Contractions quasisimilar to an isometry

PEI YUAN WU*)

1. Introduction. The bounded linear operators T_{1} and T_{2} on complex, separable Hilbert spaces \mathfrak{H}_{1} and \mathfrak{S}_{2} are quasisimilar $\left(T_{1} \sim T_{2}\right)$ if there are operators $X: \mathfrak{S}_{1} \rightarrow \mathfrak{H}_{2}$ and $Y: \mathfrak{S}_{2} \rightarrow \mathfrak{S}_{1}$ with trivial kernel and dense range such that $X T_{1}=T_{2} X$ and $Y T_{2}=T_{1} Y$. This paper is concerned with the question when a contraction is quasisimilar to an isometry. This problem has been studied before: in [12] for contractions with finite defect indices, [5] for subnormal contractions and [15] for hyponormal contractions. Our main result in this paper (Theorem 2.7) generalizes all these previous ones. We show that a contraction T whose $C_{\cdot 0}$ part has finite multiplicity is quasisimilar to an isometry if and only if its $C_{\cdot 1}$ part is of class C_{11} and its $C_{.0}$ part is quasisimilar to a unilateral shift. These latter conditions can further be expressed in terms of the inner and outer factors of the characteristic function of T. In § 3, we show that in certain circumstances quasisimilarity to an isometry even implies unitary equivalence and partially verify a conjecture we proposed in [15].

Recall that a contraction $T(\|T\| \leqq 1)$ is of class $C_{\cdot 0}$ (resp. C_{0}.) if $T^{* n} x \rightarrow 0$ (resp. $T^{n} x \rightarrow 0$) for all $x ; T$ is of class $C_{.1}$ (resp. C_{1}.) if $T^{* n} x+0$ (resp. $T^{n} x+0$) for all $x \neq 0 . C_{\alpha \beta}=C_{\alpha} \cap C_{\cdot \beta}$ for $\alpha, \beta=0,1$. Any contraction T can be uniquely triangulated as $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$, where T_{1} and T_{2} are of classes $C_{\cdot 1}$ and $C_{\cdot 0}$, respectively (called the $C_{\cdot 1}$ and $C_{.0}$ parts of T). A contraction T can also be decomposed as $U \oplus T^{\prime}$, where U is a unitary operator and T^{\prime} is completely nonunitary (c.n.u.); U and T^{\prime} are called the unitary part and c.n.u. part of $T . T$ is said to be of analytic type if it has no singular unitary direct summand. For such T, the functional calculus, $\varphi(T)$ for $\varphi \in H^{\infty}$ is well-defined. For the details and other properties of contractions, readers are referred to Sz.-Nagy and Foiaş' book [7].
*) This research was partially supported by National Science Council of Taiwan, China.
Received September 6, 1985.

Let T_{1} and T_{2} be operators on \mathfrak{S}_{1} and \mathfrak{S}_{2}, respectively. We use $T_{1} \stackrel{d}{<} T_{2}$ to denote that there is an operator $X: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ with dense range and satisfying $X T_{1}=T_{2} X$, and $T_{1}<T_{2}$ if the intertwining X is both injective and with dense range (called a quasiaffinity). $\quad T_{1} \stackrel{d}{\sim} T_{2}$ if $T_{1} \stackrel{d}{<} T_{2}$ and $T_{2} \stackrel{d}{<} T_{1} ; T_{1} \sim T_{2}$ if $T_{1}<T_{2}$ and $T_{2}<T_{1}$. T_{1} is similar to $T_{2}\left(T_{1} \approx T_{2}\right)$ if the intertwining operator X is invertible; T_{1} is unitarily equivalent to $T_{2}\left(T_{1} \cong T_{2}\right)$ if X is unitary. The multiplicity μ_{T} of an operator on \mathfrak{H} is the minimum cardinality of a set $\mathfrak{\Omega \subseteq \mathfrak { S }}$ for which $\mathfrak{H}=\bigvee_{n=0}^{\infty} T^{n} \mathcal{M}$. Note that $T_{1} \stackrel{d}{<} T_{2}$ implies $\mu_{T_{1}} \geqq \mu_{T_{2}}$. In the following, we use S_{n} to denote the unilateral shift with multiplicity n acting on H_{n}^{2}.
2. Main results. We start with the following proposition.

