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Generalized Toeplitz kernels and dilations of intertwining operators.
II. The continuous case

RODRIGO AROCENA

I. Matricial Toeplitz kernels and intertwining operators

This paper continues a study about the relation between generalized Toeplitz
kernels and the problem of the dilation of the commutant of contractive semigroups,
started in [2], where only discrete semigroups were considered. In Section II we
shall extend that study to general groups. In Section III the group of the real num-
bers is considered and the basic results of this paper on dilation theory — theorems
(I11.11) and (I11.13) — are obtained; the last includes a continuous version of the
theorem on the dilation of the commutant due to Sz.-Nagy and Foias.

In this section we start with preliminary results concerning the relation between
intertwining operators, unitary representations of groups, and positive definite
matricial functions.

We fix a (topological) group I with neutral element e and consider % (H)-
valued kernels on I, i.e. functions K: I'XI' - %(H), where #(H) is the set of
bounded operators on a Hilbert space H. Such a kernel is said to be positive definite,
p.d., if

2 (K(s, Oh(s), h(t)hy = 0,
sterlr
for every function h: I'~ H whose support {tcI': h(¢)0} is a finite set.

If K is such that K(st, su)=K(t,u) holds for all s,t, ucI', then K is deter-
mined by the function G on I' given by G(s5)=K(s, e); conversely, if a function
G on I is given, setting K(s, 1)=G(t~1s) we get a kernel with the above property;
in that case we say that K or — informally speaking — G are Toeplitz kernels.
When H=H,® H, is the direct sum of two Hilbert spaces, H; and H,, then G is
given by a matrix (G j,‘)f,,ml where G (s)€Z(H;, H,) for all scI', and we say that
G is a matricial Toeplitz kernel. '
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A positive definite matricial Toeplitz kernel can be viewed as a relation be-
tween two unitary representations of the given group, in the following sense.

Proposition 1. For j=1,2 let H; be a Hilbert space and G;: I - L (H})
a positive definite Toeplitz kernel on the group I', such that G; equals the identity
on the neutral element of I'; let U; be the minimal unitary dilation of G; to a Hilbert
space F;. Let R(U,, U,) be the set of intertwining operators between U, and U,,
considered as a (closed) subspace of ¥(F,, F,). Then the relation

gls) = PJ”WUl(SNHI; ie. <WU1(S)hi, h2>1-‘: = (g(s)hl, 172>H,,

Jfor all s€T', hy€ H,, hy€ H,, gives a bijection W+g between the unit ball of Z(U;, U,)
and the set of functions f: I'~%(Hy, H,) such that G=(G;)} =1 > Gu=G, Gi2=g,
Gy =8, Gyw=Gy is a positive definite matricial Toeplitz kernel. If moreover I is a
topological group and G,, G, are continuous in the weak topology of operators, then
all such functions g will be continuous in the strong topology. -

Notation. When H is a closed subspace of a Hilbert space F, i/f; denotes
the inclusion of H in F and P% the orthogonal projection of F onto H. If g is a
function on I', we set g(s)=g*(sY). If {S,: 1€ M} is a family of subspaces of
F, \/M S, denotes the minimal closed subspace of F that contains S, for all M.
t€
Proof of Proposition 1. For j=I,2, Uj={Uj(s):"SEF}C$(Fj)_ is.such
that G,(s)= PHJU (s)| ", holds for all s€I" and the minimality condition F;=
= \/ U;(s)H; is also true that 1s the content of Naimark’s dilation theorem (see
ser

[9]). Let G be as in the gbove statement; set, for all s, t€l’, hy€ Hy, h,€ H,,
B(U1(s)h1 s Uz(t)hz) = (G (t715)hy, hy)y,.

