The point spectra for generalized Hausdorff operators

B. E. RHOADES

It is the purpose of this paper to show that the point spectra of a large class of generalized Hausdorff matrices is empty. The generalized Hausdorff matrices under consideration were defined independently by ENDL [3] and JAKIMOVSKI [6]. Each matrix $H^{(\alpha)}$ is a lower triangular matrix with nonzero entries

(1)
$$h_{nk}^{(\alpha)} = {n+\alpha \choose n-k} \Delta^{n-k} \mu_k,$$

2

where $\{\mu_k\}$ is a real or complex sequence, and Δ is the forward difference operator defined by $\Delta \mu_k = \mu_k - \mu_{k+1}$, $\Delta^{n+1} \mu_k = \Delta(\Delta^n \mu_k)$. Let *c* denote the space of convergent sequences. The bounded linear operators on *c* and l^p , $1 \le p \le \infty$, will be denoted by B(c) and $B(l^p)$, respectively. Although (1) is defined for any real α which is not a negative integer, in this paper α is restricted to be nonnegative.

Let $1 , <math>H^{(\alpha)} \in B(l^p)$. The author showed in [8] that the point spectrum of $H^{(\alpha)^*}$, the adjoint of $H^{(\alpha)}$, contains an open set. Let $C^{(\alpha)}$ denote the generalized Hausdorff matrix generated by $\mu_n = (n+\alpha+1)^{-1}$, q the conjugate index of p. It was also shown in [8] that the spectrum of $I - 2C^{(\alpha)}/q$ is the closed unit disc. For p=2, every $H^{(\alpha)} \in B(l^p) \cap B(c)$ is an analytic function of $C^{(\alpha)}$, so the spectral mapping theorem can be used to obtain the spectrum. GHOSH, RHOADES and TRUTT [5] showed that each $H^{(\alpha)} \in B(l^2)$, for integer a, is subnormal. In [8] the author showed that each $C^{(\alpha)}$ is hyponormal.

In order to establish the point spectra results it will first be necessary to extend some results of FUCHS [4]. Define

(2)
$$S = S(a_1, a_2, ...) = \{\varphi_k(x)\} = \{e^{-cx}x^{a_k}: c > 0; k \ge 1; a_1 < a_2 < ...\}.$$

The set S is closed in $L^2(0, \infty)$ if, for each $h \in L^2(0, \infty)$ and for each $\varepsilon > 0$, there

Received October 7, 1985 and in revised form October 8, 1987.

exists a finite linear combination $\Phi(x)$ of the functions φ_k such that.

$$\int_{0}^{\infty} (h(x) - \Phi(x))^2 dx < \varepsilon.$$

The set S is said to be complete in $L^2(0, \infty)$ if, for each $h \in L^2(0, \infty)$,

$$\int_{0}^{\infty} h(x) \varphi_{k}(x) \, dx = 0$$

for all $k \ge 1$ implies h(x)=0 a.e. It is well known that the concepts of closed and complete are equivalent.

Theorem 1. Let $\{s_n\} \subset \mathbb{C}$ satisfy $s_n = o(n^{M+\alpha})$, M > 0, α a nonnegative real number. Define $\{t_n\}$ by

(3)
$$t_n = \sum_{i=0}^n \binom{n+\alpha}{n-i} (-1)^i s_i.$$

Then $t_n=0$ for $n=a_1, a_2, ...$ implies $s_n=\Gamma(n+\alpha+1)P(n)/n!$, P a polynomial of degree less than M if and only if $S = \{e^{-x/2}x^{a_n}: n=0, 1, 2, ...\}$ is closed in $L^2(0, \infty)$.

Suppose that $s_n = O(n^{M+\alpha}), t_n = 0$ for $n = a_1, a_2, ...$ implies

$$s_n = \Gamma(n+\alpha+1) P(n)/n!,$$

where the degree of P is less than M.

.

