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Contractions quasisimilar to an isometry 

PEI YUAN WU*) 

1. Introduction. The bounded linear operators 7i and T2 on complex, separable 
Hilbert spaces and §>2 are quasisimilar if there are operators X: Si— 
and Y: with trivial kernel and dense range such that XT1=T2X and 
YT2=TXY. This paper is concerned with the question when a contraction is quasi-
similar to an isometry. This problem has been studied before: in [12] for contrac-
tions with finite defect indices, [5] for subnormal contractions and [15] for hypo-
normal contractions. Our main result in this paper (Theorem 2.7) generalizes all 
these previous ones. We show that a contraction T whose C.0 part has finite multi-
plicity is quasisimilar to an isometry if and only if its C.x part is of class Cu and 
its C.0 part is quasisimilar to a unilateral shift. These latter conditions can further 
be expressed in terms of the inner and outer factors of the characteristic function 
of T. In § 3, we show that in certain circumstances quasisimilarity to an isometry 
even implies unitary equivalence and partially verify a conjecture we proposed 
in [15]. 

Recall that a contraction T ( | |T | |^1) is of class C.„ (resp. C0.) if T*"x^0 
(resp. T"x-~0) for all x; T is of class C.j (resp. C^.) if T*"x-(-0 (resp. T"x+0) 
for all x^O. Cxp=Ca.f)C.p for a, /?=0, 1. Any contraction T can be uniquely 

triangulated as ^ J , where Tx and T2 are of classes C.x and C.0, respectively 

(called the C.x and C.„ parts of T). A contraction T can also be decomposed as 
U®T', where U is a unitary operator and T' is completely nonunitary (c.n.u.); 
U and T' are called the unitary part and c.n.u. part of T. T is said to be of analytic 
type if it has no singular unitary direct summand. For such T, the functional calculus, 
(p(T) for cp£H°° is well-defined. For the details and other properties of contractions, 
readers are referred to SZ.-NAGY and FOIA§' book [7]. 
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d 
Let 71 and T2 be operators on and § 2 , respectively. We use TX<T2 to denote 

that there is an operator X\ § 2 with dense range and satisfying XT1=T2X, 
and TX-<T2 if the intertwining X is both injective and with dense range (called a 

d d d 
quasiaffinity). TX~T2 if TX<T2 and T2«C71; TX~T2 if TX<T2 and T2<TX. 
Tx is similar to T2 (TX^T2) if the intertwining operator X is invertible; 71 is unitarily 
equivalent to T2 (71 = T2) if X is unitary. The multiplicity fiT of an operator on § 

OP 
is the minimum cardinality of a set for which § = V T"R. Note that 

n = 0 
d 

TX<T2 implies ¡iT ^nTt. In the following, we use S„ to denote the unilateral shift 
with multiplicity n acting on H*. 

2. Main results. We start with the following proposition. 

P ropos i t i on 2.1. Let T be a contraction on $ and 1SB<«>. Then T~Sn 

if and only if T~S„. Moreover, in this case, T is of class C10, and there exist quasi-
affinities X: § — H* and Y: //n

2—§ which intertwine T and S„ and such that 
XY=8(S„) and YX=S(T) for some outer function 8 in H°°. 

Proof . Assume that T~S„. We first show that T is of analytic type. Let 
T=US®T' on § = § j © § 2 , where Us is a singular unitary operator and T' is a 

contraction of analytic type, and let y = j ^ j . H 2 — § = § i © § 2 be an operator 

intertwining S„ and T and with dense range. Then Yx intertwines S„ and Us and 
has dense range in . It can be lifted to an operator Yx which intertwines the minimal 
unitary extension U of S„ and Us (cf. [4, Corollary 5.1]). Since U is absolutely con-
tinuous and Us is singular, Tx must be the zero operator (cf. [4, Theorem 3]). Hence 
y 1 = 0 and it follows that T= T is of analytic type. 