Taking in account that the elements U;(s)h; span the space F;, it is easy to verify
that G is p.d. if and only if B defines a bounded sesquilinear form on F; X F, of norm
[Bll=1. In that case there exists W€ (F,, F;) such that -|W|=|B| =1 and
{Wfy, foyr,=B( f1, f2) hold; moreover, from the equalities

WU ), Va1 )by, = (Gualt ™ sty oy, =
= (Uz(s) WUl(u)hp Uz(’)”z)r

and the minimality condition it follows that WU, ()=U,(s)W is true for all sE I‘
Hence, W is a contraction belonging to R(U;, Uy). :

By setting g(s)=Pf WUl(s)]H for all s€TI’, the converse also follows

We now apply the precedmg result to the dilation of the commutant of two
semigroups of isometries. : Lo
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Proposition 2. Let ' be a group with neutral element e and Iy a subsemi-
group of T. Set I'y'={scI: s~cI;} and assume that [[NTI'{'={e} and LU
UIr'=T hold. Let {V(s): s€I} and {Vi(s): s€I1} be two semigroups of . iso-
metries in the Hilbert spaces H, and H,, respectively, and Y a contraction inter-
twining them So that :

(22) YVi(s) = Va(9)Y, for every sely, and |Y| =1 hold.
Let a matricial Toéplitz kernel G be associated with the commutator Y by:

Gj() =Vi(s) if sely, Gy(s)=V,s™Y) if seIth, j=1,25
G(s) =V)Y if s€@y, Gu(s) =Ve(s™DY if s€IT; Gu = Gpe..
Then G is p.d. if and only if the following conditions hold:

(2b)

(2¢)  for j=1,2 there exists a unitary representation U; of I' in a Hilbert space F;
_that contains H; and satisfies

Ui, =V(s) for sely, F;= V U;()Hj);

(2d) there exists W¢ .?(Fl, F) that vertﬁes
- WU () = U ()W f0' sel; Wl =1Yl; PWly, =Y.
Moreover such a W is umque T T

Proof. If Y=0, W=0 is the only solution of (2d), so we may always assume
that Y0 and, by homogeneity, | Y||=1, as in (2a).

If G is p.d. G, and G, have the same property; let U, and U, be their minimal
unitary dilations, respectively. From PF 1U;(s)| n,=G; ;(s) and (2b) it follows that
U;(s) is an extension of the 1sometry V(s) for every sel;. Thus (2¢) is satisfied.
Let W be associated with G as in Proposition 1; then [|W| =1, W intertwines
U, and U,, and (Why, hy)p,=(Gra(€)hy, ho)y,=(Yhy, he)y  holds for all h€H,,
112€H2, thus PF tWlg =Y, so 1_||Y||<HW||<1 Consequently (2d) is also sat-
isfied.

Conversely, assume that (2c) and (2d) hold. From Proposition 1 it follows that
it is enough to prove that G, is the same function as g(s)=L P WU, (s)|y,; now,
if s€I;, then g(s)= PF' WV, (s)=YV,(s)= Glg(s) if sery?, we have for all hlEHl,
heeH,, -
<g(5)hl, hz)u., = <U2(S)Wh1, 2>F, = <P thl, V.,(s*l)h2>H= =

= <V:>.*(~5' HYh,, ’12>Hg.=_<612(3)h1, h2>Hg'
The simplest example is perhaps I'=Z2, the set of integers, I =Z, := {n€ Z: n=0}.

In that case the semigroup ¥;(s) is determined by the isometry ¥;(1), so that we are
concerned ‘with- the commutator- -Y¥]=V;Y - of two isometries. Then it js easy. to
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prove ([2], Lemma I1.3) that G is p.d. so, if U, and U, are the minimal unitary ex-
tensions of ¥; and ¥;, there exists W that verifies WU,=U, W, {|W|=[Y] and
PS:Wl g, =Y. Note that in general the last equality cannot be improved so as to
get W to be a strict lifting of ¥, i.e., such that PE: W= YP{,:. In fact, the last equa-
tion implies YVy=YPyUfip=PRpWUlip=PpUs Wijp=V,* P Wig:, because
U, extends ¥;; thus YP*=¥,*Y. Now, the last equality is not a consequence of
YV;=V,Y because if ¥;=V,=Y=V is any non-unitary isometry then YV *=VV*=
#I=V*Y, etc. '

Let us now go from the discrete to the continuous case. Set I'=R= {real num-
bers}, I;=R,;={s€R: s=0}. In order to apply Proposition 2 we assume that (2a)
holds and consider G given by (2b). Working as in [9], page 30, we can prove that
G is p.d. whenever the semigroups ¥, and ¥, are weakly continuous. Thus:

Corollary 3. Let {Vi(s)}, {Va(5)}, s=0, be two continuous monoparametric
semigroups of isometries in the Hilbert spaces H,, H,, respectively, and let
Yc #(H,, H,) be a contraction intertwining them, i.e., such that

YV() =V,(s)Y for s=0, [Y]=1

For j=1,2 let {U,(s)}, SER, be a minimal extension of V; to a continuous mono-
parametric group of unitary operators in a Hilbert space F;. Then there exists a unique
operator We % (F,, F,) such that

WU.(s) = Uy()W, for every s€R; Y = EitWig,; Y] =|WI.

