The point spectra for generalized Hausdorff operators

B. E. RHOADES

It is the purpose of this paper to show that the point spectra of a large class of generalized Hausdorff matrices is empty. The generalized Hausdorff matrices under consideration were defined independently by Endl [3] and Jakimovski [6]. Each matrix $H^{(\alpha)}$ is a lower triangular matrix with nonzero entries

$$
\begin{equation*}
h_{i k k}^{(\alpha)}=\binom{n+\alpha}{n-k} \Delta^{n-k} \mu_{k}, \tag{1}
\end{equation*}
$$

where $\left\{\mu_{k}\right\}$ is a real or complex sequence, and Δ is the forward difference operator defined by $\Delta \mu_{k}=\mu_{k}-\mu_{k+1}, \Delta^{n+1} \mu_{k}=\Delta\left(\Delta^{n} \mu_{k}\right)$. Let c denote the space of convergent sequences. The bounded linear operators on c and $l^{p}, 1 \leqq p \leqq \infty$, will be denoted by $B(c)$ and $B\left(l^{p}\right)$, respectively. Although (1) is defined for any real α which is not a negative integer, in this paper α is restricted to be nonnegative.

Let $1<p<\infty, H^{(\alpha)} \in B\left(l^{p}\right)$. The author showed in [8] that the point spectrum of $H^{(\alpha)^{*}}$, the adjoint of $H^{(\alpha)}$, contains an open set. Let $C^{(\alpha)}$ denote the generalized Hausdorff matrix generated by $\mu_{n}=(n+a+1)^{-1}, q$ the conjugate index of p. It was also shown in [8] that the spectrum of $I-2 C^{(\alpha)} / q$ is the closed unit disc. For $p=2$, every $H^{(x)} \in B\left(l^{p}\right) \cap B(c)$ is an analytic function of $C^{(\alpha)}$, so the spectral mapping theorem can be used to obtain the spectrum. Ghosh, Rhoades and Trutt [5] showed that each $H^{(\alpha)} \in B\left(l^{2}\right)$, for integer a, is subnormal. In [8] the author showed that each $C^{(\alpha)}$ is hyponormal.

In order to establish the point spectra results it will first be necessary to extend some results of Fuchs [4]. Define

$$
\begin{equation*}
S=S\left(a_{1}, a_{2}, \ldots\right)=\left\{\varphi_{k}(x)\right\}=\left(e^{-c x} x^{a_{k}}: c>0 ; k \geqq 1 ; a_{1}<a_{2}<\ldots\right\} \tag{2}
\end{equation*}
$$

The set S is closed in $L^{2}(0, \infty)$ if, for each $h \in L^{2}(0, \infty)$ and for each $\varepsilon>0$, there
exists a finite linear combination $\Phi(x)$ of the functions φ_{k} such that .

$$
\int_{0}^{\infty}(h(x)-\Phi(x))^{2} d x<\varepsilon .
$$

The set S is said to be complete in $L^{2}(0, \infty)$ if, for each $h \in L^{2}(0, \infty)$,

$$
\int_{0}^{\infty} h(x) \varphi_{k}(x) d x=0
$$

for all $k \geqq 1$ implies $h(x)=0$ a.e. It is well known that the concepts of closed and complete are equivalent.

Theorem 1. Let $\left\{s_{n}\right\} \subset \mathbf{C}$ satisfy $s_{n}=o\left(n^{M+x}\right), M>0, \alpha$ a nonnegative real number. Define $\left\{t_{n}\right\}$ by

$$
\begin{equation*}
t_{n}=\sum_{i=0}^{n}\binom{n+\alpha}{n-i}(-1)^{i} s_{i} \tag{3}
\end{equation*}
$$

Then $t_{n}=0$ for $n=a_{1}, a_{2}, \ldots$ implies $s_{n}=\Gamma(n+\alpha+1) P(n) / n!, P$ a polynomial of degree less than M if and only if $S=\left\{e^{-x / 2} x^{a_{n}}: n=0,1,2, \ldots\right\}$ is closed in $L^{2}(0, \infty)$.

