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Noncyclic vectors for the backward Bergman shift

SHELLEY WALSH*)

§ 1. Introduction and notation. The Bergman space /2 is the Hilbert space of
analytic functions f on the unit disk D such that

] 1 2r 1 )
2 = - i0}]2 o
1A% = ”of of [f(re®)?r dr df <eo.

The Bergman shift is the operator § on A* defined by (Sf)(2)=2zf(z). If we let
n+1\12
n+2 ) L
so S is a weighted shift. The Bergman ShlftIIS a subnormal operator so in particular
it is hyponormal, so by Theorem 2 in [5], the functions which are contained in
finite dimensional S*-invariant subspaces are the finite linear combinations of the
functions of the form K, , for some «€D and r a nonnegative integer. In this paper
1 will give some examples of noncyclic vectors for S*, which are not contained in
finite dimensional S*-invariant subspaces. I will do this by giving two sufficient

e,=(n+ ])1/ 27" then {e,}>2,is an orthonormal basis for &/? and Se, —(

conditions for the smallest invariant subspace containing the function 2 ckK

to be the orthogonal complement of {f: f(o)=0 for all k}. This is done in §2

The theorem in [2] which Theorem 1 in [5] follows from for the special case
of the unweighted shift (Theorem 2.1.1) has as one of its consequences that the
sum of two noncyclic vectors 1s noncyclic. In § 3 I will use the second condition
given in § 2 to show that this is not true for S*. o

Throughout this paper cyclic will mean cyclic for S§*. If fE&ﬂ then [f].
will be the smallest S™*-invariant subspace containing f. If «a€D and » is a nonnega-
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tive integer then X, , will be the function in &% such that {f, K, ,)=f"(2) and
K, o will be written K, when it is convenient.
Since

1)!
4..(2)-Z(J+1)1 (J—n+N)al~"zi = %z))'—f

Theorem 1’ in [5] can be stated for the Bergman shift as follows.

Theorem O. If f is analytic in a neighborhood of D, then f is either cyclic or a
rational function with zero residue at each pole.

Proof. It suffices to show that the rational functions with zero residue at each
pole are the linear combinations of the K| ,’s. The residue of X, , at its only pole

1
(oo [ o

-—_ is

&

so any lineary combination of the K, ,’s has zero residue at all its poles. Conversely,
to show that every rational function with zero residue at each poleis a linear com-

bination of the K, ,’s it suffices to show that the function ————— is a linear
: (1l —az)*+
combination of them, for any «¢D and nonnegative integer n. This is true because
ny_. .
! . ()

(1=azr+ ~ & (1-azi*t"

§ 2. Some infinite dimensional cyclic invariant subspaces for S*.

" Theorem 1. If {& ), is a Blaschke sequence of distinct, pomfs in D and
{ck}k_1 is a sequence of nonzero complex numbers such that f= Z’ oK, €4, then
={gcot?: g(o)=0 for all k}*.
Proof. If g(¢)=0 for all k then

(& S*f) = (. f) =§ Gag(@) =0, so ge[flt.

If he H= then if h*(z)=h(Z), there is a uniformly bounded sequence of -poly-

nomials {g,}" with [g,—h*|~0. Then lig,(S*)f—P@EN)|=|P(q.(E)f—Fkf)|=
=|q,(2)f—hf|l which tends to zero by the Lebesgue dominated convergence theo-
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remso P()EL /1, Henceif g L1f], then 0=(e, P(Rf))=(he:f)= 3 h(x)g ()

for any hin H*=. Fix m and let h be an H* function such that h(x,)= 1 and h{o)=0
for k>#m. Then c,g(2,)=0. Since ¢,0, it follows that g(x,)=0.

The next result uses a result of L. BROWN, A. SHIELDS, and K. ZeLLER [1] con-
cerning dominating sequences.

Definition. If {&} is a sequence of distinct points in D, then {a,} is dominating
if for any function h in H, we have l|h[|°°=s1gp 1A (o).
The following is contained in Theorem 3 of [1].
Lemma 1. If {w};L, is a sequence of distinct points in D with all its limit points
on dD, then the following are equivalent.
(i) There exists {a,};>, such that O< f lal< e and f a05=0 for all non-
o k=1 k=1
negative integers n.
(i1) {0} is a dominating sequence. :
(iii) Almost every boundary point p=e* may be approached nontangentially by
points of {u}. :

Theorem 2. Let {o);>, be a sequence of distinct points in D which has all
its limit points on 0D and is not a dominating sequence and let {c;};>., be a sequence

of nonzero complex numbers such that Z’ If f= Zo’o K, , then
[f1.={gcsf?: g(o)=0 for all k}*.

