Noncyclic vectors for the backward Bergman shift

SHELLEY WALSH*)

§ 1. Introduction and notation. The Bergman space \mathscr{A}^{2} is the Hilbert space of analytic functions f on the unit disk D such that

$$
\|f\|^{2}=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1}\left|f\left(r e^{i \theta}\right)\right|^{2} r d r d \theta<\infty .
$$

The Bergman shift is the operator S on \mathscr{A}^{2} defined by $(S f)(z)=z f(z)$. If we let $e_{n}=(n+1)^{1 / 2} z^{n}$ then $\left\{e_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis for \mathscr{A}^{2} and $S e_{n}=\left(\frac{n+1}{n+2}\right)^{1 / 2} e_{n+1}$, so S is a weighted shift. The Bergman shift is a subnormal operator so in particular it is hyponormal, so by Theorem 2 in [5], the functions which are contained in finite dimensional S^{*}-invariant subspaces are the finite linear combinations of the functions of the form $K_{\alpha, n}$ for some $\alpha \in D$ and n a nonnegative integer. In this paper I will give some examples of noncyclic vectors for S^{*}, which are not contained in finite dimensional S^{*}-invariant subspaces. I will do this by giving two sufficient conditions for the smallest invariant subspace containing the function $\sum_{k=1}^{\infty} c_{k} K_{\alpha_{k}}$ to be the orthogonal complement of $\left\{f: f\left(\alpha_{k}\right)=0\right.$ for all $\left.k\right\}$. This is done in $\S 2$.

The theorem in [2] which Theorem 1 in [5] follows from for the special case of the unweighted shift (Theorem 2.1.1) has as one of its consequences that the sum of two noncyclic vectors is noncyclic. In § 3 I will use the second condition given in $\S 2$ to show that this is not true for S^{*}.

Throughout this paper cyclic will mean cyclic for S^{*}. If $f \in \mathscr{A}^{2}$, then $[f]_{*}$ will be the smallest S^{*}-invariant subspace containing f. If $\alpha \in D$ and n is a nonnega-

[^0]Received March 4, 1986 and in revised form January 20, 1988.
tive integer then $K_{\alpha, n}$ will be the function in \mathscr{A}^{2} such that $\left\langle f, K_{\alpha, n}\right\rangle=f^{(n)}(\alpha)$ and $K_{\alpha, 0}$ will be written K_{α} when it is convenient.

Since

$$
K_{x, n}(z)=\sum_{j=n}^{\infty}(j+1) j \ldots(j-n+1) \bar{\alpha}^{j-n} z^{j}=\frac{(n+1)!z^{n}}{(1-\bar{\alpha} z)^{n+2}},
$$

Theorem 1' in [5] can be stated for the Bergman shift as follows.
Theorem 0. Iff is analytic in a neighborhood of D, then f is either cyclic or a rational finction with zero residue at each pole.

Proof. It suffices to show that the rational functions with zero residue at each pole are the linear combinations of the $K_{\alpha, n}$'s. The residue of $K_{a, n}$ at its only pole $\frac{1}{\bar{\alpha}}$ is

$$
\left[(n+1)\left(\frac{-1}{\bar{\alpha}}\right)^{n+2} z^{n}\right]^{(n+1)}\left(\frac{1}{\bar{\alpha}}\right)=0
$$

so any lineary combination of the $K_{\alpha, n}$'s has zero residue at all its poles. Conversely, to show that every rational function with zero residue at each pole is a linear combination of the $K_{\alpha, n}$'s it suffices to show that the function $\frac{1}{(1-\bar{\alpha} z)^{n+2}}$ is a linear combination of them, for any $\alpha \in D$ and nonnegative integer n. This is true because

$$
\frac{1}{(1-\bar{\alpha} z)^{n+2}}=\sum_{j=0}^{n} \frac{\binom{n}{j} \bar{\alpha}^{j} z^{j}}{(1-\bar{\alpha} z)^{j+2}}
$$

§ 2. Some infinite dimensional cyclic invariant subspaces for S^{*}.