We may write (3) in the form

• • •

$$t_n = \sum_{i=0}^n \binom{n+\alpha}{n-k} \frac{(-1)^k \Gamma(i+\alpha+1) P(i)}{i!} =$$
$$- \frac{\Gamma(n+\alpha+1)}{\sum_{i=0}^n} \sum_{j=0}^n \binom{n}{(-1)^j P(j)} - \frac{\Gamma(n+\alpha+1)}{\sum_{i=0}^n} A_n^n P(0)$$

Since the degree of P is less than n, $t_n=0$ for each $n \ge [M]+1$, and the set S is closed.

To prove the converse we may assume, without loss of generality, that $\{s_n\}$ is real and that $|s_n| \leq 1$ for n < 2M+2+s, $|s_n| \leq {n+\alpha \choose n-M}$ for $n \geq 2M+2+s$, $s = [\alpha]+1$, replacing s_n by some scalar multiple γs_n , if necessary.

112

Lemma 1 [1, p. 77]. Let a_{nk} , b_n be real numbers, with $\sup_n \sum_{k=0}^{\infty} |a_{nk}| < \infty$. Then the system of equations

$$\sum_{k=0}^{\infty} a_{nk} x_k = b_n \quad (n = 0, 1, 2, ...)$$

has a solution satisfying $|x_n| \leq 1$ if and only if

$$\left|\sum_{k}\lambda_{k}b_{k}\right| \leq \sum_{n=0}^{\infty}\left|\sum_{k}\lambda_{k}a_{kn}\right|$$

for every finite set of real multipliers λ_k .

8

Lemma 2. Let $\{a_n: n=0, 1, 2, ...\}$ be an increasing sequence of natural numbers, $\{t_n\}$ as in (3). Then $t_n=0$ for $n=a_1, a_2, ...$ implies $t_{a_0}=0$ if and only if

(4)
$$l \cdot bd \cdot \left\{ \sum_{k=0}^{2M+1+s} \left| \sum_{k=0}^{N} \lambda_k \binom{a_k + \alpha}{a_k - h} \right| + \sum_{h \ge 2M+2+s} \binom{h+\alpha}{h-M} \left| \sum_{k=0}^{N} \lambda_k \binom{a_k - \alpha}{a_k - h} \right| \right\} = 0$$

where $s = [\alpha] + 1$, $\lambda_0 = 1$ and the λ_k for k > 0 run through all sets of real numbers for N = 1, 2, ...

Proof of Lemma 2. Consider $t_n=0$ for $n=a_1, a_2, ..., t_{a_0}=\gamma>0$ as a system of equations for the unknowns x_n , where $x_n=s_n$ for n<2M+2+s, $x_n=\begin{bmatrix}n+\alpha\\n-M\end{bmatrix}^{-1}s_n$ for $n\geq 2M+2+s$. From Lemma 1 this system has a solution for $|x_n|\leq 1$ if and only if the left side of (4) is $\geq \gamma$. Therefore (4) implies that $\gamma=0$.

Conversely, if $\gamma=0$, then (4) is nonnegative for every choice of the λ_n . But the choice $\lambda_k=0$ for k>0 gives the lower bound.

To complete the proof of Theorem 1, we shall show that the condition that S be closed is equivalent to (4). Let the set S in (2) be closed and $a_0 \ge 2M+2+s$. We shall show that (4) is satisfied.

$$(5) \qquad \sum_{h \ge 2M+2+s} \binom{h+\alpha}{h-M} \left| \sum_{k=0}^{N} \lambda_k \binom{a_k+\alpha}{a_k-h} \right| \le \sum_{h \ge 2M+2s+2} \binom{h+s}{h-M} \sum_{k=0}^{N} |\lambda_k| \binom{a_k+s}{a_k-h} \le \\ \le \left\{ \sum_{h} \binom{h+s}{h-M}^2 \binom{h+s}{2M+2s+2}^{-1} \right\}^{1/2} \left\{ \sum_{h} \binom{h+s}{2M+2s+2} \binom{h+s}{2M+2s+2} \binom{\sum_{k=0}^{N} |\lambda_k| \binom{a_k+s}{a_k-h}}{\sum_{k=0}^{N} |\lambda_j\lambda_k| \binom{a_j+s}{a_j-h} \binom{a_k+s}{a_k-h}} \right\}^{1/2} \le \\ \le A \left\{ \sum_{h} \binom{h+s}{2M+2s+2} \sum_{j,k=0}^{N} |\lambda_j\lambda_k| \binom{a_j+s}{a_j-h} \binom{a_k+s}{a_k-h} \right\}^{1/2},$$

B. E. Rhoades

since the first sum is $O(\Sigma h^{-2})$.