Proposition 2.1. Let T be a contraction on \mathfrak{G} and $1 \leqq n<\infty$. Then $T \sim S_{n}$ if and only if $T \stackrel{d}{\sim} S_{n}$. Moreover, in this case, T is of class C_{10}, and there exist quasiaffinities $X: \mathfrak{H} \rightarrow H_{n}^{2}$ and $Y: H_{n}^{2} \rightarrow \mathfrak{H}$ which intertwine T and S_{n} and such that $X Y=\delta\left(S_{n}\right)$ and $Y X=\delta(T)$ for some outer function δ in H^{∞}.

Proof. Assume that $T \stackrel{d}{\sim} S_{n}$. We first show that T is of analytic type. Let $T=U_{s} \oplus T^{\prime}$ on $\mathfrak{S}_{=}=\mathfrak{S}_{1} \oplus \mathfrak{S}_{2}$, where U_{s} is a singular unitary operator and T^{\prime} is a contraction of analytic type, and let $Y=\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right]: H_{n}^{2} \rightarrow \mathfrak{H}_{=}=\mathfrak{H}_{1} \oplus \mathfrak{H}_{2}$ be an operator intertwining S_{n} and T and with dense range. Then Y_{1} intertwines S_{n} and U_{s} and has dense range in \mathfrak{H}_{1}. It can be lifted to an operator \widetilde{Y}_{1} which intertwines the minimal unitary extension U of S_{n} and U_{s} (cf. [4, Corollary 5.1]). Since U is absolutely continuous and U_{s} is singular, \widetilde{Y}_{1} must be the zero operator (cf. [4, Theorem 3]). Hence $Y_{1}=0$ and it follows that $T=T^{\prime}$ is of analytic type.

Let $X: \mathfrak{G} \rightarrow H_{n}^{2}$ be an operator intertwining T and S_{n} and with dense range. Then $X Y$ commutes with S_{n} and has dense range in H_{n}^{2}. We may assume that $\|X Y\| \leqq 1$. Thus $X Y$ is the operator Φ_{+}of multiplication by a contractive operatorvalued analytic function Φ on H_{n}^{2} which is even outer (cf. [7, Lemma V.3.2]). By [7, Proposition V.6.1], Φ has a scalar multiple $\delta \in H^{\infty}$: there exists another contractive analytic function Ω such that $\Omega(\lambda) \Phi(\lambda)=\delta(\lambda) I$ and $\Phi(\lambda) \Omega(\lambda)=$ $=\delta(\lambda) I(|\lambda|<1)$. Since Φ is an outer function, we may take δ to be outer (cf. [7, Theorem V.6.2]). Let $Z=\Omega_{+} X$. Then Z intertwines T and S_{n} and $Z Y=\left(\Omega_{+} X\right) Y=$ $=\Omega_{+} \Phi_{+}=\delta\left(S_{n}\right)$. Multiplying both sides by Y, we obtain $Y Z Y=Y \delta\left(S_{n}\right)=\delta(T) Y$ (here we need the fact that T is of analytic type). Since Y has dense range, we infer that $Y Z=\delta(T)$. Note that δ is outer implies that $\delta\left(S_{n}\right)$ and $\delta(T)$ are quasiaffinities (cf. [7, Proposition III.3.1]). It follows easily that X, Y and Z are all quasiaffinities. This shows that $T \sim S_{n}$. That T is of class C_{10} can be easily deduced.

Corollary 2.2. Let T be a contraction of analytic type and $1 \leqq n<\infty$. Then $T \sim S_{n}$ if and only if $\mu_{T}=n$ and $T \stackrel{d}{<} S_{n}$.

Proof. The assertion follows from Proposition 2.1 and the fact that $\mu_{T}=n$ implies that $S_{n} \stackrel{d}{<} T$ (cf. [15, Lemma 2.3]).

When T is subnormal, the preceding corollary was essentially proved by Hastings [5, Proposition 4.1]. For another set of conditions in order that $T \sim S_{n}$, compare [1, Theorem 2.8].

Corollary 2.3. Let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ on $\mathfrak{G}=\mathfrak{5}_{1} \oplus \mathfrak{S}_{2}$ be a contraction of analytic type. If T_{1} is not missing and $T_{2} \stackrel{d}{<} S_{n}$, then $\mu_{T} \geqq n+1$.

