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Noncyclic vectors for the backward Bergman shift 

SHELLEY WALSH*) 

§ 1. Introduction and notation. The Bergman space s i 2 is the Hilbert space of 
analytic functions / on the unit disk D such that 

, 2K i 
ll/li2 = ~ J f \f(re>Wrdrd6^. 

o o 

The Bergman shift is the operator S on si2 defined by (Sf)(z)=zf(z). If we let 
/n+l \ 1 / 2 

en=(n + l)1/2z" then {<?„}~=0 is an orthonormal basis for $22 and Sen = I — en+1, V Tl ~/ / 
so S is a weighted shift. The Bergman shift is a subnormal operator so in particular 
it is hyponormal, so by Theorem 2 in [5], the functions which are contained in 
finite dimensional 5,*-invariant subspaces are the finite linear combinations of the 
functions of the form Kxn for some a£D and n a nonnegative integer. In this paper 
I will give some examples of noncyclic vectors for S*, which are not contained in 
finite dimensional ¿""-invariant subspaces. I will do this by giving two sufficient 

eo 
conditions for the smallest invariant subspace containing the function 2 ckKx 

l c = J k 

to be the orthogonal complement of {/ : / ( a t ) = 0 for all k}. This is done in §2. 
The theorem in [2] which Theorem 1 in [5] follows from for the special case 

of the unweighted shift (Theorem 2.1.1) has as one of its consequences that the 
sum of two noncyclic vectors is noncyclic. In § 3 I will use the second condition 
given in § 2 to show that this is not true for S*. 

Throughout this paper cyclic will mean cyclic for S*. If fdstf2, then [/]* 
will be the smallest ¿""-invariant subspace containing/ If a£Z> and n is a nonnega-
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tive integer then KXi„ will be the function in st2 such that ( / , K„ „> = / ( n ) (a) and 
Ka> o will be written Kx when it is convenient. 

Since 

= i (j+ i ) y . . . ( ; - « + I ) « / - v = > 

Theorem 1' in [5] can be stated for the Bergman shift as follows. 

T h e o r e m 0. if f is analytic in a neighborhood of D, then f is either cyclic or a 
rational function with zero residue at each pole. 

Proof . It suffices to show that the rational functions with zero residue at each 
pole are the linear combinations of the Klt„'s. The residue of Kx n at its only pole 
1 

— is 

so any lineary combination of the KXi„'s has zero residue at all its poles. Conversely, 
to show that every rational function with zero residue at each pole is a linear com-
bination of the K. _'s it suffices to show that the function is a linear 

( 1 - 5 z)"+2 

combination of them, for any a£ D and nonnegative integer n. This is true because 

• * ( / ) " " 
(1 -ocz)"+~ j% (l—az)J+2 ' 

§ 2. Some infinite dimensional cyclic invariant subspaces for S*. 

T h e o r e m 1. If i <s a Blaschke sequence of distinct points in D and 
oo 

ic*Kli's a sequence of nonzero complex numbers such that f= 2 ckK 

[f]* = {g^-- g(«k)=0forallk}J-. 

Proof . If g(ak)=Q for all k then 

<g, S*"f) = (z-gj) = 2 Ck0Llg(«k) = 0, so g t l f t t . )c=l 

If h£H°° then if h*(z)=h(z), there is a uniformly bounded sequence of poly-
nomials {qn\ with \\qn-h*\\-~0. Then \\qn(S*)f-P(lif)\\ =\\P(q„(z)f-Kf)\\^ 
— \\<]n(z)f— hf\\ which tends to zero by the Lebesgue dominated convergence theo-
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rem so P(K№W*- Hence if then 0=(g, P(Kf)) = (hg,f)= 2c~kh(*Jg(*k) 
k = 1 

for any h in H°°. Fix m and let h be an H°° function such that h(ocm) = 1 and h(ak)=0 
for k ^ m . Then cmg(am)=0. Since cm^0, it follows that g(oem)=0. 

The next result uses a result of L . BROWN, A . SHIELDS, and K . ZELLER [1] con-
cerning dominating sequences. 

Def in i t ion . If {a*} is a sequence of distinct points in D, then {a*} is dominating 
if for any function h in H°°, we have ||/i||«,=sup |/i(afe)|. 

k 

The following is contained in Theorem 3 of [1]. 

Lemma 1. If {«¡¿}r=i a sequence of distinct points in D with all its limit points 
on dD, then the following are equivalent. 

(i) There exists {tfj;}r=i suc^ that 0< 2 00 °nd 2 ak ot£=0 for all non-
k=l k=l 

negative integers n. 
(ii) {at} is a dominating sequence. 