Let X: be an operator intertwining T and Sn and with dense range. 
Then XY commutes with Sn and has dense range in H2. We may assume that 
|| Z y || s i . Thus Z y is the operator <P+ of multiplication by a contractive operator-
valued analytic function <P on which is even outer (cf. [7, Lemma V.3.2]). By 
[7, Proposition V.6.1], 0 has a scalar multiple there exists another con-
tractive analytic function Q such that Q {).)<!>(?)=6 {>) I and <P(X)Q(X) = 
=5(X)I 1). Since 0 is an outer function, we may take 8 to be outer (cf. [7, 
Theorem V.6.2]). Let Z=Q+X. Then Z intertwines T and Sn and ZY=(Q+X)Y= 
=Q+$+=S(Sn). Multiplying both sides by Y, we obtain YZY=Y8(S„)=8(T)Y 
(here we need the fact that T is of analytic type). Since Y has dense range, we infer 
that YZ=8(T). Note that 8 is outer implies that S(S„) and 5(T) are quasiaffinities 
(cf. [7, Proposition III.3.1]). It follows easily that X, Y and Z are all quasiaffinities. 
This shows that 7T~S'n. That T is of class Cw can be easily deduced. 
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C o r o l l a r y 2.2. Let T be a contraction of analytic type and l s n < « > . Then 
d 

T~S„ if and only if fiT=n and T-<Sn. 

P r o o f . The assertion follows from Proposition 2.1 and the fact that fiT=n 

implies that S„-<T (cf. [15, Lemma 2.3]). 

When T is subnormal, the preceding corollary was essentially proved by HAS-
TINGS [5, Proposition 4.1]. For another set of conditions in order that T ~ S n , 
compare [1, Theorem 2.8]. 

C o r o l l a r y 2.3. Let 7 " = ^ * j on §=§1©§2 be a contraction of analytic 
d 

type. If 7i is not missing and T2<Sn, then /ir£n +1. 

P r o o f . Since we may assume that Let X: §>2^»H2 be 
an operator intertwining T2 and S„ and with dense range. Let Y= [0 X): §=§!© 
©§2—-ff„2. Then Y intertwines T and S„ and has dense range. If pT=n, then 
T~S„ by Corollary 2.2 and so by the proof of Proposition 2.1 y is injective, which 
implies that § i = {0}, a contradiction. Hence we have +1. 

The next theorem characterizes those contractions which are quasisimilar to 
a unilateral shift with finite multiplicity in terms of their characteristic functions. 
It generalizes [12, Lemma 1] for contractions with finite defect indices. For any 
contraction T, let 0T denote its characteristic function (consult [7] for its definition 
and properties). 

T h e o r e m 2.4. Let T be a contraction and l s n < = » . Then T~Sn if and 
only if T is of class C10, pT—n and there exists a bounded analytic function Q such 
that QQT—8I for some outer function § in H°°. 

P r o o f . Assume that T~Sn. It is easily seen that T is of class Cio whence 
c.n.u. We may consider its functional model, that is, consider 7"acting on § = / / £ © 
QGTHl by Tf=P(e"f) for / £ § , where t>=ran(/-T*T)1'2, = r a n ( I - 7 T * ) 1 / 2 

and P denotes the orthogonal projection onto § (cf. [7, Proposition VI.2.1]). By 
Proposition 2.1, there exist quasiaffinities X: and Y: //n

2—§ which inter-
twine T and S„ and satisfy XY=S(Sn) and YX=8(T) for some outer function 
3 in H°°. Note that Xf= <Pf for / € $ and Yg=P(1/g) for g£H2, where and W 
are bounded analytic functions satisfying <P0T=O (cf. [7, Theorem VI.3.6]). From 
XY=S(Sn) and YX=5(T), we deduce that <P1/=d and V$-5 = -0TQ for 
some bounded analytic function Q. Since 0 T is an inner function (cf. [7, Proposi-
tion VI.3.5]), we have 

Q0T—8 = 0$0T(Q0T-D) = 0*T(0TQ-S)0T = ©$(- V&)0T = 0. 
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Therefore Q0T=ôI as required. The reverse implication follows as in the proof 
of [12, Lemma 1]. 