Proof. Since $\mu_{T} \geqq \mu_{T 2} \geqq n$, we may assume that $n<\infty$. Let $X: \mathfrak{S}_{2} \rightarrow H_{n}^{2}$ be an operator intertwining T_{2} and S_{n} and with dense range. Let $Y=[0 X]: \mathfrak{G}=\mathfrak{F}_{1} \oplus$ $\oplus \mathfrak{S}_{2} \rightarrow H_{n}^{2}$. Then Y intertwines T and S_{n} and has dense range. If $\mu_{T}=n$, then $T \sim S_{n}$ by Corollary 2.2 and so by the proof of Proposition $2.1 Y$ is injective, which implies that $\mathfrak{Y}_{1}=\{0\}$, a contradiction. Hence we have $\mu_{T} \geqq n+1$.

The next theorem characterizes those contractions which are quasisimilar to a unilateral shift with finite multiplicity in terms of their characteristic functions. It generalizes [12, Lemma 1] for contractions with finite defect indices. For any contraction T, let Θ_{T} denote its characteristic function (consult [7] for its definition and properties).

Theorem 2.4. Let T be a contraction and $1 \leqq n<\infty$. Then $T \sim S_{n}$ if and only if T is of class $C_{10}, \mu_{T}=n$ and there exists a bounded analytic function Ω such that $\Omega \Theta_{T}=\delta I$ for some outer function δ in H^{∞}.

Proof. Assume that $T \sim S_{n}$. It is easily seen that T is of class C_{10} whence c.n.u. We may consider its functional model, that is, consider T acting on $\mathfrak{H}=H_{D_{*}}^{2} \Theta$ $\ominus \Theta_{T} H_{D}^{2}$ by $T f=P\left(e^{i t} f\right)$ for $f \in \mathfrak{G}$, where $\mathfrak{D}=\overline{\operatorname{ran}\left(I-T^{*} T\right)^{1 / 2}}, \mathfrak{D}_{*}=\overline{\operatorname{ran}\left(I-T T^{*}\right)^{1 / 2}}$ and P denotes the orthogonal projection onto \mathfrak{J} (cf. [7, Proposition VI.2.1]). By Proposition 2.1, there exist quasiaffinities $X: \mathfrak{G} \rightarrow H_{n}^{2}$ and $Y: H_{n}^{2} \rightarrow \mathfrak{H}$ which intertwine T and S_{n} and satisfy $X Y=\delta\left(S_{n}\right)$ and $Y X=\delta(T)$ for some outer function δ in H^{∞}. Note that $X f=\Phi f$ for $f \in \mathfrak{G}$ and $Y g=P(\Psi g)$ for $g \in H_{n}^{2}$, where Φ and Ψ are bounded analytic functions satisfying $\Phi \Theta_{T}=0$ (cf. [7, Theorem VI.3.6]). From $X Y=\delta\left(S_{n}\right)$ and $Y X=\delta(T)$, we deduce that $\Phi \Psi=\delta$ and $\Psi \Phi-\delta=-\Theta_{T} \Omega$ for some bounded analytic function Ω. Since Θ_{T} is an inner function (cf. [7, Proposition VI.3.5]), we have

$$
\Omega \Theta_{T}-\delta=\Theta_{T}^{*} \Theta_{T}\left(\Omega \Theta_{T}-\delta\right)=\Theta_{T}^{*}\left(\Theta_{T} \Omega-\delta\right) \Theta_{T}=\Theta_{T}^{*}(-\Psi \Phi) \Theta_{T}=0
$$

Therefore $\Omega \Theta_{T}=\delta I$ as required. The reverse implication follows as in the proof of [12, Lemma 1].

Using Proposition 2.1, Theorem 2.4 and [14, Theorem 2.1], we can obtain the following interesting result.

Theorem 2.5. Let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ be a contraction. If $T_{2} \stackrel{d}{\sim} S_{n}$ for some $1 \leqq n<\infty$, then $T \sim T_{1} \oplus T_{2}$.

Proof. If T is c.n.u., then the conclusion follows from the results cited above. For general T, let $T=U \oplus T^{\prime}$ on $\mathfrak{H}=\Omega \oplus \mathfrak{L}$, where U is unitary and T^{\prime} is c.n.u. Assume that $\boldsymbol{T}=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ is acting on $\mathfrak{S}_{\boldsymbol{H}}=\mathfrak{S}_{1} \oplus \mathfrak{S}_{2}$. We first check that $\mathfrak{H}_{2} \subseteq \mathbb{E}$. Since $T_{2} \stackrel{d}{\sim} S_{n}$ implies that T_{2} is of class C_{10} by Proposition 2.1, for any $x \in \mathfrak{H}_{2}$, we have $T^{* m} x=T_{2}^{* m} x \rightarrow 0$ as $m \rightarrow \infty$. If $x=x_{1} \oplus x_{2}$, where $x_{1} \in \mathfrak{\Re}$ and $x_{2} \in \mathscr{Q}$, then $U^{* m} x_{1} \rightarrow 0$. Since U is unitary, this implies that $x_{1}=0$ and thus $x=x_{2} \in \mathbb{L}$. This proves $\mathfrak{S}_{2} \subseteq \mathfrak{E}$ which is equivalent to $\mathfrak{K} \subseteq \mathfrak{S}_{1}$. It is easily seen that

