[g]] = F[g+F[0]] = g+2F[0]$, that by $F^2[0] = 0$ gives that 2F[0] = 0.

By this the first assertion in our Theorem is proved. The converse is obvious.

References

- Z. DARÓCZY—I. KÁTAI, On additive number-theoretical functions with values in a compact Abelian group, Aequationes Math., 28 (1985), 288-292.
- [2] Z. DARÓCZY—I. KÁTAI, On additive arithmetical functions with values in topological groups, Publ. Math. Debrecen, to appear.
- [3] Z. DARÓCZY—I. KÁTAI, On additive arithmetical functions with values in the circle group, Publ. Math. Debrecen, to appear.

[4] E. WIRSING, The proof is given in a letter to I. Kátai (9.3. 1984).

[5] E. HEWITT-K. A. Ross, Abstract harmonic analysis, Springer (Berlin, 1963).

(Z. D.) DEPARTMENT OF MATHEMATICS L. KOSSUTH UNIVERSITY DEBRECEN 10, HUNGARY (I. K.) DEPARTMENT OF MATHEMATICS L. EOTVÖS UNIVERSITY 1088 BUDAPEST, HUNGARY