II. Generalized Toeplitz kernels and dilations of the commutator
of two contractions

When we consider a commutator of two contractions instead of isometries
the method of the preceding section does not work. In fact, the associated matricial
Toeplitz kernel need not be positive definite. (See [2], II.1b.) Nevertheless a suitable
extension of such kind of kernels allows a similar approach to the more general
situation:

Let I be a sub-semigroup of the group I'. A generalized Toeplitz kernel (GTK)
on (I, I7) is by definition a set

K= {(Kjk)y k=12, H, He}
composed of two Hilbert spaces, H; and H,, and four functions

Ky: T ~%(H); Kyo: I'h—>%(Hy, Hy); Ky: I'T' ~L(Hy, Hy); Kyp: T -~ ZL(H,).



Toeplitz kernels and dilations of intertwining operators 127

We say that K is positive definite when
2> 2 (Ku(t71)hi(s), h(D)g, =0
5, k=1,2 s,terl’
holds for every pair of functions of finite support hy: Iy~H,, hy: I'7'~H,.

When I,=I" we have a matricial Toeplitz kernel.

Before, in [5], the vectorial case was considered, and in [2] the subject was
related to the dilation of a commutant of two contractions. Here we shall consider
the general relation between GTK and lifting properties.

We start extending Proposition (I.1).

Proposition 1. For j=1,2 let H; be a Hilbert space and K; an ¥ (H;)-
valued positive definite Toeplitz kernel on an abelian group T, such that K; equals the
identity on the neutral element e of I'; call U; the minimal unitary dilation of K; 1o a
Hilbert space F;. Let I,CI' be a semigroup such that ecI; and every ucI' can be
written as u=t—s, t,scIl;. Set:

E, =V [Uys)H]CE, E_:=V [Uy(—0)H,)]CF,.
ser, tery

Then the formula

(1a)- k(s) = Pi; YU (9)ln,, s€I
gives a bijection between the operators YE L (E,, E_) that satisfy
(1b) ' YU ()ify = P*Us()Y, for s€@y, |Yl=1,

and the functions k such that K={(Kj), k=1, 2; Hy, H,}, given by K,;=K,, K;;=k,
K21=E, K22=K2, iS ap.d. GTK on (I-', 1-1). Set

L(Y) = {We Z(F,, F): WeR(Uy, U, |W| =1, PR W|; =7},
Then
(Io) g(s) = Pz WU\ (S)lg,» s€T,
gives a bijection between L(Y) and the set of functions g: I'~%(H,, H,) such that
G]_]_—'_—K]_l, G12=g, G21=g, G22=K22 de_ﬁnes an element G=(ij)§,k=1 0f the claSS
4 (K) of the p.d. matricial Toeplitz kernels that extend K. In particular, L(Y) is
non void if and only if 9(K) is non void.

Proof. Assume first that (1b) holds; then K satisfies the following equations
for every h,, h, as in the definition of p.d. GTK:

2 (K (s—Dh;(s), h(D)g, = . %r KUY (s), Uy () b (D)g, +

- jk=1,2 s,T€T

-~ +2Re YU, (8) (), Ua(D) ho(0))e_ +{Us(5)hs(s), Up(D (D) } =
= ”sé: Ul(s)hl(s)”%+ +2Re <Ys§ Ui($)hy(s), rg Us()hs(D)z. +”t§ Uz(t)hz(t)”?s_ s

which is a non-negative real number because || Y| =1; thus, K is positive definite.
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Conversely, if the last is assumed, set for all hy, h, as above

D(hy, hy) = 3 {{Kyo(s— ) by (5), ho(D)p,: €Ty, telT ).
Then D defines a sesquilinear form on E, X E_ such that ||D||=1. So there exists
Ye & (E,, E_) which satisfies | Y{|=1 and (Ya, b); =D(a,b) forall (a, b)cE, X
X E_. The proof of Naimark’s -dilation theorem shows that we may assume
U;(s)h;(t)=h;(t—s) to be always true. Thus
YU (W) hy, hopp_ = 5 {(Kpp(s— 1)y (s—u), h‘.:(t)>H=: s€ly, €I} = 4
= (Yhy, Us(—why)p_ = (Pi2Us(w)Yhy, ho)g_.

