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Orthogonal polynomials and their zeros 

PAUL NEVAI*) and VILMOS TOTIK 

Let dp be a finite positive Borel measure on the interval [0,2n) such that 
its support is an infinite set, and let {<p„}̂ L0, <pn(z)=(p„(dp, z)=xnz"+..., xn = 
=y.n(dp)>0, denote the system of orthonormal polynomials associated with dp, 
that is, 

The corresponding monic orthogonal polynomials xn
 1cpn will be denoted by $>n. 

For an nth degree polynomial P the reverse polynomial P* is defined by P*(z)= 
=z"P( 1/z). Let zkn—zkn(dp) be the zeros of cpn ordered in such a way that 

P . ALFARO and L. VIGIL (cf. [1, Proposition 1] and [2, Theorem 1]) proved 
that for every sequence of complex numbers {z„}~=1 with |z„|-= 1, n —1,2,... , 
there is a unique measure dp (modulo an arbitrary positive constant factor) such 
that cpn(dp, z„)=0 for n = l, 2, ... . This result can be obtained from the recurrence 
formula 

(cf. [7, formula (11.4.7), p. 293]) as follows. By (2) the recurrence coefficients #„(0) 
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<Pjz)<Pn(z) dp(6) = Ô, , z = ew. 

(1) 
(cf. [7, p. 292]). 

| z j ^ |zn_1(„| S . . . S | r j < 1 

(2) *.(z) = z4>„-1(z) + &n (0) ! (z) 

T 
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can be expressed as 

and thus one can successively define the monic polynomials \¡/n by and 

i¡/„(z) = z<p„ _ j (z) - [z„ «h (zJ/ i /C! (z„)] xpt-1(z), 

n = l, 2 , . . . . It is a matter of simple induction to show that |iA„(0)|< 1, n = 1, 2, ... , 
and then is orthogonal with respect to some dp (cf. [4, Theorem 8.1, p. 156]). 
Since \[/n(z„)=0, this is the measure dfi we were looking for. 

We point out that P. Alfaro and L. Vigil's result solves the following problem 
proposed by P. Turán: is there a measure d¡i such that the set {zkn(dix)} is dense in 
the unit disk (cf. [9, Problem 67, p. 69]). Namely, the above measure d¡i associated 
with ány sequence {zn} which is dense in the unit disk provides such an example. 

In view of this result by P. Alfaro and L. Vigil (and also because of the rela-
tion <P„(0)=i7zfel),one would want to seek for connections between orthogonal 
polynomials, their zeros and their recurrence coefficients. In spite of the great variety 
of results of such nature for orthogonal polynomials on the real line, and in spite 
of the intimate connection between real and complex orthogonal polynomials, there 
is only a very Jimited amount of research performed in this direction (cf. J. SZA-
BADOS [6] añd R. Áskey's; comment to paper [34—2] in [8, Vol. 2, p. 542]). 

The main purpose of this note is to find a relationship between the quantities 
rlt r2, /"¿'and r4 which are defined as follows: 

>i№) = lim sup ¡0i,(d;i-,O)l1'a, 

r2(dfi) = inf lim sup \zk n(dfi)\ , 

k n-»=o 
rÁdpi) = {inf r: sup max z)\ <=} 

and ... • Tiidfi) — {inf/-; D(dfi, z)~l is analytic for \z\ < r - 1 } 
where for |z]<l the Szego function D(d¡x) is given by 

D(d¡i, z) = exp j - L ' J logix'(t) d^, u = e\ 

if log / / is integrable, and D(dn)=0 otherwise (cf. [3], [4], [5] and [7]). 

Theo rem 1. For every measure dp we have r^d^^r^dfi). If there is 
{1', 2, 3 ,4} such that (<//<)< 1 then rx (dpi)=r3 (dp)=r4 (dfi). 

.. P roof . i , - . . . . - . - . • .. • I 

Step 1. r^r2. Since 0n(O)=nztn and \zkn\^], we have | ^„ (0) | á | z j n - f c + 1 : 
for A: = l ,2 , ...,n (cf. (1)), and thus r^r2 follows. -
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Step 2. r1 = l=*r1=r2 . This is obvious in view of Step 1 and r ^ l . 