(6)
$$\sum_{h} {h+s \choose 2s+2M+2} {a_j+s \choose a_j-h} {a_k+s \choose a_k-h} =$$

$$= \frac{1}{(2s+2M+2)!} \sum_{h=2M+2+s}^{a_k} \frac{(a_j+s)!}{(h-s-2M-2)!(a_j-h)!} {a_k+s \choose a_k-h} = \\ = {a_j+s \choose 2s+2M+2} \sum_{i=0}^{a_k-2M-2-s} {a_j-2M-2-s \choose i} {a_k+s \choose a_k-2M-2-s-i}.$$

For b, c positive noninteger real numbers,

$$(1+t)^{b}(1+t)^{c} = \left(\sum_{j} {b \choose j} t^{j}\right) \left(\sum_{j} {c \choose j} t^{j}\right) = \sum_{n} \left(\sum_{j=0}^{n} {b \choose j} {c \choose n-j}\right) t^{n}.$$
Since also $(1+t)^{b+c} = \sum_{j} {b+c \choose j} t^{j},$

$$(7) \qquad \sum_{j=0}^{n} {b \choose j} {c \choose n-j} = {b+c \choose n}.$$
Substituting (7) in (6),
$$\sum_{h} {b \choose 2s+2M+2} {a_{j}-h} {a_{k}+s \choose a_{k}-h} =$$

$$= \frac{(a_{j}+a_{k}-2M-2)!}{(2s+2M+2)!(a_{j}-2M-2-s)!(a_{k}-2M-2-s)!} =$$

$$= \frac{1}{(2M+2s+2)!(a_{j}-2M-2-s)!(a_{k}-2M-2-s)!} \int_{0}^{\infty} e^{-x} x^{a_{j}+a_{k}-2M-2} dx,$$

and (5) can be written

$$\sum_{h\geq 2M+2+s} \binom{h+s}{2M+2s+2} \left| \sum_{k=0}^{N} \lambda_k \binom{a_k+\alpha}{a_k-h} \right| \leq A \left\{ \int_0^\infty e^{-x} x^{2M+2+2s} Q^2(x) \, dx \right\}^{1/2}$$

where A is independent of N and the λ_k 's and

$$Q(x) = \sum_{k=0}^{N} \frac{|\lambda_k| x^{a_k - 2M - 2 - s}}{(a_k - 2M - 2 - s)!} \quad (\lambda_0 = 1).$$

114

For
$$h < 2M + 2 + s$$
,

$$\left| \sum_{k=0}^{N} \lambda_{k} \begin{pmatrix} a_{k} + \alpha \\ a_{k} - h \end{pmatrix} \right| \leq \sum_{k=0}^{N} |\lambda_{k}| \begin{pmatrix} a_{k} + s \\ a_{k} - h \end{pmatrix} =$$

$$= \frac{1}{(s+h)!} \int_{0}^{\infty} \frac{e^{-x} x^{h+s}}{(2M-h+1+s)!} \int_{0}^{x} (x-y)^{2M-h+1+s} Q(y) \, dy \, dx =$$

$$= \int_{0}^{\infty} Q(y) \, dy \int_{y}^{\infty} e^{-x} x^{h+s} (x-y)^{2M-h+1+s} \, dx =$$

$$= \int_{0}^{\infty} Q(y) \, dy \int_{0}^{\infty} e^{-y-z} (y+z)^{h+s} z^{2M-h+1+s} \, dz <$$