Theorem 1. If $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a Blaschke sequence of distinct points in D and $\left\{c_{k}\right\}_{k=1}^{\infty}$ is a sequence of nonzero complex numbers süch that $f=\sum_{k=1}^{\infty} c_{k} K_{\alpha_{k}} \in \mathscr{A}^{2}$, then $[f]_{*}=\left\{g \in \mathscr{A}^{2}: g\left(\alpha_{k}\right)=0 \text { for all } k\right\}^{\perp}$.

Proof. If. $g\left(\alpha_{k}\right)=0$ for all k then

$$
\left\langle g, S^{* n} f\right\rangle=\left\langle z^{n} g, f\right\rangle=\sum_{k=1}^{\infty} \bar{c}_{k} \alpha_{k}^{n} g\left(\alpha_{k}\right)=0, \quad \text { so } \quad g \in[f]_{*}^{\perp}
$$

If $h \in H^{\infty}$ then if $h^{*}(z)=\overline{h(\bar{z})}$, there is a uniformly bounded sequence of polynomials $\quad\left\{q_{n}\right\}$ with $\left\|q_{n}-h^{*}\right\| \rightarrow 0$. Then $\left\|q_{n}\left(S^{*}\right) f-P(\overline{h f})\right\|=\left\|P\left(q_{n}(\bar{z}) f-h f\right)\right\| \leqq$ $\leqq\left\|q_{n}(\bar{z}) f-\bar{h} f\right\|$ which tends to zero by the Lebesgue dominated convergence theo-
rem so $P(h f) \in[f]_{*}$. Hence if $g \perp[f]_{*}$ then $0=\langle g, P(h f)\rangle=\langle h g ; f\rangle=\sum_{k=1}^{\infty} \overline{c_{k}} h\left(\alpha_{k}\right) g\left(\alpha_{k}\right)$ for any h in H^{∞}. Fix m and let h be an H^{∞} function such that $h\left(\alpha_{m}\right)=1$ and $h\left(\alpha_{k}\right)=0$ for $k \neq m$. Then $c_{m} g\left(\alpha_{m}\right)=0$. Since $c_{m} \neq 0$, it follows that $g\left(\alpha_{m}\right)=0$.

The next result uses a result of L. Brown, A. Shields, and K. Zeller [1] concerning dominating sequences.

Definition. If $\left\{\alpha_{k}\right\}$ is a sequence of distinct points in D, then $\left\{\alpha_{k}\right\}$ is dominating if for any function h in H^{∞}, we have $\|h\|_{\infty}=\sup _{k}\left|h\left(\alpha_{k}\right)\right|$.

The following is contained in Theorem 3 of [1].
Lemma 1. If $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ is a sequence of distinct points in D with all its limit points on ∂D, then the following are equivalent.
(i) There exists $\left\{a_{k}\right\}_{k=1}^{\infty}$ such that $0<\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$ and $\sum_{k=1}^{\infty} a_{k} \alpha_{k}^{n}=0$ for all nonnegative integers n.
(ii) $\left\{\alpha_{k}\right\}$ is a dominating sequence.
(iii) Almost every boundary point $p=e^{i \theta}$ may be approached nontangentially by points of $\left\{\alpha_{k}\right\}$.

Theorem 2. Let $\left\{\alpha_{k}\right\}_{k=1}^{\infty}$ be a sequence of distinct points in D which has all its limit points on ∂D and is not a dominating sequence, and let $\left\{c_{k}\right\}_{k=1}^{\infty}$ be a sequence of nonzero complex numbers such that $\sum_{k=1}^{\infty} \frac{\left|c_{k}\right|}{1-\left|\alpha_{k}\right|^{2}}<\infty$. If $f=\sum_{k=1}^{\infty} c_{k} K_{\alpha_{k}}$, then $[f]_{*}=\left\{g \in \mathscr{A}^{2}: g\left(\alpha_{k}\right)=0 \text { for all } k\right\}^{\perp}$.