Suppose that $s_{n}=O\left(n^{M+\alpha}\right), t_{n}=0$ for $n=a_{1}, a_{2}, \ldots$ implies

$$
s_{n}=\Gamma(n+\alpha+1) P(n) / n!,
$$

where the degree of P is less than M.
We may write (3) in the form

$$
\begin{gathered}
t_{n}=\sum_{i=0}^{n}\binom{n+\alpha}{n-k} \frac{(-1)^{k} \Gamma(i+\alpha+1) P(i)}{i!}= \\
=\frac{\Gamma(n+\alpha+1)}{n!} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} P(i)=\frac{\Gamma(n+\alpha+1)}{n!} \Delta^{n} P(0) .
\end{gathered}
$$

Since the degree of P is less than $n, t_{n}=0$ for each $n \geqq[M]+1$, and the set S is closed.

To. prove the converse we may assume, without loss of generality, that $\left\{s_{n}\right\}$ is real and that $\left|s_{n}\right| \leqq 1$ for $n<2 M+2+s,\left|s_{n}\right| \leqq\left[\begin{array}{l}n+\alpha \\ n-M\end{array}\right]$ for $n \geqq 2 M+2+s, s=[\alpha]+1$, replacing s_{n} by some scalar multiple γs_{n}, if necessary.

Lemma $1\left[1\right.$, p. 77]. Let $a_{n k}, b_{n}$ be real numbers, with $\sup _{n} \sum_{k=0}^{\infty}\left|a_{n k}\right|<\infty$. Then the system of equations

$$
\sum_{k=0}^{\infty} a_{n k} \dot{x}_{k}=b_{n} \quad(n=0,1,2, \ldots)
$$

has a solution satisfying $\left|x_{n}\right| \leqq 1$ if and only if

$$
\left|\sum_{k} \lambda_{k} b_{k}\right| \equiv \sum_{n=0}^{\infty}\left|\sum_{k} \lambda_{k} a_{k n}\right|
$$

for every finite set of real multipliers λ_{k}.
Lemma 2. Let $\left\{a_{n}: n=0,1,2, \ldots\right\}$ be an increasing sequence of natural numbers, $\left\{t_{n}\right\}$ as in (3). Then $t_{n}=0$ for $n=a_{1}, a_{2}, \ldots$ implies $t_{a_{0}}=0$ if and only if

$$
\begin{equation*}
l \cdot \mathrm{bd} \cdot\left\{\left.\sum_{h=0}^{2 M+1+s}\left|\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right|+\sum_{h \geqq 2 M+2+s}\binom{h+\alpha}{h-M} \right\rvert\, \sum_{k=0}^{N} \lambda_{k}\binom{a_{k}-\alpha}{a_{k}-h}\right\}=0 \tag{4}
\end{equation*}
$$

where $s=[\alpha]+1, \lambda_{0}=1$ and the λ_{k} for $k>0$ run through all sets of real numbers for $N=1,2, \ldots$.

Proof of Lemma 2. Consider $t_{n}=0$ for $n=a_{1}, a_{2}, \ldots, t_{a_{0}}=\gamma>0$ as a system of equations for the unknowns x_{n}, where $x_{n}=s_{n}$ for $n<2 M+2+s, x_{n}=\left[\begin{array}{l}n+\alpha \\ n-M\end{array}\right]^{-1} s_{n}$ for $n \geqq 2 M+2+s$. From Lemma 1 this system has a solution for $\left|x_{n}\right| \leqq 1$ if and only if the left side of (4) is $\geqq \gamma$. Therefore (4). implies that $\gamma=0$.

Conversely, if $\gamma=0$, then (4) is nonnegative for every choice of the λ_{n}. But the choice $\lambda_{k}=0$ for $k>0$ gives the lower bound.

To complete the proof of Theorem 1, we shall show that the condition that S be closed is equivalent to (4). Let the set S in (2) be closed and $a_{0} \geqq 2 M+2+s$. We shall show that (4) is satisfied.

$$
\begin{gather*}
\sum_{h \geqq 2 M+2+s}\binom{h+\alpha}{h-M}\left|\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right| \leqq \sum_{h \geqq 2 M+2 s+2}\binom{h+s}{h-M} \sum_{k=0}^{N}\left|\lambda_{k}\right|\binom{a_{k}+s}{a_{k}-h} \leqq \tag{5}\\
\leqq\left\{\sum_{h}\binom{h+s}{h-M}^{2}\binom{h+s}{2 M+2 s+2}^{-1}\right\}^{1 / 2}\left\{\sum_{h}\binom{h+s}{2 M+2 s+2}\left(\sum_{k=0}^{N}\left|\lambda_{k}\right|\binom{a_{k}+s}{a_{k}-h}\right)^{2}\right\}^{1 / 2} \leqq \\
\leqq A\left\{\sum_{h}\binom{h+s}{2 M+2 s+2} \sum_{j ; k=0}^{N}\left|\lambda_{j} \lambda_{k}\right|\binom{a_{j}+s}{a_{j}-h}\binom{a_{k}+s}{a_{k}-h}\right\}^{1 / 2}
\end{gather*}
$$