$$< \int_{0}^{\infty} e^{-y} Q(y) \, dy \int_{0}^{\infty} e^{-z} (y+z)^{h+s+2M-h+1+s} \, dz =$$

$$= \int_{0}^{\infty} e^{-y} Q(y) \, dy \int_{0}^{\infty} e^{-z} (y+z)^{2M+1+2s} \, dz <$$

$$< 2^{2M+1+2s} \int_{0}^{\infty} e^{-y} Q(y) \, dy \int_{0}^{\infty} e^{-z} (y^{2M+1+2s} + z^{2M+1+2s}) \, dz <$$

$$< B \int_{0}^{\infty} e^{-y} Q(y) (1+y^{2M+1+2s}) \, dy <$$

It remains to show that

(8)
$$\int_{0}^{\infty} e^{-x} Q^{2}(x) (1+x^{2M+2s+2}) dx < \varepsilon.$$

Using Lemma 1 and Theorem 4 of [4], the system

(9)
$$\{e^{-x/2}(1+x^{2M+2+2s})^{1/2}x^{a_{k}-2M-2-s}\} \quad (k \ge 1)$$

is closed since S is closed. Therefore $e^{-x/2}(1 + e^{2M+2+9})^{1/2} = e^{-x/2}$

es to de

$$\frac{e^{-x/2}(1+x^{2M+2+2s})^{1/2}x^{a_0-2M-2-s}}{(a_0-2M-2)!}$$

can be approximated arbitrarily close by finite linear combinations of functions from (9). This proves (8).

8*

<u>ا</u> .

We shall now show that, if (4) is true for every $a_0 \ge 2M+2+s$, then S is complete. If (4) is satisfied then, for suitable values of λ_k ,

$$\sum_{h\geq M} \binom{h+\alpha}{h-M} \left| \sum_{k=0}^N \lambda_k \binom{a_k+\alpha}{a_k-h} \right| < \varepsilon.$$

It then follows that

(10)
$$\sum_{h \ge M} {h+\alpha \choose h-M} \left(\sum_{k=0}^N \lambda_k {a_k+\alpha \choose a_k-h} \right)^2 < \varepsilon^2$$

But

$$\sum_{h \ge M} {h+\alpha \choose h-M} \left(\sum_{k=0}^{N} \lambda_k {a_k+\alpha \choose a_k-h} \right)^2 = \sum_{j,k=0}^{N} \lambda_j \lambda_k \sum_{h=M}^{a_k} {h+\alpha \choose h-M} {a_j+\alpha \choose a_j-h} {a_k+\alpha \choose a_k-h} =$$

$$= \sum_{j,k=0}^{N} \frac{\lambda_j \lambda_k}{\Gamma(\alpha+M+1)} \sum_{h=M}^{a_k} \frac{\Gamma(a_j+\alpha+1)}{(h-M)!(a_j-h)!} {a_k+\alpha \choose a_k-h} =$$

$$= \sum_{j,k=0}^{N} \lambda_j \lambda_k {a_j+\alpha \choose M+\alpha} \sum_{i=0}^{a_k-M} {a_j-M \choose i} {a_k+\alpha \choose a_k-h-i} =$$

$$= \sum_{j,k=0}^{N} \lambda_j \lambda_k {a_j+\alpha \choose M+\alpha} {a_j+\alpha \choose M+\alpha} {a_k-M \choose a_k-M} =$$

$$= \sum_{j,k=0}^{N} \lambda_j \lambda_k \frac{\Gamma(a_j+a_k+\alpha-M+1)}{\Gamma(M+\alpha+1)(a_j-M)!(a_k-M)!} = \frac{1}{\Gamma(M+\alpha+1)} \int_{0}^{\infty} e^{-xR^2(x)} dx$$

$$R(x) = \sum_{k=0}^{N} \frac{\lambda_k x^{a_k + a/2 - M/2}}{(a_k - M)!}.$$

Therefore

$$\frac{1}{\Gamma(M+\alpha+1)}\int_0^\infty e^{-x}R^2(x)\,dx<\varepsilon^2$$

which implies that

(11)
$$e^{-x/2}x^{n-M/2+a/2}, n = 2M+2+s, 2M+3+s, ...,$$

can be mean square approximated by linear combinations of the functions $e^{-x/2}x^{a_k-M/2+\alpha/2}$, $k \ge 1$. From [4, Theorem 5] the set (11) is closed. Thus also is $\{e^{-x/2}x^{a_k-M/2+\alpha/2}\}$. From Lemma 1 of [4] with $p(x)=x^{M/2-\alpha/2}$, S is closed.