(iii) Almost every boundary point p=eli may be approached nontangentially by 
points of {afe}. 

Theorem 2. Let {afc}£°=1 be a sequence of distinct points in D which has all 
its limit points on dD and is not a dominating sequence, and let {£*}£!=! be a sequence 

of nonzero complex numbers such that y —< «=. If f= y ckK , then J F 1 — |a*|2 J J "" 
lf]* = {s^2- g(«k)=0forallky. 

Proof . If g(otk)=0 for all k, then for any n, we have 

(g,S**f)= 2ck*lg(oik) = 0 
i=l 

©e> 
so #€[/]*• If #€[/]* then yCkCilg(txk)=0, for any n. For any k, we have 

k = 1 

= \(g, KXk)| S ||*|| | | A J = - y z ^ j r • 

" \ck\ ~ _ So since y. —< the sum y |cfcg(at)| is finite. Thus by Lemma 1, we 
* = 1 1 — |0Eftl = i 

have Ckg(ak)=0 for all k. Since c k ^0, it follows that g(ak)=0 for all k. 

§ 3. Two noncyclic vectors whose sum is cyclic. In this section I will use Theo-
rem 2 and the results and methods in [3] concerning zero sets for s i 2 to give an 
example of two noncyclic vectors whose sum is cyclic. 

Def in i t ion . A set E of points in D is a zero set for si2 if there exists a function 
f^O in s f 1 with / ( z )=0 (where z£,D) if and only if z is in E, 
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The following lemmas are proved in [3]. 

Lemma 2. If I and /? is à positive integer with 1, then 

y=l • 

Lemma 3. I f , fdsi2, /(0)5*0 and {c^, a2 , ...} are f/ie zeros o / / indexed so 
that |a t |rS|a t+1 | , then 

Lemma 4. Lei f(z)— JJ (1 +pzfiJ) where 1 anJ is an integer. If 
j=o 

a= — and {al5 a», ...} are the zeros of f indexed so that |a*| = |afc+i|5 for all k, 
log P 

N I 
then II >Const-AT 

• k=1\tx.k\. , . 
Lemma 5. A subset of a zero set for si2 is a zero set for si2. 

Example 1. Let P be even and p2 + 1 < p3. Then the function /(z) = 

= belongs to si2. Let E be its zéro set and E1 = {rew^E:TII2^6<2K}. 
J=2 

Then ^.is . 'a zero set by Lemma 5. The set E has /?J equally spaced points on the 
3 

circle |z\=p~p J . On the same circle, the set Ex has — points. Let {zls z2, ..;} 
4 

be the points of E and {a1; a2, ...} be the points of ¿^ indeed so that \zk\=\zk+l\ 
log p 

and for all k. By Lemma 4, if a— , then for any N, we have 
- V : - )Og/i 

I» 1 ' r . 
]J ^Const • N". Thus if jç=2 and N=P2 + ... +0J, then 
k = 1 \Zk\ •• • ' - -, ••• 

3W/4 1 ( N 1 \3/4 

/ 7 — = I n-r-T\ S Const • N3"'* = Const• (3N/4)3a/i. 
fc=i \*k\ • vi=i \zk\ ' 

Choose 0< 7r/2 such that e"pE1 is disjoint from Ex and let E2=e,q'E1. Then 
E2 is also a zero set for si2. If O<0<7i/2 then e'° is not a nontangential limit point 
of Et and if njl+cp •. then ei0 is not a nontangential limit point for E2, so, 
by Lemma 1, Ex and E2 are not dominating. 

°° |cfc| Let {c*} be a sequence of nonzero complex numbers such that 2 ^ — 
oo oo 4 ' 

Let / 1= 2 ckK, and /2= 2 ckKe>**,- Then by Theorem 2, 

[/¡tt = {g^2 : g(z) = 0 for all zÇEj 
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for i = l ,2 . If <p<0<Tr/2, then ei0 is not a nontangential limit point of £'1U£'2, 
so, by Lemma 1, E ^ E ^ is not dominating. Therefore by Theorem 2, 

[/1+/2]* = {gist2'. g(z) = 0 for all zeE^Ej. 

If {?i > V2» • • •} are the members of £'1U£'2 indexed so that lŷ l ^ |yk+1| for all k, 
then since 

3JV/4 1 
N - r - r S Const -(3N/4F'N, 

k=1 \V-k\ 

N 1 
for N=P* + ...+PJ, we have JJ i?Const• NSA>'\ for infinitely many N's. 

Since P^fi3, we have a= >1/3, so 3a/2>l/2. Thus by Lemma 3, £1U£ ,
2 log)? 

is not a zero set for jj/2, so [/!+/2]* = {0} and thus /1+/2 is cyclic. 
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