From the definitions of E, and E_ it follows that (1b) holds. Our first assertion
is proved.

Now let WeL(Y). From (L 1) we know that G is p.d. For any sel, x,€Hy,
x,€ H, we have that

(Gr2(8) X1, Xopm, = < WU, ()1, Xo)w, = (PF2|E+)U] () X1, Xo)g, =
H; YU, ()4, x2>H, = <K12(5)x1, x2>H,,

so GE¥(K). If we start by assuming this, we know that (1c) defines a contraction
WER(Uy, Uy). For all x,€Hy, x,€ Hy, s€I3, t€I'T* we have:

(PEEWUL () %1, Up(D)Xopp_ = (WUL(8) X1, Up(t) Xo)p, = (WU (s—1) X1, Xo)p, =
= <P32WU1(5“1)5‘1’ Xoym, = (85— %y, Xo)y, = k(s— )Xy, Xp)g, =
= (P§; YU, (s—t)xl, Xodu, = <PH2 U,(— t)YUl(s)xl, x2>,,2 = (YU, (8) %1, Up (D) XD _ .
Thus PF”WIE =Y.

If K is a p.d. GTK, the (possibly void) set ¥(K) is naturally related with the
set #(K) of the minimal unitary dilations of X, i.e., of the unitary representations
U of ' on a Hilbert space F such that:

Hy,H,CF;'F=\ {V [U(S)Hj]}

Jj=1,2 "s€

K (s— t)— i, (s — t)ln,, for (s,t)EFXI‘k, j,k:—l 2, with I = 1“1'.

In fact, if Ue%(K), Gy (s)=Pf U(s)lH , for s€rI, defines an element ‘G = (G k=1
of ¥(K). Conversely, if G€¥ (K) its minimal unitary dilation U satisfies the con-
ditions reéquired to belong to #(K) and, by its very definition, is related to G by
the last equality. Moreover, this corréspondence between U and G'is a bijection if
we 1dent1fy in %(K) the representatlons that are equivalent under unitary 1som0r-
phisms that leave invariant all the elements of H, and H,. Thus, if 4(K) non void
for every-positive definite generalized Toeplitz kernel K on (I, I7), it follows that
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Naimark’s dilation theorem extends to these kernels. In such a case we could say
that (I, I;) has Naimark's property. -

When I'=Z, Iy=2Z, (1b) reduces to YV, =V*Y, with V., V. isometries.
It i is known that L(Y) and ¢(K) are both non void and these two facts have been
proved mdependently Because of (1) each of them can be deduced from the other
one. In fact, (Z, Z,) has Naimark’s property [5]. On the other side the lifting of
YV+_V* Y. to a commutator of isometries can be obtained as a particular case
of the.theorem of Sz.-Nagy and Foias. More precisely, this theorem is based on a
previous result ([9], Proposition I1.2.2) which implies that, if ¥” is a minimal iso-
metric dilation of V* to E’> E_, then there exists Y'€ Z (E, E’) such that Y'V, =
V'Y, Y =P§'_ Y’ and | Y’|=1. Now, it is well known that every commutator
of isometriés can be lifted to a commutator of their minimal unitary extensions
(this has also been proved in the previous section); if U is a minimal unitary dila-
tion of V_, U, has the same property with respect to ¥* and V’; it follows that
there exists W¢L(Y), so that this set is non void. In particular, this gives another
proof of the fact that & (K)is non void (which is certamly less simple than the original
one presented in [5]).
. Now we can state the relation between GTK and commutators of semigroups
of contractions by means of the following extension of proposition (I.2).

