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The point spectra for generalized Hausdorff operators 

B. E. RHOADES 

It is the purpose of this paper to show that the point spectra of a large class of 
generalized Hausdorff matrices is empty. The generalized Hausdorff matrices under 
consideration were defined independently by ENDL [3] and JAKIMOVSKI [6]. Each 
matrix // ( a ) is a lower triangular matrix with nonzero entries 

(1) = 

where {/¿t} is a real or complex sequence, and A is the forward difference operator 
defined by A[ik=nk—/ik+1, A"+1fxk—A(A"/ik). Let c denote the space of convergent 
sequences. The bounded linear operators on c and lp, 1 ^p^ will be denoted by 
B(c) and B(l"), respectively. Although (1) is defined for any real a which is not a 
negative integer, in this paper a is restricted to be nonnegative. 

Let l < p < ° ° , H(a)e.B(lp). The author showed in [8] that the point spectrum of 
Hix)*, the adjoint of contains an open set. Let C ( I ) denote the generalized 
Hausdorff matrix generated by fi„=(n-l-a + l ) - 1 , q the conjugate index of p. It was 
also shown in [8] that the spectrum of /— 2C(a)/tf is the closed unit disc. For p—2, 
every HMdB(lp)r\B(c) is an analytic function of C ( l ), so the spectral mapping 
theorem can be used to obtain the spectrum. GHOSH, RHOADES and TRUTT [5J showed 
that each Hw£B(l2), for integer a, is subnormal. In [8] the author showed that each 
C(a) is hyponormal. 

In order to establish the point spectra results it will first be necessary to extend 
some results of FUCHS [4]. Define 

(2) S = S(a!, a2, ...) = {<pk(x)} = (e-cxx°«: c > 0 ; t s l ; flx < a2 <...}. 

The set is closed in L2(0, if, for each h£L2(0, » ) and for each e>0, there 
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exists a finite linear combination $(x) of the functions <pk such that. 

J (h(x)-$(x))2dx< e. 
o 

The set S is said to be complete in L2(0, if, for each /i£L2(0, <==>), 

oo 

J h(x)<pk(x) dx — 0 
o 

for all /c&l implies h(x)=0 a.e. It is well known that the concepts of closed and 
complete are equivalent. 

Theo rem 1. Let {s„}cC satisfy s„=o(nM+"), M > 0 , a a nonnegative real 
number. Define {/„} by 

(3) ^ ¿ p j i - i v , . 

Then tn— 0 for n = ai,a2, ... implies s„=r(n+oc + l)P(n)/nl, P a polynomial of 
degree less than M if andonly if S—{e~x/2x°": n= 0,1, 2, . . .} is closed in L2(0, 

Suppose that sn = 0(nM+*), tn=0 for n=a1,ai, ... implies 

í „ = r ( » + a + l)P(»)/íi!, 

where the degree of P is less than M. 
We may write (3) in the form 

, _ ( ~ i m / + « + ! ) / > ( / ) 
n~iÚ\n-k) i\ 

Since the degree of P is less than n, t„=0 for each wS[M] +1, and the set S 
is closed. 

To. prove the converse we may assume, without loss of generality, that {J„} is 

real and that |s„ |Sl for « < 2 M + 2 + s , f o r n==2Af+2+s, *=[<*] +1, 

replacing sn by some scalar multiple ys„, if necessary. 



Point spectra for Hausdorff operators 11'7 

eo 
L e m m a 1 [1, p. 77]. Let ank, b„ be real numbers, with sup„ £ |a„ t |< <*>. Then 

k = o 

the system of equations 

2ankxk = bn (« = 0 ,1 ,2 , . . . ) 
k=0 

has a solution satisfying |x„ |S l if and only if 

k n = 0 k 

for every finite set of real multipliers Xk. 

L e m m a 2. Let {a„\ h = 0 , 1, 2, ...} be an increasing sequence of natural num' 
bers, {/„} as in (3). Then tn=0 for it=a1, a2,... implies / ^ = 0 if and only if 

(4) » . b d . f F | i * ( £ i ) | + 2 • ' ( * - - ) | i ^ ) | } = 0 I h=0 k=0 "/ ¡1S2M + 2+S V- lfc=0 ",/|J 

u7ie/r s=[a] +1, /„ = 1 and the for 0 run through all sets of real numbers for 
N= 1 ,2 , . . . . 