$$
T=\left[\begin{array}{ccc}
U & 0 & 0 \\
0 & T_{1}^{\prime} & * \\
0 & 0 & T_{2}
\end{array}\right] \quad \text { on } \quad \mathfrak{H}=\mathfrak{N} \oplus\left(\mathfrak{H}_{1} \ominus \mathfrak{R}\right) \oplus \mathfrak{S}_{2}
$$

Since $\left[\begin{array}{cc}T_{1}^{\prime} & * \\ 0 & T_{2}\end{array}\right]$ is c.n.u., from above we have $\left[\begin{array}{cc}T_{1}^{\prime} & * \\ 0 & T_{2}\end{array}\right] \sim T_{1}^{\prime} \oplus T_{2}$ and therefore $T \sim$ $\sim U \oplus T_{1}^{\prime} \oplus T_{2}=T_{1} \oplus T_{2}$.

We remark that it is unknown whether the preceding theorem is still valid under $n=\infty$, that is, when $T_{2} \stackrel{d}{\sim} S_{\infty}$ or $T_{2} \sim S_{\infty}$. In a very special case, this is indeed true.

Theorem 2.6. Let $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ be a contraction. If T_{2} is similar to an isometry, then T is similar to $T_{1} \oplus T_{2}$.

Proof. If T is c.n.u., this follows from [8, Theorem 2.4] and [14, Theorem 2.1]. For the general case, assume that T_{2} is similar to the isometry $V=W \oplus S_{n}$, where W is unitary and S_{n} is some unilateral shift. It is easily seen that T_{2} can be triangulated as. $\left[\begin{array}{cc}T_{3} & * \\ 0 & T_{4}\end{array}\right]$ with $T_{3} \approx W$ and $T_{4} \approx S_{n}$. Letting $T_{5}=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{3}\end{array}\right]$, we have $T=\left[\begin{array}{cc}T_{5} & * \\ 0 & T_{4}\end{array}\right]$. Since $T_{4} \approx S_{n}$, proceeding as in the proof of Theorem 2.5 we obtain $T \approx T_{5} \oplus T_{4}$. On the other hand, $T_{3} \approx W$ implies that $T_{5} \approx T_{1} \oplus T_{3}$ and $T_{2} \approx T_{3} \oplus T_{4}$ (cf. [9, Theorem 2.14]). Thus $T \approx T_{1} \oplus T_{3} \oplus T_{4} \approx T_{1} \oplus T_{2}$ as claimed.

Now we are ready for our main result.
Theorem 2.7. Let T be a contraction and $T=\left[\begin{array}{cc}T_{1} & * \\ 0 & T_{2}\end{array}\right]$ be its triangulation of type $\left[\begin{array}{cc}C_{.1} & * \\ 0 & C_{.0}\end{array}\right] \because$ Assume that $\mu_{T_{3}}<\infty$. Then the following statements are equivalent:
(1) T is quasisimilar to an isometry;
(2) T_{1} is of class C_{11} and T_{2} is quasisimilar to a unilateral shift;
(3) Θ_{e} (the outer factor of Θ_{T}) is outer from both sides, Θ_{i} (the inner factor of Θ_{T}) is inner and $*$-outer, and there exists a bounded analytic function Ω such that $\Omega \Theta_{i}=\delta I$ for some outer function δ in H^{∞}.

Moreover, if T is of analytic type and is quasisimilar to the isometry V, then there are quasiaffinities X and Y intertwining T and V such that $X Y=\delta(V)$ and $Y X=\delta(T)$.