since the first sum is $O\left(\dot{\Sigma} h^{-2}\right)$.
(6)

$$
\begin{gathered}
\sum_{h}\binom{h+s}{2 s+2 M+2}\binom{a_{j}+s}{a_{j}-h}\binom{a_{k}+s}{a_{k}-h}= \\
=\frac{1}{(2 s+2 M+2)!} \sum_{h=2 M+2+s}^{a_{k}} \frac{\left(a_{j}+s\right)!}{(h-s-2 M-2)!\left(a_{j}-h\right)!}\binom{a_{k}+s}{a_{k}-h}= \\
=\binom{a_{j}+s}{2 s+2 M+2} \sum_{i=0}^{a_{k}-2 M-2-s}\binom{a_{j}-2 M-2-s}{i}\binom{a_{k}+s}{a_{k}-2 M-2-s-i} .
\end{gathered}
$$

For b, c positive noninteger real numbers,

$$
\quad(1+t)^{b}(1+t)^{\dot{c}}=\left(\sum_{j}\binom{b}{j} t^{j}\right)\left(\sum_{j}\binom{c}{j} t^{j}\right)=\sum_{n}\left(\sum_{j=0}^{n}\binom{b}{j}\binom{c}{n-j}\right) t^{n}
$$

Since also $(1+t)^{b+c}=\sum_{j}\left[\begin{array}{c}b+c \\ j\end{array}\right] t^{j}$,
(7) $\because \quad=\quad \cdots \quad \sum_{j=0}^{n}\binom{b}{j}\binom{c}{n-j}=\binom{b+c}{n}$.

Substituting (7) in (6),

$$
\begin{aligned}
& \sum_{h}\binom{h+s}{2 s+2 M+2}\binom{a_{j}+s}{a_{j}-h}\binom{a_{k}+s}{a_{k}-h}= \\
& =\frac{\left(a_{j}+a_{k}-2 M-2\right)!}{(2 s+2 M+2)!\left(a_{j}-2 M-2-s\right)!\left(a_{k}-2 M-2-s\right)!}=
\end{aligned}
$$

and (5) can be written

$$
\sum_{h \geqq 2 M+2+s}\binom{h+s}{2 M+2 s+2}\left|\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right| \leqq A\left\{\int_{0}^{\infty} e^{-x} x^{2 M+2+2 s} \dot{Q}^{2}(x) d x\right\}^{1 / 2}
$$

where A is independent of N and the λ_{k} 's and

$$
Q(x)^{-N}=\sum_{k=0}^{-N} \frac{\left|\lambda_{k}\right| x^{a_{k}-2 M-2-s}}{\left(a_{k}-2 M-2-s\right)!} \quad\left(\lambda_{0}=1\right)
$$

For $h<2 M+2+s$,

$$
\begin{gathered}
\left|\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right| \leq \sum_{k=0}^{N}\left|\lambda_{k}\right|\binom{a_{k}+s}{a_{k}-h}= \\
=\frac{1}{(s+h)!} \int_{0}^{\infty} \frac{e^{-x} x^{h+s}}{(2 M-h+1+s)!} \int_{0}^{x}(x-y)^{2 M-h+1+s} Q(y) d y d x= \\
=\int_{0}^{\infty} Q(y) d y \int_{y}^{\infty} e^{-x} x^{h+s}(x-y)^{2 M-h+1+s} d x= \\
=\int_{0}^{\infty} Q(y) d y \int_{0}^{\infty} e^{-y-z}(y+z)^{h+s} z^{2 M-h+1+s} d z< \\
<\int_{0}^{\infty} e^{-y} Q(y) d y \int_{0}^{\infty} e^{-z}(y+z)^{h+s+2 M-h+1+s} d z= \\
\quad=\int_{0}^{\infty} e^{-y} Q(y) d y \int_{0}^{\infty} e^{-z}(y+z)^{2 M+1+2 s} d z< \\
<2^{2 M+1+2 s} \int_{0}^{\infty} e^{-y} Q(y) d y \int_{0}^{\infty} e^{-z}\left(y^{2 M+1+2 s}+z^{2 M+1+2 s}\right) d z< \\
<B \int_{0}^{\infty} e^{-y} Q(y)\left(1+y^{2 M+1+2 s}\right) d y< \\
\therefore \quad \\
<B\left(\int_{0}^{\infty} e^{-y}\left(1+y^{2 M+1+2 s}\right)^{2} d y\right)^{1 / 2}\left(\int_{0}^{\infty} e^{-y} Q^{2}(y) d y\right)^{1 / 2}=C\left(\int_{0}^{\infty} e^{-y} Q^{2}(y) d y\right)^{1 / 2} .
\end{gathered}
$$