Proposition 2. Let I' be an Abelian group with neutral element e and I a
sub-semigroup of I'. Set (—I)={s€I': —s€I } and assume that I;(\(—I})={e}
and T,U(—L)=I. Let {Ty(s): s€}} and {Ty(s): scI,} be two semigroups of con-
tractions in the Hilbert spaces H, and H,, respectively. Let Xc¢%(H,, H,) be
such that:

() - XK()=T(9X for 5B, and |X|=1.
Let the GTK K={(Ky), j, k=1,2; Hy, Hy} associated with the commutator (2a)
be defined by
(2b) K;;(s)=Ty(s) if sel, Kj(s)= Tf(=9) if se(-h), j=12;
Kip(9) = T,()X for s€hy; Ko =K.
T hen K is p.d. and %(K) is non void if and only if the following conditions hold:

(2c) for j=1,2 there exists a unitary representation U; of I in a Hilbert space F, 7
that contains H ; and satisfies

Iy = Uj(s)'l{,s Jor sel, F; V WU;()H;1;
(24) there exists WeZ (F,, F,) that satisfies WU, (s)=U,(s)W for all
s€T; |W| =X and P5W|g = XP§:, where Ey:= \ [Uy(s)Hy].

ser,
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Moreover, if -these conditions are satisfied, (1c) gives as in Proposition 1 a bijection
between 9 (K) and the set of operators W as in (2d). '

* Proof. We start assuming K p.d. and 4(K) non void; then K;; and K,, are
also p.d. and (2¢) follows from Naimark’s dilation theorem. For a given G€%(K),
(L) shows that there exists a contraction WER(U,, Uy) such that Gy(s)=
=P WUl(s)l,, holds for all s€T. Then, for x¢ Hy, s¢T;, wehave PRWU,(s)x=
_Gm(s)x Klz(s)x XT,(s)x=XP}: Uy (8)x= XPE tUy(s)x and (2d) follows. As-
sume conversely that (2c) and (2d) are true. First of all, it is easy to see that U;
is a minimal unitary dilation of Kj;; thus the last is positive definite and Uj is es-
sentially unique. Let G=(Gj)j =, be the matricial Toeplitz kernel associated with
the commutator (2d); then G;;=Kj;, j=1,2, and Gyo(8)=Gun()=P WU (s
for s¢I". We know that G is p.d.; moreover, for s€I, U,(s)H,CE;, so we have
Kyo(8)=T(8) X=XT;(8)=XP Uy()lg, =Pfz WU,(8)| g, =G1o(5)- Thus GEF(K).

In the next section what has been done up to now will be applied to commutators
of continuous monoparametric semigroups of contractions. Here, as an example,
we shall recall and complete some results of [2]. The following holds.

Let 7, and T, be contractions in Hilbert spaces H; and H,, respectively, and
Xc%(H,, H,) such that XT,=T,X. Let V€ L(E), Vo,c#(E,) be the minimal
isometric dilations and U, €% (F,), U,€ % (F;) the minimal unitary dilations of T3,
T, respectively. The following two problems are considered:

1) find . Y€ L (E, E;) such that YV,=WY, PﬁzY:XPf,ll, Yl=IXx[;

ii)) find WeZ(F,, F,) such that WU,=U, W, Pf,!g W[E1=XP,'§t, IWi=iXlI.

If X=0 both problems have only the trivial solution, so it is also assumed that
x| =1.

Let K={(K;\),j, k=1,2; Hl,Hz} be the GTK on (Z, Z,) given by K;;(n)=
1f n=0, K;;(m)=T;™" if n=0, j=1,2; Ky,(n)=XT7 for n=0 and KZI—Km

Theorem 3.

a) Both problems have solutions.

b) K is positive definite. :

¢) There is a bijection between the sets of solutions of these problems and with
the set 9(K) of all the positive definite matricial Toeplitz kernels that extend K.

d) This bijection can be obtained as follows: given GE%(K), let F=F,VF,
be the space of the minimal dilation of G; then set W=P[ IF , solution of (i), and
Y=Pf l £ =PV, solution of (ii).

e) The solutzon of these problems is unique if and only if one of the following
equalities is satisfied:

{U-Xx*X)2H}y o{(U,—T)H} = {I-X*X2Th+(U,—T)h: heH,}~,
{(I=X*X)2H}~ @{(Us—T)He} ™ = {(I- X" X)*h®(U.—T) Xh: he Hy}~.
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Proof..

a) Follows from (c) and (b) which imply ¥(K)=#;

b) was proved in [2], Proposition IL.1; :

¢)—d) the assertions concerning Problem (11) stem from Proposmon 2; those
concerning Problem (i), from {2], Theorem II.4; o

e) follows from (c) and the theorem on the uniqueness of the lifting [1]; also,
because ¢ (K) has only one element if and only if one of these equalities is satis-
fied ([2], Theorem IL.8).

