Noncyclic vectors for the backward Bergman shift

SHELLEY WALSH*)

§ 1. Introduction and notation. The Bergman space \mathscr{A}^2 is the Hilbert space of analytic functions f on the unit disk D such that

$$||f||^{2} = \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{1} |f(re^{i\theta})|^{2} r \, dr \, d\theta < \infty.$$

The Bergman shift is the operator S on \mathscr{A}^2 defined by (Sf)(z) = zf(z). If we let $e_n = (n+1)^{1/2} z^n$ then $\{e_n\}_{n=0}^{\infty}$ is an orthonormal basis for \mathscr{A}^2 and $Se_n = \left(\frac{n+1}{n+2}\right)^{1/2} e_{n+1}$, so S is a weighted shift. The Bergman shift is a subnormal operator so in particular it is hyponormal, so by Theorem 2 in [5], the functions which are contained in finite dimensional S^* -invariant subspaces are the finite linear combinations of the functions of the form $K_{\alpha,n}$ for some $\alpha \in D$ and n a nonnegative integer. In this paper I will give some examples of noncyclic vectors for S^* , which are not contained in finite dimensional S^* -invariant subspaces. I will do this by giving two sufficient conditions for the smallest invariant subspace containing the function $\sum_{k=1}^{\infty} c_k K_{\alpha_k}$ to be the orthogonal complement of $\{f: f(\alpha_k)=0 \text{ for all } k\}$. This is done in § 2.

The theorem in [2] which Theorem 1 in [5] follows from for the special case of the unweighted shift (Theorem 2.1.1) has as one of its consequences that the sum of two noncyclic vectors is noncyclic. In § 3 I will use the second condition given in § 2 to show that this is not true for S^* .

Throughout this paper cyclic will mean cyclic for S^* . If $f \in \mathscr{A}^2$, then $[f]_*$ will be the smallest S^* -invariant subspace containing f. If $\alpha \in D$ and n is a nonnega-

^{*)} This paper includes a part of the author's dissertation [4] written under Professor Sarason at the University of California—Berkeley, while a member of the Technical Staff of Hughes Aircraft Company, Ground Systems Group, and a holder of a Howard Hughes Fellowship.

Received March 4, 1986 and in revised form January 20, 1988.

Shelley Walsh

tive integer then $K_{\alpha,n}$ will be the function in \mathscr{A}^2 such that $\langle f, K_{\alpha,n} \rangle = f^{(n)}(\alpha)$ and $K_{\alpha,0}$ will be written K_{α} when it is convenient.

Since

$$K_{\alpha,n}(z) = \sum_{j=n}^{\infty} (j+1)j \dots (j-n+1)\bar{\alpha}^{j-n} z^{j} = \frac{(n+1)! z^{n}}{(1-\bar{\alpha}z)^{n+2}},$$

Theorem 1' in [5] can be stated for the Bergman shift as follows.

Theorem 0. If f is analytic in a neighborhood of D, then f is either cyclic or a rational function with zero residue at each pole.

Proof. It suffices to show that the rational functions with zero residue at each pole are the linear combinations of the $K_{\alpha,n}$'s. The residue of $K_{\alpha,n}$ at its only pole $\frac{1}{\bar{\alpha}}$ is

$$\left[(n+1)\left(\frac{-1}{\bar{\alpha}}\right)^{n+2} z^n \right]^{(n+1)} \left(\frac{1}{\bar{\alpha}}\right) = 0,$$

so any lineary combination of the $K_{\alpha,n}$'s has zero residue at all its poles. Conversely, to show that every rational function with zero residue at each pole is a linear combination of the $K_{\alpha,n}$'s it suffices to show that the function $\frac{1}{(1-\bar{\alpha}z)^{n+2}}$ is a linear combination of them, for any $\alpha \in D$ and nonnegative integer *n*. This is true because

$$\frac{1}{(1-\bar{\alpha}z)^{n+2}} = \sum_{j=0}^{n} \frac{\binom{n}{j} \bar{\alpha}^{j} z^{j}}{(1-\bar{\alpha}z)^{j+2}}.$$

§ 2. Some infinite dimensional cyclic invariant subspaces for S^* .

Theorem 1. If $\{\alpha_k\}_{k=1}^{\infty}$ is a Blaschke sequence of distinct points in D and $\{c_k\}_{k=1}^{\infty}$ is a sequence of nonzero complex numbers such that $f = \sum_{k=1}^{\infty} c_k K_{\alpha_k} \in \mathscr{A}^2$, then $[f]_* = \{g \in \mathscr{A}^2 : g(\alpha_k) = 0 \text{ for all } k\}^{\perp}$.