P r o o f of L e m m a 2. Consider /„=0 for n=a1,a2, ..., t^y^-0 as a system 

of equations for the unknowns x„, where xn=s„ for n<2M+2+s, xn= "^^J 

for m s 2 M + 2 + j . From Lemma 1 this system has a solution for \x„ if and 
only if the left side of (4) is ^y. Therefore (4) implies that y = 0 . 

Conversely, if 7=0, then (4) is nonnegative for every choice of the /.„. But the 
choice k k = 0 for /c>0 gives the lower bound. 

To complete the proof of Theorem 1, we shall show that the condition that S be 
closed is equivalent to (4). Let the set 5 in (2) be closed and a^2M+2+s. We 
shall show that (4) is satisfied. 

(IB2M+2+SV' > U=0 Vfc "/I /IS2M + 2S+2 N ' k=0 V"(t "J 

tM-llv ^ ) } (2^+^+2) ( J ( K ) ) } S ; v 
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since the first sum is 0(Zh~2). 

2 ( 2 J + 2 M + 2 ) {ak-l) = 

1 S (Qy+J)! f 
(2s+2M+2)\ „^jf+z+s (h —S—2M—2)!(aj — h)! U~/JJ 

_ ( aj+s Y*-™-2-s/aj_2M-2-s)( ak+s ) 
~{2s+2M+2) 2 { i J \ak—2M—2—s— i)' 

For b, c positive noninteger real numbers, 

Since also, (I+tf+c=Z p j " 

Substituting (7) in (6), 

••• v f / i + j ) f a j + s \ ( «*+*) 

(aj+ak-2M-2)l = 

r ~ ( 2 i + 2 M + 2 ) ! ( a J - 2 M - 2 - j ) ! ( a t - 2 M - 2 - j ) ! 

1 °° • — ' ." ! I f p—x va, + ak—2M— 2 sly 

(2M+2s + 2)\(a}-2M-2-s)\(ak-2M-2-s)\ J ' 

and (5) can be written 

where A is independent o f .Nand the Afc's and 

; 'N UJx°fc-2 M-2- s 
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For h<2M+2+s, 

|JMiiiJI-iwî )-" 

CO oo 

0 y 
CO CO 

0 0 

OO OO 

< / e~yQ(y)dy f e-z(y + z)h+s+2M-h+1+s dz = 
0 0 

oo oo 
= / e~*Q(y)dy f e~=(y+z)2M+1+2s dz < 

o o 
OO CO 

< 2
 2M+1+2s f e~yQ(y)dy f e-'ifM+i+to+zSM+i+teyfa^ 

o o 
oo 

0 

<£(/ ( f e-yQ2(y) dyyi* = C{je-yQ2(y)dyf\ 
o o o 

It remains to show that 
oo 

(8) / +^Ai+2S+2) ^ ^ e 

o 
Using Lemma 1 and Theorem 4 of [4], the system 

(9) {e -* /2(l +X2M+2+2sy/2A.flfc_2Ai_2-SJ ^ g. j) ; 

is closed since S is closed. Therefore 

e-x/2^2Af+2+2sy/2J^oo-2M-2-s 

(Oo-2M-2)! ' 

can be approximated arbitrarily close by finite linear combinations of functions from 
(9). This proves (8). 
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We shall now show that, if (4) is true for every a0^2M+2+s, then S is com-
plete. If (4) is satisfied then, for suitable values of Xk, 

h 

It then follows that 

0 0 , .. 

But 

Z [h-v] = j . i o ^ A {h-M) [aj-h] ( a l - h ) = hSM 

" XjXk % r(aj+a + 1) (ak+oi\_ 
; i „ f ( a + M + l ) h±U (h-M)\(aj-hy. W - h ) 

- y X X { a,+«YkyM["i-M\{ ak+a ) _ 

v j 3 K + a ) (aj+th+u-M) 
' ¿ o J H M + aJl ak-M ) -

- y XX r(aj+ak+a-M+1) _ 1 7 e-xRi(x) dx 
~ j.tLo J " r(M+<x+\)(aj-M)\(ak-M)\ ~ r ( M + a + l ) J e KWax> 

where 
N A,. Y"k+a/2-M/2 

R(x)= 2 k 
¿f0 (ak-M)\ • 

Therefore 

I W ^ W / E ~ X R 2 ( X ) C / X < E 2 ' 

which implies that 

(11) e-xi^w+'iz, n = 2M+2+S, 2M-\-3+s,..., 

can be mean square approximated by linear combinations of the functions 
e-xi2^k-Miz+*i2^ F r o m Theorem5] the set (11) is closed. Thus also is 
^-xiz^-Miz+tizy From Lemma 1 of [4] with p(x)=xM/2-a/2, d isclosed. 