The proof is done.

Remark. The above theorem includes the fbllowing result (see '[8]-)> Afor Tl, T;,
X, U, U, as before there exists We¥ (F,, F;) such that WUI_-U2 HX Il —HWII
and X=Pg W|, hold.

* II. The continuous case.

Our task in this section'is to show that the results for the discrete case can be
extended to the continuous one also. Specifically, we shall show that Proposi-
tion I1.2 gives positive results when I'=R, the set of real numbers, and I"'1 R,-
={s€R: 5s=0).

Following our general approach we shall first see that (R Rl) has Nalmark’
property; in other words, we shall state the dilation theorem for continuous operator-
valued GTK, proofs of which were given in [6] and [7] for the sca]ar case. That
result will then be applied to the commutator of two continuous semigroups of
contractions. _ . o )

Our method will be to relate each GTK on (R, R,) with another on (Z, Z,)
by means of a systematic use of the results concerning semigroups, their dilations
and cogenerators, of Sz.-NAGy and Foras (191, Sections I11.8 ‘and III. 9)

We start 'with a p.d. GTK on (R, Ry), K={(Ky), Jk=1,2; Hy, H,}, ‘such
that the K, are weakly continuous functions. We keep the notation of the preceding
section, in particular that of Propositions II.1 and IL.2. Let U; and U; be’the co-
generators of U; and U,, minimal unitary dilations of K, and K, respectively.
It is known that U; and U, are umtary operators and that the foIlowmg holds (191,
Theorem I11.8.1):

1) U’—strong llmlt o.[U; (s)], j=1,2, where di is the holomorphlc functlon

in the complex plane minus the’ pomt (1 +s) glven by D (z) (z—— 1 +s)/(z—-1 s)
for ‘s€R,. o S . - 2

9%
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What follows is based in the next equalities ([9], I11.9.6, II1.9.10).

2) F=VI[U@®H])=VIUrH) j=1,2;
SER nezZ .

E.= V [Ui®H] =V [UPH),
SER, n€z; -
L E_= V [WU@H)= 'V [UPH)
—'SGRx . —n€Z;

As we said, a GTK on (Z, Z,), K'={(K},), J, k=1,2; H, Hy} will be associated
with K. We start defining K7, and Kj, in the natural way:

3). Kj(m)= PRUPy, for meZ, j=1,2
“Then, 'fro'm'(l), we get that

3a) Kj;(m) = stronglimit P{!®I™ [U,(s-sign m))lg,, J=1,2.
s—+0*

Let D be the sesquilinear form on E, X E_ determined by

. 8. . D(Uy(s)hy, Up(Dhg) = (Kig(s— )y, hoYg,, s=0, 1=0, heH,,
UL meH,.

Efo.m £1:1e very Qeﬁnipion we get the identity

) D(Ui(s—i)hy, h) = D(Us(s)hy, Us(Dhe) = D(hy, Up(t—5)hs)

We WAz‘mtv to prove the corresponding result for the discrete case, that is,

-4b) D(Uy™""hy, hy) = D(U™hy, Ui"hy) = D(hy, Uy""hy)

for all méO, n=0, hy¢ H,, h,c H,. In order to do that we refer to the identity ([9],

,II_I.9.9) and to the one we obtain from it by conjugation. They imply, respectively,

4c) T Ugnhy = limit 3 d(s, MU, (ks)hy, m=0, hecH,,

and = _

4d) Uh, = limit 3 dy(=s, ~mUpks)hs, n=0, hcH,,
L. R ~s-0+ k=0- . .

where, for s€Ry and meZ,, {d,(s, m)}, are the coefficients of the Taylor series
of the function &7. Since K is positive definite, D is bounded and consequently the
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following hold:
4e) D(U"="hy, hy) = limit 3 di(s, m—n)D(Uy(ks)hy, hs),
s=0% g—o

D(U™hy, Uythy) = 11m1t 2' dy (s, m) d;(s, ~n)D(Uy(ks)hy,. Uz( JSHhy) =

= limit S [ 2 d,_;(s, m) dy(s, —n)]D(Ul(vs)hl, h;).