It remains to show that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} Q^{2}(x)\left(1+x^{2 M+2 s+2}\right) d x<\varepsilon \tag{8}
\end{equation*}
$$

Using Lemma 1 and Theorem 4 of [4], the system

$$
\begin{equation*}
\left\{e^{-x / 2}\left(1+x^{2 M+2+2 s}\right)^{1 / 2} x^{-a_{k}-2 M-2-s}\right\} \quad(k \geqq 1) \tag{9}
\end{equation*}
$$

is closed since S is closed. Therefore

$$
\frac{e^{-x / 2}\left(1+x^{2 M+2+2 s}\right)^{1 / 2} x^{a_{0}-2 M-2-s}}{\left(a_{0}-2 M-2\right)!}
$$

can be approximated arbitrarily close by finite linear combinations of functions from (9). This proves (8).

We shall now show that, if (4) is true for every $a_{0} \geqq 2 M+2+s$, then S is complete. If (4) is satisfied then, for suitable values of λ_{k},

$$
\sum_{h \geqq M}\binom{h+\alpha}{h-M}\left|\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right|<\varepsilon
$$

It then follows that

$$
\begin{equation*}
\sum_{h \geqq M}\binom{h+\alpha}{h-M}\left(\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right)^{2}<\varepsilon^{2} \tag{10}
\end{equation*}
$$

But

$$
\begin{gathered}
\sum_{h \geq M}\binom{h+\alpha}{h-M}\left(\sum_{k=0}^{N} \lambda_{k}\binom{a_{k}+\alpha}{a_{k}-h}\right)^{2}=\sum_{j, k=0}^{N} \lambda_{j} \lambda_{k} \sum_{h=M}^{a_{k}}\binom{h+\alpha}{h-M}\binom{a_{j}+\alpha}{a_{j}-h}\binom{a_{k}+\alpha}{a_{k}-h}= \\
=\sum_{j, k=0}^{N} \frac{\lambda_{j} \lambda_{k}}{\Gamma(\alpha+M+1)} \sum_{h=M}^{a_{k}} \frac{\Gamma\left(a_{j}+\alpha+1\right)}{(h-M)!\left(a_{j}-h\right)!}\binom{a_{k}+\alpha}{a_{k}-h}= \\
=\sum_{j, k=0}^{N} \lambda_{j} \lambda_{k}\binom{a_{j}+\alpha}{M+\alpha} \sum_{i=0}^{a_{k}-M}\binom{a_{j}-M}{i}\binom{a_{k}+\alpha}{a_{k}-M-i}= \\
\therefore \quad: \quad \sum_{j, k=0}^{N} \lambda_{j} \lambda_{k}\binom{a_{j}+\alpha}{M+\alpha}\binom{a_{j}+a_{k}+\alpha-M}{a_{k}-M}= \\
= \\
\sum_{j, k=0}^{N} \lambda_{j} \lambda_{k} \frac{\Gamma\left(a_{j}+a_{k}+\alpha-M+1\right)}{\Gamma(M+\alpha+1)\left(a_{j}-M\right)!\left(a_{k}-M\right)!}=\frac{1}{\Gamma(M+\alpha+1)} \int_{0}^{\infty} e^{-x} R^{2}(x) d x
\end{gathered}
$$

where

$$
R(x)=\sum_{k=0}^{N} \frac{\lambda_{k} x^{a_{k}+\alpha / 2-M / 2}}{\left(a_{k}-M\right)!}
$$