Proof. If $g(\alpha_k)=0$ for all k then

$$\langle g, S^{*n}f \rangle = \langle z^n g, f \rangle = \sum_{k=1}^{\infty} \bar{c}_k \alpha_k^n g(\alpha_k) = 0, \text{ so } g \in [f]_*^{\perp}.$$

If $h \in H^{\infty}$ then if $h^*(z) = \overline{h(\overline{z})}$, there is a uniformly bounded sequence of polynomials $\{q_n\}$ with $||q_n - h^*|| \to 0$. Then $||q_n(S^*)f - P(\overline{h}f)|| = ||P(q_n(\overline{z})f - \overline{h}f)|| \le \le ||q_n(\overline{z})f - \overline{h}f||$ which tends to zero by the Lebesgue dominated convergence theo-

106

rem so $P(\bar{h}f) \in [f]_*$. Hence if $g \perp [f]_*$ then $0 = \langle g, P(\bar{h}f) \rangle = \langle hg, f \rangle = \sum_{k=1}^{\infty} \overline{c_k} h(\alpha_k) g(\alpha_k)$ for any h in H^{∞} . Fix m and let h be an H^{∞} function such that $h(\alpha_m) = 1$ and $h(\alpha_k) = 0$ for $k \neq m$. Then $c_m g(\alpha_m) = 0$. Since $c_m \neq 0$, it follows that $g(\alpha_m) = 0$.

The next result uses a result of L. BROWN, A. SHIELDS, and K. ZELLER [1] concerning dominating sequences.

Definition. If $\{\alpha_k\}$ is a sequence of distinct points in D, then $\{\alpha_k\}$ is dominating if for any function h in H^{∞} , we have $||h||_{\infty} = \sup |h(\alpha_k)|$.

The following is contained in Theorem 3 of [1].

Lemma 1. If $\{\alpha_k\}_{k=1}^{\infty}$ is a sequence of distinct points in D with all its limit points on ∂D , then the following are equivalent.

- (i) There exists $\{a_k\}_{k=1}^{\infty}$ such that $0 < \sum_{k=1}^{\infty} |a_k| < \infty$ and $\sum_{k=1}^{\infty} a_k \alpha_k^n = 0$ for all non-negative integers n.
- (ii) $\{\alpha_k\}$ is a dominating sequence.
- (iii) Almost every boundary point $p = e^{i\theta}$ may be approached nontangentially by points of $\{\alpha_k\}$.

Theorem 2. Let $\{\alpha_k\}_{k=1}^{\infty}$ be a sequence of distinct points in D which has all its limit points on ∂D and is not a dominating sequence, and let $\{c_k\}_{k=1}^{\infty}$ be a sequence of nonzero complex numbers such that $\sum_{k=1}^{\infty} \frac{|c_k|}{1-|\alpha_k|^2} < \infty$. If $f = \sum_{k=1}^{\infty} c_k K_{\alpha_k}$, then $[f]_* = \{g \in \mathscr{A}^2 \colon g(\alpha_k) = 0 \text{ for all } k\}^{\perp}$.

Proof. If $g(\alpha_k)=0$ for all k, then for any n, we have

$$\langle g, S^{*n}f \rangle = \sum_{k=1}^{\infty} \overline{c_k} \alpha_k^n g(\alpha_k) = 0$$

so $g \in [f]_*^{\perp}$. If $g \in [f]_*^{\perp}$ then $\sum_{k=1}^{\infty} \overline{c_k} \alpha_k^n g(\alpha_k) = 0$, for any *n*. For any *k*, we have $|g(\alpha_k)| = |\langle g, K_{\alpha_k} \rangle| \le ||g|| ||K_{\alpha_k}|| = \frac{||g||}{1 - |\alpha_k|^2}.$

So since $\sum_{k=1}^{\infty} \frac{|c_k|}{1-|\alpha_k|^2} < \infty$, the sum $\sum_{k=1}^{\infty} |\overline{c_k}g(\alpha_k)|$ is finite. Thus by Lemma 1, we have $\overline{c_k}g(\alpha_k)=0$ for all k. Since $c_k \neq 0$, it follows that $g(\alpha_k)=0$ for all k.

§ 3. Two noncyclic vectors whose sum is cyclic. In this section I will use Theorem 2 and the results and methods in [3] concerning zero sets for \mathscr{A}^2 to give an example of two noncyclic vectors whose sum is cyclic.

Definition. A set E of points in D is a zero set for \mathcal{A}^2 if there exists a function $f \neq 0$ in \mathcal{A}^2 with f(z)=0 (where $z \in D$) if and only if z is in E.

The following lemmas are proved in [3]. Lemma 2. If $\mu > 1$ and β is a positive integer with $\beta > \mu^2 + 1$, then

$$f(z) = \prod_{j=1}^{\infty} (1+\mu z^{\beta^j}) \in \mathscr{A}^2.$$

Lemma 3. If $f \in \mathscr{A}^2$, $f(0) \neq 0$ and $\{\alpha_1, \alpha_2, ...\}$ are the zeros of f indexed so that $|\alpha_k| \leq |\alpha_{k+1}|$, then

$$\prod_{k=1}^{N} \frac{1}{|\alpha_k|} = O(N^{1/2}).$$

Lemma 4. Let $f(z) = \prod_{j=0}^{\infty} (1+\mu z^{\beta^j})$ where $\mu > 1$ and $\beta \ge 2$ is an integer. If $a = \frac{\log \mu}{\log \beta}$ and $\{\alpha_1, \alpha_2, \ldots\}$ are the zeros of f indexed so that $|\alpha_k| \le |\alpha_{k+1}|$, for all k, then $\prod_{k=1}^{N} \frac{1}{|\alpha_k|} > \text{Const} \cdot N^a$.