S t ep 3 . r^l^Vi, r^r^f-L. By a result of Y A . L . GERONIMUS [4 , Theorem 8 . 3 , 

p. 160] the sequence {|<P„|} is uniformly bounded on the unit circle. Thus by the 
maximum principle {\z~n 4>n(z)\} is uniformly bounded for |z| ^ 1 . Repeated appli-
cation of the recurrence formula (2) leads to 

«£(*) = 1 • + z " £ * ^ ) < P k ( z ) . o 

Therefore lim <P* = <&* exists uniformly on every disk with radius less than r^1 

which implies By formula (8.6) in [4, p. 156] 

(3 ) = N V - W M T 1 -
i=i 

so that r^ 1 implies the boundedness of the sequence {*„} which by a theorem of 
Y A . L . GERONIMUS [4, Section 1 . 2 ( 1 5 ) , p. 14] guarantees the integrability of log n'. 
But then by the Szegő theory (cf. [7, Theorem 1 2 . 1 , 1 , p. 2 9 7 ] ) lim <j>*=D{0)D~1 

holds uniformly on compact subsets of the open unit disk where D denotes the 
Szegő function. Applying Yitali's theorem we can conclude that lim <P*(z)=<P*(z) 
exists for every |z|</-~1 and obtain <P* =D(0)Z)~1, and thus r4Sr3. In addi-
tion, since á>* possesses at most a finite number of zeros inside every disk with 
radius r-^rg1, the number of elements of the sets {z: \z\^r, <P*(z)=0} is bounded 
for every This follows from Rouche's theorem. In other words, 
{|{*fa}2_0n{z:>|sr}|}£,0.. is bounded for every r > r 3 . Thiis ^ S f j . . . 

S tep 4. r 1 ^ r 3 . We may assume Then by Cauchy's formula " 

= (£ z" _ 1<P*(z)dz = 0(r") 
2 m u-i=r-' 

holds for every r > r s . Hence 

Step 5. r i S ^ . We may assume /'4< 1. Then log ¡i is apriori integrable, 
and thus we have the Szegő theory at our disposition. Applying formula (5.1.18) 
in [3, p. 195] and using lim <p* — D~1 in L2(dfi) (cf. [3, p. 219]) we obtain 

« 2lt 
(4) <P„(0) = ^ f V- l(z)<Pn(z)d,i(0), z = * f ° . 

Let us denote the Taylor expansion of D~l by Ickzk. Then lim sup |c t |1 / k=r4 and 
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by orthogonality 

= f [ Z WW, * = 

Now using Cauchy's inequality and y.0=x„ (cf. (3)) we obtain / ' i ^ /v 
Combining the inequalities proved in Steps 1 through 5, we get immediately 

Theorem 1. 

Coro l la ry . The following assertions are pairwise equivalent: 

(a) limsup \zln(dp)\ < 1. 
»••OO 

(b) lim sup \$n(dp, 0)p/" < 1. 
jl-*oo 

(c) dp is absolutely continuous and p.'(0)=g(0) a.e. where g is a positive 
analytic function. 

Remark . 1. Note that this corollary characterizes the measures for which all 
zeros of the corresponding orthogonal polynomials lie in a smaller circle inside the 
unit circle. 

2. There are many other statements equivalent to (a) above. Here are a few 
of them: 

(d) There is 0 < r < l such that <PnU¥, z) = 0(rn) for \z\=r. 

(e) lim sup max 14>n+1(dn, z)—z<P„(dp, z)[1/n < 1. 

(f) lim sup ess sup |$„(dix, z)z-"—D-1(dn, z)\ < 1. 

Using the considerations below it is a fairly simple exercise to prove that any of 
(d)—(f) is equivalent to any of (a)—(c). 