Therefore

$$
\frac{1}{\Gamma(M+\alpha+1)} \int_{0}^{\infty} e^{-x} R^{2}(x) d x<\varepsilon^{2}
$$

which implies that

$$
\begin{equation*}
e^{-x / 2} x^{n-M / 2+a / 2}, \quad n=2 M+2+s, 2 M+3+s, \ldots \tag{11}
\end{equation*}
$$

can be mean square approximated by linear combinations of the functions $e^{-x / 2} x^{a_{k}-M / 2+\alpha / 2}, k \geqq 1$. From [4, Theorem 5] the set (11) is closed. Thus also is $\left\{e^{-x / 2} x^{a_{k}-M / 2+\alpha / 2}\right\}$. From Lemma 1 of [4] with $p(x)=x^{M / 2-\alpha / 2}, S$ is closed.

Suppose $t_{n}=0$ for $n=a_{1}, a_{2}, \cdots$, and S is closed. Then one can use condition (4) and mathematical induction to force $t_{n}=0$ for all $n \geqq a_{0}$.

Now suppose that $s_{n}=o\left(n^{M+\alpha}\right),\left\{t_{n}\right\}$ satisfies (3) with $t_{n}=0$ for $n \geqq 2 M+$ $+s+2$. Note that (3) is the nth term of a diagonal matrix t satisfying $t=\delta^{(\alpha)} s$,
where s is the diagonal matrix with entries s_{n} and $\delta_{n k}^{(\alpha)}=(-1)^{k}\left[\begin{array}{l}n+\alpha \\ n-k\end{array}\right]$. Since $\delta^{(\alpha)}$. is its own inverse, and multiplication is associative, $\delta^{(\alpha)} t=s$; i.e;

$$
\begin{aligned}
& s_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n+\alpha}{n-k} t_{k}=\sum_{k=0}^{2 M+s+1}(-1)^{k}\binom{n+\dot{\alpha}}{n-k} t_{k}= \\
= & \sum_{k=0}^{\ell}(-1)^{k}\binom{n+\alpha}{n-k} t_{k}=\frac{\Gamma(n+\alpha+1)}{n!} \sum_{k=0}^{\ell} \frac{(-1)^{k} n!t_{k}}{(n-k)!\Gamma(k+\alpha+1)}
\end{aligned}
$$

where ϱ is the largest integer for which $t_{k} \neq 0$. Therefore $s_{n}=\Gamma(n+\alpha+1) P(n) \mid n!$, where P is a polynomial in n of degree ϱ. Since $s_{n}=o\left(n^{M+\alpha}\right), \alpha+\varrho<M+\alpha$, and the degree of P is less than M.

Let $\sigma_{p}(A)$ denote the point spectrum of an operator A, and write H for $H^{(0)}$.
Theorèm 2. (a) Let $1<p<\infty, H^{(\alpha)} \in B\left(l^{p}\right) \cap B(c)$. Then $\sigma_{p}\left(H^{(\alpha)}\right)$ is empity:
(b) Let $H^{(\alpha)} \in B(l), \alpha \geqq 0$. Then $B_{p}\left(H^{(\alpha)}\right)$ is empty.
(c) Let $H^{(\alpha)} \in B(c)$. For $\alpha>0, \sigma_{p}\left(H^{(\alpha)}\right)$ is empty. For $\alpha=0$, if H is multipli cative, then. $\sigma_{p}(H)=\left\{\mu_{0}\right\}$.

Proof of (a). Suppose there exists an $x \in l^{p}$ with $H^{(\alpha)} x=\lambda x$. Then $\left(H^{(\alpha)}-\lambda I\right) x=0$. But $H^{(\alpha)} \in B\left(l^{p}\right) \cap B(c)$ implies that $K^{(\alpha)}=H^{(\alpha)}-\lambda I \in B\left(l^{p}\right) \cap B(c)$. Moreover, $K^{(\alpha)}$ is also a generalized Hausdorff matrix. Thus, we are looking for solutions of the system $K^{(\alpha)} x=0$. One may write $K^{(\alpha)}=\delta^{(\alpha)} \mu \delta^{(\alpha)}$, where μ is a diagonal matrix with diagonal entries μ_{n} and $\delta_{n k}^{(\alpha)}=(-1)^{k}\binom{n+\alpha}{n-k}$. Since $\delta^{(\alpha)}$ is its own inverse, and each matrix forming $K^{(\alpha)}$ is row finite, the system $K^{(\alpha)} x=0$ is equivalent to $\mu \delta^{(\alpha)} x=0$; i.e.,

$$
\begin{equation*}
\mu_{n} \sum_{i=0}^{n}(-1)^{i}\binom{n+\alpha}{n-i} x_{i}=0, n=0,1,2, \ldots \tag{12}
\end{equation*}
$$

