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Contractions quasisimilar to an isometry

PEI YUAN WU#)

1. Introduction. The bounded linear operators T; and 7, on complex, separable
Hilbert spaces $, and 9, are quasisimilar (I;~T,) if there are operators X: $,~ 9,
and Y: $,—9, with trivial kernel and dense range such that X7;=T,X and
YT,=T,Y. This paper is concerned with the question when a contraction is quasi-
similar to an isometry. This problem has been studied before: in [12] for contréc-
tions with finite defect indices, [5] for subnormal contractions and [15] for hypo:
normal contractions. Our main result in this paper (Theorem 2.7) generalizes all
these previous ones. We show that a contraction T whose C., part has finite multi-
plicity is quasisimilar to an isometry if and only if its C., part is of class Cy; and
its C., part is quasisimilar to a unilateral shift. These latter conditions can further
be expressed in terms of the inner and outer factors of the characteristic function
of T.In § 3, we show that in certain circumstances quasisimilarity to an isometry
even implies unitary equivalence and partially verify a conjecture we proposed
in [15]. '

Recall that a contraction T (||T||=1) is of class C., (resp. C,.) if T**x—0
(resp. T"x—0) for all x; T is of class C., (resp..C,.) if T*"x-0 (resp. T"x-0)
for all x#0. C,z=C,.NC.; for «, f=0,1. Any contraction T can be uniquely
[6 7

0T
(called the C.; and C.y parts of T). A contraction T can also be decomposed as
U®T’, where U is a unitary operator and T’ is completely nonunitary (c.nu.);
U and T’ are called the wunitary part and c.nu. part of T. T is said to be of analytic
type if it has no singular unitary direct summand. For such T, the functional calculus,
o(T) for pc H= is well-defined. For the details and other properties of contractions,
readers are referred to Sz.-NAGY and Foias’ book [7]. -

triangulated as T= , where T; and T;, are of classes C., and C.,, respectively
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d

Let T; and T, be operators on $, and $,, respectively. We use T; <T, to denote
that there is an operator X: $,— %, with dense range and satisfying X7;=T,X,
and T3 <7, if the intertwining X is both injective and with dense range (called a

d d d
quasiaffinity). T~T, if T,<T, and T,<T; T~T, if T1<T, and T,<T;.
T, is similar 10 T, (T,=T,) if the intertwining operator X is invertible; T, is unitarily
equivalent to T, (I;=:T;) if X is unitary. The multiplicity u; of an operator on $

is the minimum cardinality of a set K&$ for which H= G T"K. Note that
n=0

d
T,<T, implies B =g, In the following, we use S, to denote the unilateral shift
with multiplicity n acting on H2. :

2. Main results. We start with the following proposition.

Proposition 2.1. Let T be a contraction on  and 1=n<o. Then T~Sa

if and only if y S,. Moreover, in this case, T is of class Cyy, and there exist quasi-
affinities X: $—~H? and Y: H?—~$ which intertwine T and S, and such that
XY=6(S,) and YX=046(T) for some outer function § in H>.

Proof. Assume that 7'< S,. We first show that T is of analytic type. Let
T=UoT" on H=9H,D9H,, where U, is a singular unitary operator and 7’ is a

?1]: H!~9H=9,99, be an operator
2

intertwining S, and 7 and with dense range. Then ¥; intertwines S, and U, and
has dense range in $, . It can be lifted to an operator ¥, which intertwines the minimal
unitary extension U of S, and U, (cf. [4, Corollary 5.1]). Since U is absolutely con-
tinuous and U, is singular, ¥; must be the zero operator (cf. [4, Theorem 3]). Hence
Y;=0 and it follows that T=T7" is of analytic type.

contraction of analytic type, and let Y=

Let X: 9—~H? be an operator intertwining T and S, and with dense range.
Then XY commutes with S, and has dense range in H?. We may assume that
[XY|=1. Thus XY is the operator &, of multiplication by a contractive operator-
valued analytic function @ on H? which is even outer (cf. [7, Lemma V.3.2]). By
[7, Proposition V.6.1], @ has a scalar multiple 6€¢H>: there exists another con-
tractive analytic function Q such that Q(A)®()=56(A)I and S(A)Q(A)=
=6(M)I (|A|<1). Since @ is an outer function, we may take & to be outer (cf. [7,
Theorem V.6.2]). Let Z=Q, X. Then Z intertwines Tand S, and ZY=(Q, X)Y=
=Q, &, =4(S,). Multiplying both sides by ¥, we obtain YZY=Y5(S,)=06(T)Y
(here we need the fact that 7'is of analytic type). Since Y has dense range, we infer
that YZ=4(T). Note that § is outer implies that §(S,) and 6(T) are quasiaffinities
(f. [7, Proposition II1.3.1]). It follows easily that X, ¥ and Z are all quasiaffinities,
This shows that T~S,. That T is of class Cy can be easily deduced.
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Corollary 2.2. Let T be a contraction of analytic type and 1=n-<. Then
T~S, if and only if ur=n and TéS,,.

Proof. The assertion follows from Proposition 2.1 and the fact that u;=n
implies that S,,QT (cf. [15, Lemma 2.3]).

When T is subnormal, the preceding corollary was essentially proved by Has-
TINGS [5, Proposition 4.1]. For another set of conditions in order that T~ S,,
compare [1, Theorem 2.8].

[T *

Corollary 2.3. Let T= 0T

d
type. If Ty is not missing and T,<S,, then pr=n+1.