In order to prove the last, recall (4a), set v=k-+j and remark that the d,,(s, m)
are real numbers. Then the first equality (4b) stems from :

k
di(s, m+n) = de—,-(s, m) d(s, n), SERl, m, n,kEZp

which is a consequence of &7 @%=@"*", The second equahty (4b) can be proved
in the same way. . ;
We now complete the definition of K” by settlng

5 (Kip(mhy, b, = D(Us™hy, be)s  m€Zis me€Hy, h€Hy; Ky =K.
From (3a), (4) and (4e) we get the following d1rect formulas for K’ in terms of K.

6) Kj(m) = stronglimit de(s, lml)ij[(sign m)ksl, mezZ, j=1,2;

K{,(m) = strong limit Z’ d, (s, m)Klz(ks), meZ,.
s=+0+
We shall see that K’ is p.d. Set ZZ=——Z1 and let f, -»Hj be functions
with finite support, j=1,2. From definitions :(3).and (5), and the identity (4b) it
follows that

AR p(m=n) £;(m); fo(m)y, = H z Urfimp,+ -

j K=1,2 (m, n)ez,x k

+2ReD( Z' Ui fi(m), Z'Ué"fz(n))+” 2' U"'fe(n)ll

because K p.d. implies ||D|| =1.

Consequently, #(K')~%(K’)=@. With each G’€¢%(K’) we. shall associate .
a GEY(K), getting in that way a bijection and, in particular, proving that & (K)
is non void. In order to do that we refer once more to the relation between matricial
Toeplitz kernels and intertwining operators. Given G'= (G’,‘)j k= 1E?(K’) let
T €% (F;, F;) be the operator determined by

7) <TG’ Uimhl’ Ué”h2>F3 = <G;.2 (m— n)hl s h2>H27 m‘s nEZ, hléHls : h2'€H2-’ L
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As we know,

Ta) TeU; = U;Te s "TG" =1,
and it is clear that

o) Gia(m) = PETe Uy, =P U Te |y, for mcZ.
We shall show that TG also intertwines U; and U,:

7c) TG Ul(s) = Ug(S)TG , for s€R.

[t 1s enough to see it for all s=0; in order to do that we refer to a ‘reciprocal ([9],
111.9.8) of a formula we have already used; it implies that

8) Uk =limit 3 Fe)Ufh;, for s=0, heH, j=12,
B "-. —k==-0 . . o

Z+1]
—-1)
5>0. From (8) it fo]lows that TG Ul(s)hl—.hmlt 2’ e (DUSFTe hy=Uy(5)Tg by,

SO (7c) is proved
‘Let Gy,: R~% (H,, H;) be given by

9). v <Glg(s)h1’ hodu, = _<TG' Uy($)hy, h2>Fz, SER, MEH,, hy€H,.

Setting G,,:=K;, G2, G = 512, Gy:=K,, we define a p.d. matricial Toeplitz
kernel G. It only remains to see that G extends K. Since

D (U’khu hz) = <K12 (k)h19 2>Hz <G’2(k)h1, h2>Hz = <TG’ Uikhu h2>F2’

where {c,(8)};~, are the Taylor coefﬁcients of thebfunction es(z)zexp[

it follows from (8) that, for s=>0, we have
(K]z(s)h]_, h2>H3 = D(U]_(S)hl, 2) <TG [llmlt 2 rkck(s)U'khl] h2>Fz =

it <T ¢ Ur(s)h, 2)1-'2 = {G12(hy; ho)u,- ,
Thus, Ge¥% (K) Also, it follows from (9), (8) and (7b) that

10) G,z(s) = strong llmlt 2 e, (Is|)Gio[k(signs)], for sE€R.
Conversely

108) Gjy(m) = strong limit >’ dy(s, |m])Gualks(sign m)], for meZ.
s>0+ k=0 : )

So we have proved the following
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'~ Theorem 11. Let K={(Kj), j.k=1,2; Hy, H,} be a positive definite gen-
eralized Toeplitz kernel on (R, R,) such that the functions K, are continuous in the
weak topology of operators. Then there exists a p.d. GTK K’ on (Z, Z,), such that
there is a bijection between 4(K) and 9(K’). '