Proof. If g(e)=0 for all k, then for any n, we have

| kiz

(g S™f) = 2 Gapg(a) =0

so gelf1E. If ge[fIt then Z°'°c—ka2g(ak)=0, for any n. For any k, we have
k=1

g = g K = lghK, ) = 80
: LA .
So since 2’ -1—||—||—2< o, the sum 2’ [ckg(x)] is finite. Thus by Lemma 1, we
k=1 1—|o k=1

have c¢.g(x,)=0 for all k. Since ¢,=0, it follows that g(e,)=0 for all k.

§ 3. Two noncyclic vectors whose sum is cyclic. In this section I will use Theo-
rem 2 and the results and methods in [3] concerning zero sets for /% to give an
example of two noncyclic vectors whose sum is cyclic.

Definition. 4 set E of points in D is a zero set for o4 if there exists a function
f#£0 in o* with f(z)=0 (where z¢D) if and only if z is in E,



108 Shelley Walsh

. The folloWing lemmas are proved in [3].

Lemma 2. If u>1 and B is aposmve mteger wzth ﬂ>u2+] then'

f(@ = H (1+pz)eot?.

.Lemma 3. If feo?, f(0)=0 and {al,az, ...} are the zeros of f indexed so
that |og|=|ay,], then

L
]I—-—|—=O(N1/3). ~

Lemma 4. Let f(z)=[](1+uzﬁ’) where p=1 and -B=2 .is an. integer. If

. =0
_logp g '
- logﬁ

then ]]—>Const - N
»k=l akl

and “{oy, %) ...} are the zeros.of fir’idexed so that lakl.élak-:‘i-llc fo}' all k,

Lemma 5. A subset ofa zero set for sZ* is a zero set for .szﬁ""

Example’l Let /3 be even and p2+1<pf<p’. Then:the function f(z)=
= ]] I+ pz”’) belongs to 2. Let 'E be'its zero set and E1 {re®¢ E: it]2=0<2n).

J.—
Then E, is a2 zero set by Lemma 5 The set E has 7 equally spaced points on-the

3 L
circle |z|=p~#. On the same cxrcle, the set E; has z—[i’ points. Let {z;, z,, ...}
be the points of E and {o,; a3, ...} be the points of . Ey-indeed so that [z,|=|z, .l

lo
and [aklslakﬂl for all k. By Lemma4 1f a—-] OB K
0

, then for any N, we have

N
]] >Const N“ Thus 1f j>2 and N ﬁ + +ﬂ‘ then

k=1 . S
3N/4 1 N 1 )34
( —] = Const N""/4 Const (3N/4)"“‘/4
k=1 |“k| k=1 bzl
Choose 0<=g=<n/2 such that € E, is disjoint from E1 and let Ez__e"”E1 Then
E,is also a zero set for 2 If 0<0< 72 then € is not a nontangential limit point
of E, and if ¢<0<mn/2+4¢: then € is not a nontangential limit point for E,, s0;
by Lemma 1, E, and E, are not dommatm

Let {c,} be a sequence of nonzero complex numbers’ such that. 2’ | ‘ >
o kA1 o

Let ﬁ?kg oK, and fe= Z’ck e, Then by’ Theorem2

AN “{86-9/2 g(z) . 0 for all zEE} I
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for i=1,2. If ¢p<0<n/2, then €” is not a nontangential limit point of E,UE,,
so, by Lemma 1, E,UE, is not dominating. Therefore by Theorem 2,

[fit+folt = {gcA?: g(2) =0 for all zeE,UE,}.

If {1, 7, ...} are the members of E,UE, indexed so that |y=ly,, for all k,
then since

3N/4 |
I T = Const - (3N/4)%/N,

k=1 I kl

. N 1 \ . .
for N=p%+...+p’, we have ]]ﬁ§Const-N"“la, for infinitely many N’s.
k=1 [Y

Io
Since B-<p3, we have a=1 g/; =>1/3, so 3a/2=1/2. Thus by Lemma 3, E\UE,
og

is not a zero set for &2, so [fi+£;]f={0} and thus f,+f, is cyclic.
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