Using Proposition 2.1, Theorem 2.4 and [14, Theorem 2.1], we can obtain the 
following interesting result. 

[ T, * 1 <* 

q j I be a contraction. If T2~S„ for some 1 then T~TL®T2. 

Proof . If Tis c.n.u., then the conclusion follows from the results cited above. 
For general T, let T=U@T' on § = « © £ , where U is unitary and T' is c.n.u. 

Assume that T— | q1 * j is acting on § = § 1 © § 2 . We first check that f$2 = ~-

Since T2~Sn implies that T2 is of class C10 by Proposition2.1, for any x£§>2, 
we have T*mx=T%mx-~0 as If a ^ ^ © . ^ , where x^Sx and x2£2, 
then ZJ*mxx —*-0. Since U is unitary, this implies that x1=0 and thus x = x 2 £ £ . 
This proves § 2 Q f i which is equivalent to . It is easily seen that 

T = 
U 0 0 
0 T{ * 
0 0 T2 

on $ = « ' © ( $ ! e i i ) © $ 2 . 

Since * | is c.n.u., from above we have j — r / f f i i ; and therefore 

We remark that it is unknown whether the preceding theorem is still valid 
under n = °°, that is, when T 2 ~S m or T2~S'00. In a very special case, this is 
indeed true. 

Theorem 2.6. Let q1 * j be a contraction. If T2 is similar to an isometry, 

then T is similar to Tt ®T2. 

Proof . If Tis c.n.u., this follows from [8,.Theorem 2.4] and [14, Theorem 2.1]. 
For the general case, assume that T2 is similar to the isometry V = W© Sn, where 
IF is unitary and S„ is some unilateral shift. It is easily seen that T2 can be triangulated 

as [ I *J with T Z ^ W and T ^ S „ . Letting 7 ; = ^ * ] , we have * J . 

Since T4~5„, proceeding as in the proof of Theorem 2.5 we obtain r « r 5 f f i r 4 . 
On the other hand, T 3 ^ W implies that T ^ T ^ T s and r 2 ^ r 3 © r 4 (cf. [9, Theo-
rem 2.14]). Thus TzzT1@Ts(BTi^Ti®T2 as claimed. 

Now we are ready for our main result. 

Theo rem 2.7. Let T be a contraction and T= ^ q1 * j be its triangulation of 

type j ^ 1 J . Assume that 00 • Then the following statements are equivalent: 
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(1) T is quasisimilar to an isometry; 
(2) 7i is of class C u and T2 is quasisimilar to a unilateral shift; 
(3) 0e (the outer factor of 0T) is outer from both sides, 0¡ (the inner factor 

of ©r) is inner and *-outer, and there exists a bounded analytic function Q such that 
Q©¡=31 for some outer function 5 in H°°. 

Moreover, if T is of analytic type and is quasisimilar to the isometry V, then 
there are quasiaffinities X and Y intertwining T and V such that XY=5(V) and 
YX=5(T). 

Proof . (1)=K2): Assume that T^V-U®S„, where U is unitary. Since T± 

and U are of class C.x and T2 and S„ are of class C.„, we can easily deduce that 
T2~S„. This, together with implies that T2~Sn by Proposition2.1. 
On the other hand, T<y implies that T is of class Cx. whence Tx is of class C u . 

(2)=>(1): This follows from Theorem 2.5. 
(2)<=>(3): Since 0e and 0¡ correspond to the characteristic functions of Tx 

and T2, respectively, this follows from Theorem 2.4 and [7, Proposition VI.3.5]. 
The assertion concerning the intertwining quasiaffinities can be deduced easily 

from [14, Theorem 2.1]. 
As we remarked in §1, the preceding theorem generalizes [11, Theorem 3] 

for contractions with finite defect indices, [5, Corollary to Theorem 4.5] for sub-
normal contractions and [14, Corollary 3.11] for hyponormal contractions. An ex-
ample of HASTINGS [5] shows that (1) may not imply (2) without the assumption 
/xTj< It is interesting to contrast this theorem it with [10, Theorem 2] where 
"quasisimilarity" is replaced by "similarity" in which case 00 won't be needed. 