Suppose $t_n=0$ for $n=a_1, a_2, ...,$ and S is closed. Then one can use condition (4) and mathematical induction to force $t_n=0$ for all $n \ge a_0$.

Now suppose that $s_n = o(n^{M+\alpha})$, $\{t_n\}$ satisfies (3) with $t_n = 0$ for $n \ge 2M + +s+2$. Note that (3) is the *n*th term of a diagonal matrix *t* satisfying $t = \delta^{(\alpha)} s$;

....

where s is the diagonal matrix with entries s_n and $\delta_{nk}^{(\alpha)} = (-1)^k \begin{bmatrix} n+\alpha\\n-k \end{bmatrix}$. Since $\delta^{(\alpha)}$ is its own inverse, and multiplication is associative, $\delta^{(\alpha)}t=s$; i.e.

$$s_{n} = \sum_{k=0}^{n} (-1)^{k} {\binom{n+\alpha}{n-k}} t_{k} = \frac{2^{M+s+1}}{\sum_{k=0}^{k-1}} (-1)^{k} {\binom{n+\alpha}{n-k}} t_{k} =$$
$$= \sum_{k=0}^{q} (-1)^{k} {\binom{n+\alpha}{n-k}} t_{k} = \frac{\Gamma(n+\alpha+1)}{n!} \sum_{k=0}^{q} \frac{(-1)^{k} n! t_{k}}{(n-k)! \Gamma(k+\alpha+1)},$$

where ρ is the largest integer for which $t_k \neq 0$. Therefore $s_n = \Gamma(n+\alpha+1)P(n)/n!$, where P is a polynomial in n of degree ρ . Since $s_n = o(n^{M+\alpha})$, $\alpha + \rho < M + \alpha$, and the degree of P is less than M.

Let $\sigma_p(A)$ denote the point spectrum of an operator A, and write H for $H^{(0)}$.

Theorem 2. (a) Let $1 , <math>H^{(\alpha)} \in B(l^p) \cap B(c)$. Then $\sigma_p(H^{(\alpha)})$ is empty. (b) Let $H^{(\alpha)} \in B(l)$, $\alpha \ge 0$. Then $B_p(H^{(\alpha)})$ is empty.

(c) Let $H^{(\alpha)} \in B(c)$. For $\alpha > 0$, $\sigma_p(H^{(\alpha)})$ is empty. For $\alpha = 0$, if H is multiplicative, then $\sigma_p(H) = \{\mu_0\}$.

Proof of (a). Suppose there exists an $x \in l^p$ with $H^{(\alpha)}x = \lambda x$. Then $(H^{(\alpha)} - \lambda I)x = 0$. But $H^{(\alpha)} \in B(l^p) \cap B(c)$ implies that $K^{(\alpha)} = H^{(\alpha)} - \lambda I \in B(l^p) \cap B(c)$. Moreover, $K^{(\alpha)}$ is also a generalized Hausdorff matrix. Thus, we are looking for solutions of the system $K^{(\alpha)}x=0$. One may write $K^{(\alpha)} = \delta^{(\alpha)}\mu\delta^{(\alpha)}$, where μ is a diagonal matrix with diagonal entries μ_n and $\delta^{(\alpha)}_{nk} = (-1)^k \binom{n+\alpha}{n-k}$. Since $\delta^{(\alpha)}$ is its own inverse, and each matrix forming $K^{(\alpha)}$ is row finite, the system $K^{(\alpha)}x=0$ is equivalent to $\mu\delta^{(\alpha)}x=0$; i.e.,

(12)
$$\mu_n \sum_{i=0}^n (-1)^i \binom{n+\alpha}{n-i} x_i = 0, \quad n = 0, 1, 2, \dots$$

Since $H^{(\alpha)} \in B(c)$, so also does $K^{(\alpha)}$, so that μ is a moment sequence. This means that

$$\psi(z) = \int_0^1 t^{z+\alpha} d\beta(t)$$

is analytic for Re (z)>0, where β and μ_n satisfy

A . 1 .