Proof. If $g\left(\alpha_{k}\right)=0$ for all k, then for any n, we have

$$
\left\langle g, S^{* n} f\right\rangle=\sum_{k=1}^{\infty} \bar{k}_{k} \alpha_{k}^{n} g\left(\alpha_{k}\right)=0
$$

so $g \in[f]_{*}^{\frac{1}{*}}$. If $g \in[f]_{*}^{\perp}$ then $\sum_{k=1}^{\infty} \overline{c_{k}} \alpha_{k}^{n} g\left(\alpha_{k}\right)=0$, for any n. For any k, we have

$$
\left|g\left(\alpha_{k}\right)\right|=\left|\left\langle g, K_{\alpha_{k}}\right\rangle\right| \leqq\|g\|\left\|K_{\alpha_{k}}\right\|=\frac{\|g\|}{1-\left|\alpha_{k}\right|^{2}}
$$

So since $\sum_{k=1}^{\infty} \frac{\left|c_{k}\right|}{1-\left|\alpha_{k}\right|^{2}}<\infty$, the sum $\sum_{k=1}^{\infty}\left|\overline{c_{k}} g\left(\alpha_{k}\right)\right|$ is finite. Thus by Lemma 1, we have $\overline{c_{k}} g\left(\alpha_{k}\right)=0$ for all k. Since $c_{k} \neq 0$, it follows that $g\left(\alpha_{k}\right)=0$ for all k.
§ 3. Two noncyclic vectors whose sum is cyclic. In this section I will use Theorem 2 and the results and methods in [3] concerning zero sets for \mathscr{A}^{2} to give an example of two noncyclic vectors whose sum is cyclic.

Definition. A set E of points in D is a zero set for \mathscr{A}^{2} if there exists a function $f \neq 0$ in \mathscr{A}^{2} with $f(z)=0$ (where $z \in D$) if and only if z is in E.

The following lemmas are proved in [3].
Lemma 2. If $\mu>1$ and β is a positive integer with $\beta>\mu^{2}+1$, then

$$
f(z)=\prod_{j=1}^{\infty}\left(1+\mu z^{\beta^{\prime}}\right) \in \dot{\mathscr{A}}^{2}
$$

Lemma 3. If. $f\left(\mathscr{A}^{2}, f(0) \neq 0\right.$ and $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ are the zeros of f indexed so that $\left|\alpha_{k}\right| \leqq\left|\alpha_{k+1}\right|$, then

$$
\prod_{k=1}^{N} \frac{1}{\left|\alpha_{k}\right|}=O\left(N^{1 / 2}\right)
$$

Lemma 4. Let $f(z)=\prod_{j=0}^{\infty}\left(1+\mu z^{\beta j}\right)$ where $\mu>1$ and $\beta \geqq 2$ is an integer. If $a=\frac{\log \mu}{\log \beta}$ and $\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ are the zeros of f indexed so that $\left|\alpha_{k}\right| \leqq\left|\alpha_{k+1}\right|$, for all k, then $\prod_{k=1}^{N} \frac{1}{\left|\alpha_{k}\right|}>$ Const $\cdot N^{a}$.

Lemma 5. A subset of a zero set for \mathscr{A}^{2} is a zero set for \mathscr{A}^{2}.
Example 1. Let β be even and $\mu^{2}+1<\beta<\mu^{3}$. Then the function $f(z)=$ $=\prod_{j=2}^{\infty}\left(1+\mu z^{\beta j}\right)$ belongs to \mathscr{A}^{2}. Let E be its zero set and $E_{1}=\left\{r e^{i \theta} \in E: \dot{\pi} / 2 \leqq \theta<2 \pi\right\}$. Then E_{1} is a zero set by Lemma 5: The set E has β^{j} equally spaced points on the circle $|z|=\mu^{-\beta^{j}}$. On the same circle, the set E_{1} has $\frac{3}{4} \beta^{j}$ points. Let $\left\{z_{1}, z_{2}, \ldots\right\}$ be the points of E and $:\left\{\alpha_{1} ; \alpha_{2} ; \ldots\right\}$ be the points of E_{1} indeed so that $\left|z_{k}\right| \leqq\left|z_{k+1}\right|$ and $\left|\alpha_{k}\right| \leqq\left|\alpha_{k+1}\right|$ for all k. By Lemma 4, if $a=\frac{\log \mu}{\log \beta}$, then for any N, we have $\prod_{k=1}^{N} \frac{1}{\left|z_{k}\right|} \geqq$ Const $\cdot N^{a}$. Thus if $j \geqq 2$ and $N=\beta^{2}+\ldots+\beta^{j}$, then

$$
\prod_{k=1}^{3 N / 4} \frac{1}{\left|\alpha_{k}\right|}=\left(\prod_{k=1}^{N} \frac{1}{\left|z_{k}\right|}\right)^{3 / 4} \cong \text { Const } \cdot N^{3 a / 4}=\text { Const } \cdot(3 N / 4)^{3 a / 4}
$$