3. Some consequences. In this section, we will derive two results for which an 
operator quasisimilar to an isometry is even unitarily equivalent to it. More precisely, 
we show that if V= U®Sn is an isometry, where U is unitary and and 
T is a quasinormal operator or TéAlg V (the weakly closed álgebra generated by 
T and 1), then r ~ V implies T= V. For the first one, we prove the following 
more general result. 

P r o p o s i t i o n 3.1. If T is a contraction whose c.n.u. part is of class C.0 and 
V=U®Sn is an isometry with n< then T~V implies T~V. 

Proof . Let T=U'®T', where U' is unitary and T' is c.n.u. Since U' and 
U are of class C.v and T' and S„ are of class C.0, we deduce from V that 
T'¿S„. Thus T'~S„ by Proposition 2.1 and therefore T~U'®S„-iv. [ 15,' 
Lemma 3.4] yields that U'®Sn^V. Thus T~V as asserted. 

C o r o l l a r y 3.2. If T is a hyponormal operator and V=U®Sn is an isometry 
i 

with then T~V implies T~V. 
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P r o o f . implies that their spectra are equal [2, Theorem 2], so are their 
spectral radii: r(T)=r(V). Hence \\T\\=r(T)=r(V) = \ showing that T is a con-
traction. Now the assertion follows from Proposition 3.1 and the fact that c.n.u. 
hyponormal contractions are of class C.„ [6]. 

C o r o l l a r y 3.3. If T is a quasinormal operator and V=U®S„ is an isometry 
with «< <», then T~F implies T^V. 

Proof . By Corollary 3.2, we have T ~ V . For quasinormal T, this implies 
cf. [15, Proposition 4.2]). 

Now for our final result. In [15], we asked whether for isometry V, Alg V 
and r ~ F imply T ^ V , and showed that this is indeed the case if T ^ V [15, 
Proposition4.6]. We will now verify its validity when V=U®Sn with We 
start with the following. For any operator T, denotes the direct sum of n co-
pies of T. 

L e m m a 3.4. Let T be a contraction. If T(n) ~ Sn for some 1 then 
T~S1. 

P r o o f . Since 0tM = ©<$\ Proposition 2.1 and Theorem2.4 imply that Tin) 

is of class C10 and there exists a bounded analytic function Q such that Q & ^ = d l 
for some outer function <5 in H°°. If <f> denotes the (1, l)-entry of Q, then &&T=5I. 
Thus, by Theorem 2.4 again, T~Sk for some 1 Since Sn ~ T(n) ~ Skn, we 
conclude that k=1 and T~St. 

P r o p o s i t i o n 3.5. Let V=U®S„ be an isometry with If Alg F 
and T~ V, then T^V. 

P r o o f . Let U=Us®Ua, where Us and Ua are singular and absolutely con-
tinuous unitary operators, respectively. In view of [15, Lemma 4.3], we may assume 
that F is not unitary. Hence T£ Alg F implies that T=W®(p(Ua®S„), where 
W^Alg Us and (cf. [13, Lemma 1.3] and [11, Lemma 3.11]). This shows 
that T is hyponormal and therefore V implies, by Corollary 3.2, that F. 
If <p is a constant function, then 7" is normal whence 7"~F implies that F i s unitary, 
a contradiction. Thus q> is nonconstant and therefore cp(S„) is completely non-
normal (cf. [15, Lemmas4.4 and 4.5]). Hence T~V implies that W®(p(Ua)^U 
and q>(Sn) ~ S„ by [5, Proposition 3.5]. We apply Lemma 3.4 to obtain that 

" It follows from [3, Theorem 1] that (p(S1)^S1 whence (p(Sn)^S„ and 
T ^ V follows. 

A d d e d in p roof . TAKAHASHI [16] showed that for isometry F, 7<£Alg F 
and T ~ V imply T ^ V which answered the question asked in [15]. 
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