· . . .

$$\mu_n = \int_0^1 t^{n+\alpha} d\beta(t).$$

From [2], the integer values b_n for which $\psi(b_n)=0$ satisfy the condition $\sum_k b_k^{-1} < \infty$. Therefore (12) implies that $t_n=0$ for all values of *n* except possibly a subset $\{b_n\}$ satisfying $\sum_k b_k^{-1} < \infty$. Using Theorem 3 of [4], the set *S* of integers *n* for which $t_n=0$ remains closed. Since $\{x_n\} \subset l^p$, $1 , <math>x_n = o(n^{1/2+\alpha})$. Applying Theorem 1, $x_n = \Gamma(n+\alpha+1)P(n)/n!$, where P(x) is a polynomial of degree less than M=1/2; i.e., P is a constant polynomial. But, unless P is the zero polynomial, $x \notin l^p$, so $H^{(\alpha)}$ has empty point spectrum.

Proof of (b). The author has shown in [7] that $H^{(\alpha)} \in B(l)$ implies $H^{(\alpha)} \in B(c)$. The rest of the proof is the same as that of (a).

Proof of (c). Following the proof of (a), since $\{x_n\} \in c$, $\{x_n\}$ is bounded, hence $x_n = o(n^{1/2+\alpha})$, and again $\sigma_p(H^{(\alpha)})$ is empty, for $\alpha > 0$.

For $\alpha = 0$, $x_n = o(n^{1/2})$, and the only nonzero sequence satisfying (12) is e = (1, 1, ...). With $\alpha = 0$, each row sum of H is μ_0 . Therefore $\sigma_p(H) = {\mu_0}$.

A matrix A is multiplicative if $\lim Ax=t \lim x$ for some scalar t, $x \in c$. In terms of the matrix entries, multiplicativity of A translates into A having all zero column limits. For Hausdorff matrices in B(c) this condition is equivalent to the mass function $\beta(t)$ being continuous from the right at zero, and specifically excludes the compact Hausdorff matrix generated by $\mu_0=1$, $\mu_n=0$, n>0. Theorem 1 does not apply to this matrix since there are too many zeros on the main diagonal, but a direct analysis yields the point spectrum to be $\{0, 1\}$.

References

[1] S. BANACH, Operations Linéaires, Chelsea (1955).

- [2] T. CARLEMAN, Über die Approximation analytischer Funktionen durch Aggregate vorgegebener Potenzen, Ark. Mat. Phys., 17 (1922).
- [3] K. ENDL, Untersuchungen über Momentprobleme bei Verfahren vom Hausdorffschen Typus, Math. Ann., 139 (1960), 403-432.
- [4] W. H. J. FUCHS, A theorem on finite differences with an application to the theory of Hausdorff summability, Proc. Cambridge Phil. Soc., 40 (1944), 188-196.
- [5] B. K. GHOSH, B. E. RHOADES and D. TRUTT, Subnormal generalized Hausdorff matrices, Proc. Amer. Math. Soc., 66 (1977), 261-265.
- [6] A. JAKIMOVSKI, The product of summability methods, part 2, Tech. Report No. 8 (Jerusalem, 1959).
- [7] B. E. RHOADES, Hausdorff matrices as bounded operators over l, Proc. Amer. Math. Soc., 78 (1980), 210-212.
- [8] B. E. RHOADES, Generalized Hausdorff matrices bounded on l^p and c, Acta Sci. Math., 43 (1981), 333-345.

DEPARTMENT OF MATHEMATICS INDIANA UNIVERSITY BLOOMINGTON, IN 47405 U.S.A.