P r o o f of the Coro l l a ry . (a)=>(b) by Theorem 1. That (c) implies (b) fol-
lows from the formula 

| 2 it 

(cf. (4)) where r„_, is any trigonometric polynomial of degree at most n— 1, if 
we take into account that the <P„'s are uniformly bounded on \z\ = 1 (see [4, Theo-
rem 4.5]) and that, by the analiticity of (n')~1/!t, we can choose a 1 and 
{r„_ J such that 

(D-W-T.-Mt.&dm = 



Orthogonal polynomials and their zeros 103 

Finally, both (b)=>-(a) and (b)=>(c) follows if we can show (see Step 3 
above) that v , 

(5) 0*(z) if \z\ = 1. 

In fact, (b) implies that dpi is absolutely continuous (see [4, Theorem 8.5]) and 
n'(0) = D~2(eiO) a.e., hence (b)=>-(c) is an immediate consequence of Step 3 w h i l e 
(b)=>(a) can be derived from Rouché's theorem, namely , there is a neighbourhood 
U of the unit circumference such that <P* does not have a zero in U (and hence <Pn 

does not have a zero in U~l) for large n. (5) follows from 

<P*(z) = D(0)D-Hz) = (//'(ö))-"2, z • ei0,- ." ;' " 

and the analiticity of 0* on |z| = 1 (which was proved above under the assumption 
(b)), namely <P*(ew»)=0 would imply that /i'(0)~(0—0O)-2 in a neighborhood 
of 0O except on a set of measure zero and this contradicts ii'e&lQo—n, Q0 + n]. 
The proof is complete. 

Example . Let 1 < R s L e t / b e analytic in the open (but not in the closed) 
disk JJR with radius R centered at 0, and assume /(0) = 1 and / ( z ) ^ 0 for | z | s l . 
Let 1< |zx| ̂  |z2| = . . . be the zeros of / i n UR. Define the'measure dp by d/i(0) = 
=1 f(^$)\~°-d6. Then lim 4>*(z)—f(z) uniformly for \z\^r<R. Hence 

(6) lim zkn{dn) = (zk)~i 
N -+00 

holds for every k i f / h a s infinitely many zeros in UR. I f / h a s finitely many zeros 
there, say N, then (6) is satisfied for k=l, 2, ..., N. In the former case we have 

R'1 = lim sup |4>„(d/i, 0)|1/n < lim \zk„(dn)\ = .\'zk\~1, • ! 
n-* CO It — » 

k—1,2,... . If, in addition, / is a polynomial of degree, say, m then by the Bern-
stein—Szegő formula (cf. [3, Theorem 5.4.5, p. 224]) <P*=f for «gm, and thus 
zkn=(zk)~1 k = 1,2, ...,m, zkn=0, k=m+1, ...,n and <P„(0)=0'"holds for nSm. 

We conclude this paper by observing that similarly to P. Alfaro and L. Vigil's 
result in [1, 2], orthogonal polynomials on the real line are also completely deter-
mined by some of their zeros. 

Theorem 2. Let {x„}~=1 and {j>„}~=1 be given sequences of real numbers 
such that 

... < X3 < X2 < XI = YX < y2 < Y 3 < ... . 

Then there exists a unique system of monic polynomials {P,,}^ orthogonal with 
respect to a positive measure on the real line such that Pn(xn)=Pn(y„) =0 and P„(t)^0 
for t$[xn,yn], n= 1,2, ... . 
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Proof . Set P0=l, A0=0 and b0=xi. Define {P„}n~i> a n d by 

(7) P . W = (x-bm-JPm-1(x)-A.-1Pm.t(x), 

A - ( x -v if Pn-i{yn+i) I'1 H h - x A An-(xn+1 yn+1)[ Pn(Xn+d Fn(yn+i) j and bn-xn+l 

(The latter two formulae come from (7) and from the requirement />„+1(xn+1) = 
=JPn+i(j'ii+i)=0.) Using induction one can show that P„{X)T±0 if y„], 
Pn(xn)~Pn(yn)—0 and A n >0 for « = 1 , 2 , . . . . Hence by Favard's theorem (cf. 
[3, Theorem 2.1.5, p. 60]) {P,,}^ is an orthogonal polynomial system. 

If x0 = —yn for n = l, 2, ... , then the formula for A„ and b„ above reduces to 

Pn(x„+1) 
•̂ n-lC^n + l) 

A=xn+1 :nKn+1\ and bm = 0. 
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