Choose $0<\varphi<\pi / 2$ such that $e^{i \varphi} E_{1}$ is disjoint from E_{1} and let $E_{2}=e^{i \varphi} E_{1}$. Then E_{2} is also a zero set for \mathscr{A}^{2}. If $0<\theta<\pi / 2$ then $e^{i \theta}$ is not a nontangential limit point of E_{1} and if $\varphi<\theta<\pi / 2+\varphi$: then $e^{i \theta}$ is not a nontangential limit point for E_{2}, so, by Lemma 1, E_{1} and E_{2} are not dominating.

Let $\left\{c_{k}\right\}$ be a sequence of nonzero complex numbers'such that $\sum_{k=1}^{\infty} \frac{\left|c_{k}\right|}{1-\left|\alpha_{k}\right|^{2}}<\infty$. Let $f_{1}=\sum_{k=1}^{\infty} c_{k} K_{\alpha_{k}}$ and $f_{2}=\sum_{k=1}^{\infty} c_{k} K_{e^{i \varphi_{\alpha_{k}}}}$. Then by Theorem 2 ,

$$
\left[f_{i}\right]_{*}^{\perp}=\left\{g \in \mathscr{A}^{2}: g(z)=0 \text { for all } z \in E_{i}\right\}
$$

for $i=1$, 2. If $\varphi<\theta<\pi / 2$, then $e^{i \theta}$ is not a nontangential limit point of $E_{1} \cup E_{2}$, so, by Lemma 1, $E_{1} \cup E_{2}$ is not dominating. Therefore by Theorem 2,

$$
\left[f_{1}+f_{2}\right]_{*}^{\perp}=\left\{g \in \mathscr{A}^{2}: g(z)=0 \text { for all } z \in E_{1} \cup E_{2}\right\} .
$$

If $\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ are the members of $E_{1} \cup E_{2}$ indexed so that $\left|\gamma_{k}\right| \leqq\left|\gamma_{k+1}\right|$ for all k, then since

$$
\prod_{k=1}^{3 N / 4} \frac{1}{\left|\alpha_{k}\right|} \geqq \text { Const } \cdot(3 N / 4)^{3 a / N}
$$

for $N=\beta^{2}+\ldots+\beta^{j}$, we have $\prod_{k=1}^{N} \frac{1}{\left|\gamma_{k}\right|} \geqq$ Const $\cdot N^{3 a / 2}$, for infinitely many N 's. Since $\beta<\mu^{3}$, we have $a=\frac{\log \mu}{\log \beta}>1 / 3$, so $3 a / 2>1 / 2$. Thus by Lemma $3, E_{1} \cup E_{2}$ is not a zero set for \mathscr{A}^{2}, so $\left[f_{1}+f_{2}\right]_{*}^{\perp}=\{0\}$ and thus $f_{1}+f_{2}$ is cyclic.

References

[1] L. Brown, A. L. Shields and K. Zeller, On absolutely convergent exponential sums, Trans. Amer. Math. Soc., 96 (1960), 162-183.
[2] R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator. Ann. Inst. Fourier (Grenoble), 20 (1970), 37-76.
[3] C. Horowitz, Zeros of functions in the Bergman spaces, Duke J. Math., 41 (1974), 693-710.
[4] S. Walsh, Cyclic vectors for the backward Bergman shift, Dissertation, University of California, 1984.
[5] S. Walsh, Cyclic vectors for backward hyponormal weighted shifts, Proc. Amer. Math. Soc., 96 (1986), 107-114.

[^0]: *) This paper includes a part of the author's dissertation [4] written under Professor Sarason at the University of California-Berkeley, while a member of the Technical Staff of Hughes Aircraft Company, Ground Systems Group, and a holder of a Howard Hughes Fellowship.