Lemma 5. A subset of a zero set for \mathcal{A}^2 is a zero set for \mathcal{A}^2 .

Example 1. Let β be even and $\mu^2 + 1 < \beta < \mu^3$. Then the function $f(z) = \prod_{j=2}^{\infty} (1 + \mu z^{\beta^j})$ belongs to \mathscr{A}^2 . Let E be its zero set and $E_1 = \{re^{i\theta} \in E : \pi/2 \le \theta < 2\pi\}$. Then E_1 is a zero set by Lemma 5. The set E has β^j equally spaced points on the circle $|z| = \mu^{-\beta^j}$. On the same circle, the set E_1 has $\frac{3}{4}\beta^j$ points. Let $\{z_1, z_2, ...\}$ be the points of E and $\{\alpha_1, \alpha_2, ...\}$ be the points of E_1 indeed so that $|z_k| \le |z_{k+1}|$ and $|\alpha_k| \le |\alpha_{k+1}|$ for all k. By Lemma 4, if $a = \frac{\log \mu}{\log \beta}$, then for any N, we have $\prod_{k=1}^{N} \frac{1}{|z_k|} \ge \operatorname{Const} \cdot N^a$. Thus if $j \ge 2$ and $N = \beta^2 + ... + \beta^j$, then $\prod_{k=1}^{3N/4} \frac{1}{|\alpha_k|} = \left(\prod_{k=1}^{N} \frac{1}{|z_k|}\right)^{3/4} \ge \operatorname{Const} \cdot N^{3a/4} = \operatorname{Const} \cdot (3N/4)^{3a/4}$.

Choose $0 < \varphi < \pi/2$ such that $e^{i\varphi}E_1$ is disjoint from E_1 and let $E_2 = e^{i\varphi}E_1$. Then E_2 is also a zero set for \mathscr{A}^2 . If $0 < \theta < \pi/2$ then $e^{i\theta}$ is not a nontangential limit point of E_1 and if $\varphi < \theta < \pi/2 + \varphi$ then $e^{i\theta}$ is not a nontangential limit point for E_2 , so, by Lemma 1, E_1 and E_2 are not dominating.

Let $\{c_k\}$ be a sequence of nonzero complex numbers such that $\sum_{k=1}^{\infty} \frac{|c_k|}{1-|\alpha_k|^2} < \infty$. Let $f_1 = \sum_{k=1}^{\infty} c_k K_{\alpha_k}$ and $f_2 = \sum_{k=1}^{\infty} c_k K_{e^{i\varphi_{\alpha_k}}}$. Then by Theorem 2, $[f_i]_*^1 = \{g \in \mathscr{A}^2 : g(z) = 0 \text{ for all } z \in E_i\}$ for i=1, 2. If $\varphi < \theta < \pi/2$, then $e^{i\theta}$ is not a nontangential limit point of $E_1 \cup E_2$, so, by Lemma 1, $E_1 \cup E_2$ is not dominating. Therefore by Theorem 2,

$$[f_1+f_2]^{\perp}_* = \{g \in \mathscr{A}^2 \colon g(z) = 0 \text{ for all } z \in E_1 \cup E_2\}.$$

If $\{\gamma_1, \gamma_2, ...\}$ are the members of $E_1 \cup E_2$ indexed so that $|\gamma_k| \leq |\gamma_{k+1}|$ for all k, then since

$$\prod_{k=1}^{3N/4} \frac{1}{|\alpha_k|} \ge \operatorname{Const} \cdot (3N/4)^{3a/N},$$

for $N = \beta^2 + ... + \beta^j$, we have $\prod_{k=1}^N \frac{1}{|\gamma_k|} \ge \text{Const} \cdot N^{3a/2}$, for infinitely many N's. Since $\beta < \mu^3$, we have $a = \frac{\log \mu}{\log \beta} > 1/3$, so 3a/2 > 1/2. Thus by Lemma 3, $E_1 \cup E_2$ is not a zero set for \mathscr{A}^2 , so $[f_1 + f_2]_*^1 = \{0\}$ and thus $f_1 + f_2$ is cyclic.

References

- L. BROWN, A. L. SHIELDS and K. ZELLER, On absolutely convergent exponential sums, *Trans. Amer. Math. Soc.*, 96 (1960), 162-183.
- [2] R. G. DOUGLAS, H. S. SHAPIRO and A. L. SHIELDS, Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble), 20 (1970), 37-76.
- [3] C. HOROWITZ, Zeros of functions in the Bergman spaces, Duke J. Math., 41 (1974), 693-710.
- [4] S. WALSH, Cyclic vectors for the backward Bergman shift, Dissertation, University of California, 1984.
- [5] S. WALSH, Cyclic vectors for backward hyponormal weighted shifts, Proc. Amer. Math. Soc., 96 (1986), 107-114.

UHLANDSTRASSE 6 6781 HOHFRÖSCHEN WEST GERMANY