Since $H^{(\alpha)} \in \boldsymbol{B}(c)$, so also does $K^{(\alpha)}$, so that μ is a moment sequence: This means that

$$
\psi(z)=\int_{0}^{\mathbf{1}} t^{z+\infty} d \beta(t)
$$

is analytic for $\operatorname{Re}(z)>0$, where β and μ_{n} satisfy

$$
\mu_{n}=\int_{0}^{1} t^{n+x} d \beta(t) .
$$

From [2], the integer values b_{n} for which $\psi\left(b_{n}\right)=0$ satisfy the condition $\Sigma_{k} b_{k}^{-1}<\infty$. Therefore (12) implies that $t_{n}=0$ for all values of n except possibly a subset $\left\{b_{n}\right\}$ satisfying $\Sigma_{k} b_{k}^{-1}<\infty$. Using Theorem 3 of [4], the set S of integers n for which
$t_{n}=0$ remains closed. Since $\left\{x_{n}\right\} \subset l^{p}, 1<p<\infty, x_{n}=o\left(n^{1 / 2+\alpha}\right)$. Applying Theorem 1, $x_{n}=\Gamma(n+\alpha+1) P(n) / n$!, where $P(x)$ is a polynomial of degree less than $M=1 / 2$; i.e., P is a constant polynomial. But, unless P is the zero polynomial, $x \notin l^{p}$, so $H^{(\alpha)}$ has empty point spectrum.

Proof of (b). The author has shown in [7] that $H^{(\alpha)} \in B(l)$ implies $H^{(x)} \in B(c)$. The rest of the proof is the same as that of (a).

Proof of (c). Following the proof of (a), since $\left\{x_{n}\right\} \in c,\left\{x_{n}\right\}$ is bounded, hence $\dot{x}_{n}=o\left(n^{1 / 2+\alpha}\right)$, and again $\sigma_{p}\left(H^{(\alpha)}\right)$ is empty, for $\alpha>0$.

For $\alpha=0, x_{n}=o\left(n^{1 / 2}\right)$, and the only nonzero sequence satisfying (12) is $\mathcal{e}=(1,1, \ldots)$. With $\alpha=0$, each row sum of H is μ_{0}. Therefore $\sigma_{p}(H)=\left\{\mu_{0}\right\}$.

A matrix A is multiplicative if $\lim A x=t \lim x$ for some scalar $t, x \in c$. In terms of the matrix entries, multiplicativity of A translates into A having all zero column limits. For Hausdorff matrices in $B(c)$ this condition is equivalent to the mass function $\beta(t)$ being continuous from the right at zero, and specifically excludes the compact Hausdorff matrix generated by $\mu_{0}=1, \mu_{n}=0, n>0$. Theorem 1 does not apply to this matrix since there are too many zeros on the main diagonal, but a direct analysis yields the point spectrum to be $\{0,1\}$.

References

[1] S. Banach, Operations Linéaires, Chelsea (1955).
[2] T. Carleman, Uber die Approximation analytischer Funktionen durch Aggregate vorgegebener Potenzen, Ark. Mat. Phys., 17 (1922).
[3] K. Endl, Untersuchungen über Momentprobleme bei Verfahren vom Hausdorffschen Typus, Math. Ann., 139 (1960), 403-432.
[4] W. H. J. Fuchs, A theorem on finite differences with an application to the theory of Hausdorff summability, Proc. Cambridge Phil. Soc., 40 (1944), 188-196.
[5] B. K. Ghosh, B. E. Rhoades and D. Trutt, Subnormal generalized Hausdorff matrices, Proc. Amer. Math. Soc., 66 (1977), 261-265.
[6] A. Jakimovski, The product of summability methods, part 2, Tech. Report No. 8 (Jerusalem, 1959).
[7] B. E. Rhoades, Hausdorff matrices as boundèd operators over l, Proc. Amer. Math. Soc., 78 (1980), 210-212.
[8] B. E. Rhoades, Generalized Hausdorff matrices bounded on l^{p} añ ce, Actä Sci. Math.; 43 (1981), 333-345.

