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The point spectfa for generalized Hausdorff operators

B. E. RHOADES

Tt is the purpose of this paper to show that the point spectra of a large class of
generalized Hausdorff matrices is empty. The generalized Hausdorff matrices under
consideration were defined independently by ENDL [3] and JakimMovskl [6]. Each
matrix H® is a lower triangular matrix with nonzero entries

W np = (n o) 4,

where {4} is a real or complex sequence, and 4 is the forward difference operator
defined by Ap =, — 41, 4" . =A(4" ). Let ¢ denote the space of convergent
sequences. The bounded linear operators on ¢ and /?, 1=p=-o, will be denoted by
B(c) and B(IP), respectively. Although (1) is defined for any real « which is not a
negative integer, in this paper « is restricted to be nonnegative.

Let 1<p<oo, H®¢B(IP). The author showed in [8] that the point spectrum of
H@®*, the adjoint of H®, contains an open set. Let C® denote the generalized
Hausdorff matrix generated by u,=(n+a-+1)~", ¢ the conjugate index of p. It was
also shown in [8] that the spectrum of I—2C®/q is the closed unit disc. For p=2,
every H®@€B(IP)N\B(c) is an analytic function of C®, so the spectral mapping
theorem can be used to obtain the spectrum. GHOSH, RHOADES and TRUTT [5] showed
that each H®¢B(I?), for integer a, is subnormal. In [8] the author showed that each
C® is hyponormal, ‘ ‘

In order to establish the point spectra results it will first be necessary to extend
some results of Fucas [4]. Define o

@ "S=S(a,a,..)={pX)}=(ex%:c>0; k=1; a<a<..}

The set S.is closed in L?(0, <) if, for each h€L?%(0, =) and for each &>0, there

Received October 7, 1985 and in revised form October 8, 1987, -



112 : - B. E. Rhoades

exists a finite linear combination ®(x) of the functions ¢, such that .

f (h(x)— (X)) dx < &.

0

The set § is said to be complete in L*(0, «) if, for each h€L*(0, «),

[ hx) o) dx = 0

0
for all k=1 implies h(x)=0 a.e. It is well known that the concepts of closed and
complete are equivalent.

Theorem 1. Let {s,}cC sattsfy s,=o(n™M+%), M>0, o a nonnegative real
number. Define {t,} by

3) Z",(n+a) (—1¥s,

Then t,=0 for n=ay,ay, ... implies s,=I'(n+oa+1)P(@)/n!, P a polynomial of
degree less than M if and only if S={e~*"x%: n=0,1,2,...} is closed in L(0, =),

:-Supp()se ._that 5, =0@m"**), 1,=0 for n=ay, a,, ... implies
s,,:F(n—};oc+1)P(n)/n!,

where thé degree of P is less than M. .
We may write (3) in the form

& (n+o) (= DTG+a+)PE)
o ._-i=201 (n_—_k] i B

F(n+a+1) Z[ ]( 1P() = 1"(n+a+l)

2 4"P(0).

Since the degree of P is less than n, 1,=0 for each n=[M]+1, and the set S
is closed.
- To, prove the converse we may assume, without loss of generality, that {s,} is

real and that |s,|=1 for n<2M+2+s, |s,,|_s_[":t°;‘l] for n=2M 42 +s, s=[a}+1,

replacing s, by some scalar.multiple 7s,,-if necessary. .
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Lemma 11[1, p. 77). Let a,, b, be real numbers, with sup, f |l =< oo, Then
k=0
the system of equations

S Gux =b, (n=0,1,2,.)

has a solution satisfying |x,|=1 if and only if

1> )*kbklvE 2 |Z )‘kalml
k n=0 k
for every finite set of real multipliers 2.

Lemma 2. Let {a,: n=0,1,2, ...} be an increasing sequence of natural num-
bers, {t,} as in (3). Then 1,=0 for n=a,, a,, ... implies t, =0 if and only if

(4)_ 1-bd-{2Mh§+s §N (ak+a]+hzw+2+s(}“lh+:l]§lv (ak——a]}:.o..

where s=[a]+1, 2o=1 and the Ak for k=0 run through all sets of real numbers for
N=12, ...

Proof of Lemma 2. Consider #,=0 for n=a,, a, ..., tao=y>0 as a system

of equations for the unknowns x,, where x,=s, for m<2M-+2+s, x,,=[Z i;f ‘ls,,

for n=2M+2+s. From Lemma 1 this system has a solution for |x,|=1 if and
only if the Ieft side of (4) is =y. Therefore (4) implies that y=0.