Proof. (1) \Rightarrow (2): Assume that $T \sim V=U \oplus S_{n}$, where U is unitary. Since T_{1} and U are of class $C_{\cdot 1}$ and T_{2} and S_{n} are of class $C_{\cdot 0}$, we can easily deduce that $T_{2} \stackrel{d}{\sim} S_{n}$. This, together with $\mu_{T_{2}}<\infty$, implies that $T_{2} \sim S_{n}$ by Proposition 2.1. On the other hand, $T \prec V$ implies that T is of class C_{1}. whence T_{1} is of class C_{11}.
$(2) \Rightarrow(1)$: This follows from Theorem 2.5 .
(2) $\Leftrightarrow(3)$: Since Θ_{e} and Θ_{i} correspond to the characteristic functions of T_{1} and T_{2}, respectively, this follows from Theorem 2.4 and [7, Proposition VI.3.5].

The assertion concerning the intertwining quasiaffinities can be deduced easily from [14, Theorem 2.1].

As we remarked in § 1, the preceding theorem generalizes [11, Theorem 3] for contractions with finite defect indices, [5, Corollary to Theorem 4.5] for subnormal contractions and [14, Corollary 3.11] for hyponormal contractions. An example of Hastings [5] shows that (1) may not imply (2) without the assumption $\dot{\mu}_{r_{z}}<\infty$. It is interesting to contrast this theorem it with [10, Theorem 2] where "quasisimilarity" is replaced by "similarity" in which case $\mu_{T_{2}}<\infty$ won't be needed.
3. Some consequences. In this section, we will derive two results for which an operator quasisimilar to an isometry is even unitarily equivalent to it. More precisèly, we show that if $V=U \oplus S_{n}$ is an isometry, where U is unitary and $n<\infty$, and T is a quasinormal operator or $T \in \operatorname{Alg} V$ (the weakly closed algebra generated by T and 1), then $T \stackrel{d}{\sim} V$ implies $T \cong V$. For the first one, we prove the following more general result.

Proposition 3.1. If T is a contraction whose c.n.u. part is of class $C_{._{0}}$ and $V \doteq U \oplus S_{n}$ is an isometry with $n<\infty$, then $T \stackrel{d}{\sim} V$ implies $T \sim V$.

Proof. Let $T=U^{\prime} \oplus T^{\prime}$, where U^{\prime} is unitary and T^{\prime} is c.n.u. Since U^{\prime} and U are of class $C_{.1}$ and T^{\prime} and S_{n} are of class $C_{\cdot 0}$, we deduce from $T \stackrel{d}{\sim} V$ that $T^{\prime} \stackrel{d}{\sim} S_{n}$. Thus $T^{\prime} \sim S_{n}$ by Proposition 2.1 and therefore $T \sim U^{\prime} \oplus S_{n} \stackrel{d}{\sim} V$. [15, Lemma 3.4] yields that $U^{\prime} \oplus S_{n} \cong V$. Thus $T \sim V$ as asserted.

Corollary 3.2. If T is a hyponormal operator and $V=U \oplus S_{n}$ is an isometry with $n<\infty$, then $T \stackrel{d}{\sim} V$ implies $T \sim V$.

Proof. $T \stackrel{d}{\sim} V$ implies that their spectra are equal [2, Theorem 2], so are their spectral radii: $r(T)=r(V)$. Hence $\|T\|=r(T)=r(V)=1$ showing that T is a contraction. Now the assertion follows from Proposition 3.1 and the fact that c.n.u. hyponormal contractions are of class C.0 [6].

Corollary 3.3. If T is a quasinormal operator and $V=U \oplus S_{n}$ is an isometry with $n<\infty$, then $T \stackrel{d}{\sim} V$ implies $T \cong V$.

Proof. By Corollary 3.2, we have $T \sim V$. For quasinormal T, this implies $T \cong V$ (cf. [15, Proposition 4.2]).

Now for our final result. In [15], we asked whether for isometry $V, T \in \mathrm{Alg} V$ and $T \sim V$ imply $T \cong V$, and showed that this is indeed the case if $T \approx V[15$, Proposition 4.0]. We will now verify its validity when $V=U \oplus S_{n}$ with $n<\infty$. We start with the following. For any operator $T, T^{(n)}$ denotes the direct sum of n copies of T.

Lemma 3.4. Let T be a contraction. If $T^{(n)} \stackrel{d}{\sim} S_{n}$ for some $1 \leqq n<\infty$, then $T \sim S_{1}$.