The correspondence K—K’ given by this theorem is reversible; the converse of
Jformula (6) is the following:

11a) Kj;(s) = stronglimit S’ e (IsDKj;[(signs)k], s€R, j= 1,2;
r—=1- k=0

K;.(s) = strong limit Z e (s)Kip(k), sER;.
r—-1-
Theorem (1 1) allows us to transfer a uniqueness condition from the discrete
case ([2], Proposition 1.6) to the continuous one.
Corollary 12. Let K be as in theorem (11). Then % (K) contains only one
element if and only if at least one of the following two conditions is satisfied:

i) {I-Q*Q)E}~ = {(I-Q*Q)'*UIE,},
i) {(I-QQ*)"*E_}~ = {(I-QQ"/*U;E_}~,
where Uy, U, are the cogenerators of the minimal unitary dilations of Ky, Ky, respec-
tively, and Q is the operator from
E.=V U(OH, to E_= VN Uys)H,,

s=0 s=0

given for s=0, t=0, hy¢H,, h,c¢ H, by
QU(s)hy, Uz(‘)”z)s- = (Kio(s+0Dhy, hy)y,.

As an application of what has been done in this section we shall state a theorem

on the commutator of two semigroups of contractions which is the contmuous
version of (IL3).

Theorem 13. Let {Ty(s): s=0}, {T,(s): s=0} be continuous monoparametric
semigroups of contraction an Hilbert spaces H,, H,, respectively, and Xc ¥ (H,, H,)
such that XT,(5)=T,(s) X holds for all s=0. Let {V;(5): s=0}C L (Ey), {Va(s): s=0}c
cZ(E,) be minimal isometric dilations and {U,(s): s€ Ryc ¥ (F), {U.(s): s€ R}
Cc & (F,) minimal unitary dilations of the semigroups T, , T, respectively. The following
problems are considered:

i) find YeZL(E,, E») such that YV(s)= Vz(s)Y for s=0, PH=Y =XPp and
1Yl=0x0;

ii) find WeZ(Fy, Fy) such that WU,(s)=Uy(s)W, for scR, Py W| £, =XPg
and |W|=|X].



136 Rodrigo Arocena

Discarding the trivial case, it may be assumed by homogeneity that .|| X|=1.
Let K={(K;), j, k=1,2; Hy, Hy} be the GTK on (R, R, given by

K;(s)=T;(s) if s=0, Kj;(s)=T(—s) if s=0, _]—12

K ()=Ty(s)X if s=0, szif12 Then:

a) Both problems have solutions.

b) K is positive definite. -

c) There exist bijections between the set of solutzons of (1), the orie of (11) and
%(K), and these bijections are determined by

' WUL()hy, Up(ho)y,, for s, t€R, heH,, heH,
(Gya(s— 0 hy, hopy, = X .
: V(S hy, Va(D) hy)g,, for st 5 0, hIEHla thHz-

d) The solution of both problems is unique if and only if dt Ieast one of the fol—
lowing equalities is satisfied: : -

(I~ X* XY HY- @ {(Ui~T) Hy)~ = (I~ X*X)* T h+(U;—T) h: heHy}™,
{(U-X"X)2H )} ©{(Us—T;) Ho}™ = {(I—X*X)l’thB(Ué—Tz')Xhli heH,}™, .
where U], U;, T, T, are the cogenerators of Uy, U,, T, T, respectively. A

Proof. First step: some properties that we have already used ([9], Sections II1.8
and II1.9) show that U; (F;) is the minimal unitary (isometric) dilation of T%; where,
Vj’ denotes the cogenerator of the semigroup ¥;; moreover, X77=T;X holds;
from WU=U,W it follows that WU,(s)=U,(s)W for all s¢R, and from
YW =V;Y, that YVi(s)=Vo(s)Y for all s€R,.

Second step: apply Theorem 11.3 to 17, T,, V', V', U;, Uy, calhng K’ the GTK,
on (Z,Z,) that in its statement is called X. -

Third step: note that (11a) relates precxsely the kernels K and K’ we are con-
sidering here. :

Fourth step: apply Theorem 11 of this section.

Remark. The applications of generalized and matricial Toeplitz kel"nels’to'
the realization of linear systems and scattering theory are considered in [3] and [4].

Added in proofs. A more conceptual appraach to the concept of section
I is given in [10].
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