Conversely, if y=0, then (4) is nonnegative for évéry choice of the A,. But the
choice 2,=0 for k=0 gives the lower bound.

To complete the proof of Theorem 1, we shall show that the condition that S be
closed is equivalent to (4). Let the set S in (2) be closed and a;=2M+2+s. We
shall show that (4) is satisfied.

hzzM+2+s( ZN’ & [Z:—*-z]
Rl ) e o) St

N a;+s\( a.+s )2
b RZ] ot | B |

©)

h+o
h—M

= 5 [h+s) g", Akl[ak+s]

. bmIMEsF2

_,W\

h+s -
= A{§ (2M+2s+2.],
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since the first sum is o@Zh2). -

h+s a;+s)(a+s
®) 2 (2s+ 2M+2) [a,.—h) [a:—h] =
1 e (a;+s)! (ak+s] _
= T IMF DT psifiass o522 (a,— T \&~h

( a;-+s )“r‘b’g,-2-3(a{—2M—2—sJ( a,+s ]

2s+oM+2) 2 i a—2M—2—s5—i)"

For b, ¢ positive noninteger real numbers,

- (1‘%t}”(_l+!)é:= [2[ )”][2( ]’j] = [,;o[ ]( J]],,.

J
Since also . (1'+t)b'+°=2 [bj' c] H,
s T .’v ». ’
" (bY( ¢ b+c

no 3066
0 | 2L =0
Substituting (7) in (6),
R oo hds Y[ats)(ats)

%' 2s+2M+2)\a;—hj\a,—h) —

: (a;+a,—2M—2)!
(2s+2M+2)'(aj 2M —2—s)Y(a,—2M —2—5)!

. 1 .
(2M+2s+2)'(a —2M—2— (@ —2M =3

ol f e~ xa;ta—2M—2 fx.
J :
and (5) can be written

(" ‘s
2M+2s—|—2] = A{f e—xx2M+2+2sQ2(x) dx}llz

[ (a,‘+oc
hz=2M+2+s

where A is independent:pf_N and the-l,,’s aqd :

A |xak—2M—2—s .
Q(x)_ ’kzo (:lz s %=1
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For h<2M+2+s,

sz[“"“) = .__%mu{“"“) -

e xxhts ; - 1 s
(s+h)' f QM —h+1+5)! Of(x"y)w_u TR0 dy dx =

= [ 00)dy [ exhvsuoyyb=isirs s =
0 y
= [ 0Oy [ sy apatichires g <
0
< f €0 dy f e=*(y+ gyrteaENhiiie dg =
o .0 . o
= fe“”Q(y)dy;joe"(y+z)‘w+1+zsdz<
. 0 ' )
< 2Mtins f €Q(y)dy f é"(y24‘+1+2‘+22M+‘;”) dz <
: Je
<B [ erQu) 1+ rmydy <

<B([ e yersmpa)i( [ ergo) ) = o[ f e an)®
0 B - 0 0
It remains to show that
®8) f e *Q*(x)(1 +3_c2M+2‘+2) dx <e.
o - , .

Using Lemma 1 and Theorem 4 of [4], the systlaml

) {e=2(1 + x2M+2+2s)l/2.lmk—2M~2—s}"' '(ké" )

is clo§éd since S is.closed. Therefore ' I

e—x/2(1+x2M+2+2§)i/2xno—2M—2—s .
~(a—2M-2)!

can be approximated arbltrarﬂy close by ﬁmte linear combmaaons of functlons from
(9). This proves (8). : : :o.

8
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We shall now show that, if (4) is true for every a,=2M+2+s5, then S is com-
plete. If (4) is satisfied then, for sultable values of 7,,

' hg{[ h+a] Z ')'k(a,‘+a]

It then fdlldws that

o (ht+a ) & . (a+a)) '
(10) L2 '{h';M) [—k’ 4 (a: h)] <&
But

< &,

hta\f & (a+a)) ¥ % (hta)(a+a)( @t
e [h—MJ[g’)‘k[ak—h)] - j,éoljlkth (h*M] (a —h ( h] =