Proof. Since $\Theta_{T^{(n)}}=\Theta_{T}^{(n)}$, Proposition 2.1 and Theorem 2.4 imply that $T^{(n)}$ is of class C_{10} and there exists a bounded analytic function Ω such that $\Omega \Theta_{T}^{(n)}=\delta I$ for some outer function δ in H^{∞}. If Φ denotes the (1, 1)-entry of Ω, then $\Phi \Theta_{T}=\delta I$. Thus, by Theorem 2.4 again, $T \sim S_{k}$ for some $1 \leqq k<\infty$. Since $S_{n} \sim T^{(n)} \sim S_{k n}$, we conclude that $k=1$ and $T \sim S_{1}$.

Proposition 3.5. Let $V=U \oplus S_{n}$ be an isometry with $n<\infty$. If $T \in \operatorname{Alg} V$ and $T \stackrel{d}{\sim} V$, then $T \cong V$.

Proof. Let $U=U_{s} \oplus U_{a}$, where U_{s} and U_{a} are singular and absolutely continuous unitary operators, respectively. In view of [15, Lemma 4.3], we may assume that V is not unitary. Hence $T \in \mathrm{Alg} V$ implies that $T=W \oplus \varphi\left(U_{a} \oplus S_{n}\right)$, where $W \in \operatorname{Alg} U_{s}$ and $\varphi \in H^{\infty}$ (cf. [13, Lemma 1.3] and [11, Lemma 3.11]). This shows that T is hyponormal and therefore $T \stackrel{d}{\sim} V$ implies, by Corollary 3.2, that $T \sim V$. If φ is a constant function, then T is normal whence $T \sim V$ implies that V is unitary, a contradiction. Thus φ is nonconstant and therefore $\varphi\left(S_{n}\right)$ is completely nonnormal (cf. [15, Lemmas 4.4 and 4.5]). Hence $T \sim V$ implies that $W \oplus \varphi\left(U_{a}\right) \cong U$ and $\varphi\left(S_{n}\right) \stackrel{d}{\sim} S_{n}$ by [5, Proposition 3.5]. We apply Lemma 3.4 to obtain that $\varphi\left(S_{1}\right) \sim S_{1}$. It follows from [3, Theorem 1] that $\varphi\left(S_{1}\right) \cong S_{1}$ whence $\varphi\left(S_{n}\right) \cong S_{n}$ and $T \cong V$ follows.

Added in proof. Takahashi [16] showed that for isometry $V, T \in A l g V$ and $T \sim V$ imply $T \cong V$ which answered the question asked in [15].

References

[1] V. T. Alexander, Contraction operators quasisimilar to a unilateral shift, Trans. Amer. Math. Soc., 283 (1984), 697-703.
[2] S. Clary, Equality of spectra of quasisimilar hyponormal operators, Proc. Amer. Math. Soc., 53 (1975), 88-90.
[3] J. B. Conway, On quasisimilarity for subnormal operators. II, Canad. Math. Bull., 25 (1982), 37-40.
[4] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
[5] W. W. Hastings, Subnormal operators quasi-similar to an isometry, Trans. Amer. Math. Soc., 256 (1979), 145-161.
[6] C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math., 57 (1975), 531-538.
[7] B. Sz.-Nagy and C. Foiass, Harmonic analysis of operators on Hilbert space, North Holland Akadémiai Kiadó (Amsterdam-Budapest, 1970).
[8] B. Sz.-Nagy and C. Foias, On the structure of intertwining operators, Acta Sci. Math., 35 (1973), 225-254.
[9] P. Y. Wu, On completely non-unitary contractions and spectral operators, Indiana Univ. Dissertation (1975).
[10] P. Y. Wu, On nonorthogonal decompositions of certain contractions, Acta Sci. Math., 37 (1975), 301-306.
[11] P. Y. Wu, Approximate decompositions of certain contractions, Acta Sci. Math., 44 (1982), 137-149.
[12] P. Y. Wu, When is a contraction quasi-similar to an isometry?, Acta Sci. Math., 44 (1982), 151-155.
[13] P. Y. Wu, On the reflexivity of C_{1}. contractions and weak contractions, J. Operator Theory, 8 (1982), 209-217.
[14] P. Y. Wu, Toward a characterization of reflexive contractions, J. Operator Theory, 13 (1985), 73-86.
[15] P. Y. Wu, Hyponormal operators quasisimilar to an isometry, Trans. Amer. Math. Soc., 291 (1985), 229-239.
[16] K. Takahashi, On quasisimilarity for analytic Toeplitz operators, Canad. Math. Bull., 31 (1988), 111-116.