Suppose 0 for n=ai, a^,:.:, and S i s closed. Then one can use condition 
(4) and mathematical induction to force /„=0 for all n s a 0 . 

'Now suppose that i ,„=o(«- i+cl), {/„} satisfies (3) with /„=0 for ws2MH-
+ j + 2 . Note that (3) is the nth term of a diagonal matrix t satisfying t=dl*)s, 
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where s is the diagonal matrix with entries s„ and —1)* j ^ ^ ^ J • Since <5(S!)-

is its own inverse, and multiplication is associative, 5 i . e . "r" 

n * + r ( « + g + l ) 4, (— \)kn! 1k 

~ l ) Vn-k)1* n! (n —A:)!r(A; + a-(-1) ' 
where Q is the largest integer for which 4 ^ 0 . Therefore sn=T (n+<x+l)P(n)lnU 
where P is a polynomial in n of degree Q. Since s„—o(nM+x), a + Q.^M+a, and 
the degree of P is less than M. ... „,;. . ' .-, 

Let ap(A) denote the point spectrum of an operator A, and write H lor /f ( 0 ) . 

T h e o r e m 2. (a) Let l ^ « » , ff(0I) 6 B (/")(") 5(c). Then <rp(Hw) is empty: 
(b) Let H(x)£B(l), Then Bp(Hw) is empty. 
(c) Let H{a)£B(c). For <x>0, ap(HM) is empty. For a = 0 , if H is multipli-

cative, then. (Tp(H)={n0}. 

P r o o f of (a). Suppose there exists an xOp with Hi?)x=kx. Then; 
(H^-XI)x=0. But H<r)£B(lp)r\B(c) implies that K(*> =H(x)-/./€B(lp)f]B(c). 
Moreover, is also a generalized Hausdorff matrix. Thus, we are looking for 
solutions of the system K(x)x=0. One may write K(a)=S<-X)¡i8(x\ where ^ is a 

diagonal matrix with diagonal entries nn and (— l)k ^ [ ^ ¿ j • Since 8M is its 

own inverse, and each matrix forming K(x) is row finite, the system. K(a)x=0 is 
equivalent to pS(*)x=0; i.e., 

(12) . = « = 0 , 1 , 2 , . . . : / 

Since Hix)€B(c), so also does so that /i is a moment sequence. This 
means that 

<A(z)= / e+'dp(t) 

is analytic for Re (z)>0, where fl and ¡i„ satisfy 

I 

/ c+'dp(t). ,,..., 
o 

From [2], the integer values for which \l/(b„)=0 satisfy the condition ° 
Therefore (12) implies that tn=0 for all values of n except possibly a subset {¿>„} 
satisfying Ikbk

x< Using Theorem 3 of [4], the set S of integers n for which 
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/„=0 remains closed. Since { x ^ c F , X„=O(H1/2+*). . Applying Theo-
rem 1, x„=r(n+x+l)P(ri)/nl, where P(x) is a polynomial of degree less than 
M = 1/2; i.e., P is a constant polynomial. But, unless P is the zero polynomial, 
x$l", so has empty point spectrum. 

P r o o f of (b). The author has shown in [7] that Hw£B(l) implies H(l)eB(c). 
The rest of the proof is the same as that of (a). 

P r o o f of (c). Following the proof of (a), since {x„}€c, {x„} is bounded, hence 
x„=o(n1 /2+a), and again ffp(i/(a)) is empty, for a > 0 . 

For a = 0 , x„=o(itl/2), and the only nonzero sequence satisfying (12) is 
í = ( l , 1,...). With a = 0 , each row sum of i f is //„. Therefore <rp (//)={/%}• 

A matrix A is multiplicative if lim Ax=tlimx for some scalar t, x£c. In 
terms of the matrix entries, multiplicativity of A translates into A haying all zero 
column limits. For Hausdorff matrices in B(c) this condition is equivalent to the 
mass function /?(/) being continuous from the right at zero, and specifically ex-
cludes the compact Hausdorff matrix generated by /t0=l> /i„=0, «>0 . Theorem 1 
does not apply to this matrix since there are too many zeros on the main diagonal, 
but a direct analysis yields the point spectrum to be {0, 1}. 
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