_ ZN’ Ak % [(a;+at1) (a,,+a]=
2o T@+M+1) 45 (h—M)(a;— B! %~ h

N a,+a) =M M a,+a
= 2 Lk M’+a] Z )[ak._kM_i)=

: a;+a)(a;+a+a—M)
zﬂszﬂ)[f M) -

a—M
ra+ae+a—M+1) | 1 Y
= 3 i = ~*Re
180 M T+ ar Doy~ e—HDT TG+t J R
whéte . -
. gk X +al2—M[2
R = 2<—“Ar
Therefore
1 ‘°°__x2 . 2
mofe R(x)dx<8,
which implies that , . :
(11) e-’f/?x",-,"/”f“/z, n= 2Mv+2+s, 2M+3+s, ...,

can be mean square approximated by linear combinations of the functions
e~*2xm—Miz+el2 p =1 From [4, Theorem 5] the set (11) is closeéd. Thus also is
{e~*2xm—ME+al2}  From Lemma 1 of [4] with p(x)=x™/*~%% §is closed.
Suppose t,=0 for n=a, a,, .., and $'is closed. Then one can use condition
(4) and mathematical induction to force #,=0 for all n=a,.
- - “Now -suppose that s,=0(n"*%), {t,} satisfies (3) with- 1,=0 for n=2M+
+s5+2. Note that (3) is the nth term of a diagonal matrix ¢ sa‘ti_sfyi_ng_v;t,_:é(ﬁ’s;
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where s is the diagonal matrix with entries s, and 5‘“’——(—1)" [n—i-oc] Smce 5(“)'
is 1ts own mverse, and multlphcatlon is assoc1at1ve, d®e=s; ie, :

"~ ”"(Z*Z)tk—“f“w(m)

_ | n+o '(n+a+1): o= 1)k n'tk
- 2(_1)"(" k)’ - nt & (n k)'F(k+oc+l)

where g is the largest integer for which #£,0. Therefore 5,=I'(n +ot+1)P(n)/n .
where P is a polynomial in n of degree g. Since: s,=o(n™+%), a+g< M +a, and
the degree of P is less than M. = . Ll R

Let o,(A4) denote the point speetrum ofan operator A, and wrlte H for -H (°)

" Theorém 2. (a) Let l<p<os, HOCB(P)NB(c). Then a'I,(H(")) is empty'_

" (b) Let HW¢B(l), «=0. Then B,(H®) is empty. )

(c) Let H®¢B(c). For a>0, o (H(’)) is empty. For o= O lf H is multtplz-.
cative, then. ap(H) {10}

Proof of (a). Suppos¢ there exists an x€/P with LH‘:”x:kx. Then’
(H®—ANx=0. But H®cB(’)NB(c) implies that K®=H®—1Ic¢B(I")NB(c).
Moreover, K is also a generalized Hausdorff matrix. Thus, we are looking for
solutions of the system K®x=0. One may write K®=6®ué®, where p is a

diagonal matrix with diagonal entries y, and 8% =(—1)* (n+,°é). Since 6(“) is 1ts

own inverse, and each matrix forming K®@ is oW, ﬁmte, the system. K(“)x 0 is
equwalent to ué®@x=0; ie., -

(12) | ;%z(lyﬁ+ﬂi=q,ﬁ=agz;;

_Since .H®eB(c), so also does K@, so that pi is a moment sequence ‘This
means that o . ST .

m frﬂwm

is analytic for Re (z)>0,- where § and g, satisfy _.-. . .
1
= [ r+*dp().
0 -
From [2], the integer values b, for which ¥ (b,)=0 satisfy the condition :k bt e

Therefore (12) implies that ¢,=0 for all values of n except possibly a subset {b,}
satisfying Z,b;'< . Using Theorem 3 of [4], the set S of integers n for which
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t,=0- remains closed. Since {x,}c/?, l<p<o, x,=0(n'/**+%).. Applying Theo-
rem1, x,=I(n+o+1)P(n)/n!, where P(x) is a polynomial of degree less than
M=1/2; ie., Pis a constant polynomial. But, unless P is the zero polynomial,
x¢P, so H® has empty point spectrum.

Proof of (b). The author has shown in [7)that H (“’EB(I) 1mp11es H®¢B(c).
The rest of the proof is the same as that of (a).

Proof of (c). Following the proof of (a), since {x,}€c, {x,}is bounded, hence
*,=0(n'**+%), and again.c,(H®) is empty, for a>0.

-For a=0, x,,—o(n”z), and the only nonzero sequence satisfying (12) is
e=(l, 1,...). With «=0, each row sum of H is p,. Therefore o,(H)={u,}.

A matrix 4 is multiplicative if lim Ax=t1lim x for some scalai ¢, xcc. In
terms of the matrix entries, multiplicativity of A translates into 4 having all zero
column limits. For Hausdorff rﬁatrices in B(c) this condition is equivalent to the
mass function f(¢) being continuous from the right at zero, and specifically ex-
cludes the compact Hausdorff matrix generated by p,=1, p,=0, n=0. Theorem 1
does not apply to this matrix since there are too many zeros on the main diagonal,
but a direct analysis yields the point spectrum to be {0, 1}.
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