] on H=9,99, be a contraction of analytic

Proof. Since ur=p;,=n, we may assume that n<ee. Let X: $,—~H} be
an operator intertwining T, and S, and with dense range. Let Y=[0 X]: $=,®
®9H,—~H}. Then Y intertwines T and S, and has dense range. If pur=n, then
T~S8, by Corollary 2.2 and so by the proof of Proposition 2.1 ¥ is injective, which
implies that $,={0}, a contradiction. Hence we have pr=n+1.

The next theorem characterizes those contractions which are quasisimilar to
a unilateral shift with finite multiplicity in terms of their characteristic functions.
It generalizes [12, Lemma 1] for contractions with finite defect indices. For any
contraction T, let @, denote its characteristic function (consult [7] for its definition
and properties).

Theorem 24. Let T be a contraction and 1=n<eco. Then T~S, if and
only if T is of class Cy4, ur=n and there exists a bounded analytic function Q such
that QOp=46I for some outer function § in H™.

Proof. Assume that T~S,. It is easily seen that T is of class C,y whence
c.n.u. We may consider its functional model, that is, consider T acting on $j=Hg*e
©0,H by Tf=P(¢"f) for f€$H, where D=ran(I—T*T)"/%, D =ran(I—TT*)"?
and P denotes the orthogonal projection onto $ (cf. [7, Proposition VI.2.1]). By
Proposition 2.1, there exist quasiaffinities X: $—~H?2 and Y: H2—~$ which inter-
twine T and S, and satisfy XY=4(S,) and YX=46(T) for some outer function
6 in H*. Note that Xf=®f for fc$ and Yg=P(¥g) for gc H?, where ¢ and ¥
are bounded analytic functions satisfying #©@;=0 (cf. [7, Theorem V1.3.6]). From
XY=6(S,) and YX=06(T), we deduce that d¥=6 and YP—-36=—0.Q for
some bounded analytic function Q. Since @ is an inner function (cf. [7, Proposi-
tion VI1.3.5]), we have
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Therefore QO@;=41 as.required. The reverse implication follows as in the proof
of [12, Lemma 1].

Using Proposition 2.1, Theorem 2.4 and [14, Theorem 2.1], we can obtain the
following interesting result. '

Theorem 2.5. Let T= [0 T] be a contraction. If T, ~ S Jor some 1=n< o,
then T~T,0T,.

" Proof. If T'is c.n.u., then the conclusion follows from the results cited above.

For general T,let T=U®T" on H=KDL, where U is unitary and 7~ is c.n.u.

Assuine that T'= ]01 ; "is acting on H=9H,0H,. We first check that $,S L.
2

Since TgriS,, implies that T, i$ of class C;, by Proposition 2.1, for any x€$,,

we have T*"x=T,"x—~0 as m—e. If x=x,®x,, where x,€& and x,€L,

then U*™x,—~0. Since U is unitary, this implies that x,=0 and thus x=x,€£.

Thi_s proves $.EL which is equivalent to K&9,. It is easily seen that

fu o o
. T=|0 Ty *| on 9 =KD(H0RK)DD:-
00 T,

T, *

Since [ 0T, ] is c.n.u., from above we have [ 0T,

~UOT|®T,=T8T,.
" We remark that it is unknown whether the preceding theorem is still valid

. d . N
under n=-eo, thatis, when T,~S§_ or T2~S°°. In a very special case, this is
indeed true. :

]~Tl’ @7, and therefore T~

“Theorem 2.6 Let T= [ 0 T] bea contractzon If T, is similar to an zsometry,
2
then T is similar to T,®T,.
" Proof. If Tis cn. u., thls follows from [8 Theorem 2.4] and [14, Theorem 2.1].

For the general case, assume that 7;, is similar to the isometry V=WaS,, where
Wis umtary and S, 1s some unilateral shift. It is easily seen that T, can be triangulated

0 T;] with Ty~W and T,xS,. Letting T;= [ ] we have T_[O T;]

Since T,=:S,, proceeding as in the proof of Theorem 2.5 we obtain T~T,®T,.
On the other hand, T;~W implies that T;=T;®T; and T,~T,®T, (cf [9 Theo-
rem 2. 14]) ‘Thus T~T169T3€97';~T1€BT‘, as claimed.

as,

" Now we are ready for our main result.

Theorem 2.7. Let T be a contraction and T= [0 T] be its triangulation of

type [C;)l : (jf ] Assume that pry < <. Then the following statements are equivalent:
o0



Contractions quasisimilar to an isometry 143

(1) T is quasisimilar to an isometry; .

(2) T, is of class Cyy and T, is quasisimilar to a unilateral shift;

(3) O, (the outer factor of @) is outer from both sides, @, (the inner factor
of @) is inner and x-outer, and there exists a bounded analytic function Q such that
QO;=40I for some outer function 5 in H*.

Moreover, if T is of analytic type and is quasisimilar to the isometry V, then
there are quasiaffinities X and Y intertwining T and V such that XY=6(V) and
YX=46(T).

Proof. (1)=(2): Assume that T~V =U®&S,, where U is unitary. Since T,
and U are of class C., and T; and S, are of class C.,, we can easily deduce that
T; ~S This, together with Hy,< <o, implies that 7,~.S, by Proposition 2.1.
On the other hand, T<V 1mphes that T is of class C,. whence T; is of class C,.

(2)=(1): This follows from Theorem 2.5.

(2)4:»(3) Since ©, and O, correspond to the characterlstlc functions of T
and T,, respectively, this follows from Theorem 2.4 and [7, Proposition VI.3.5].

The assertion concerning the intertwining quasiaffinities can be deduced easily
from [14, Theorem 2.1].

As we remarked in § 1, the preceding theorem generalizes [11, Theorem 3]
for contractions with finite defect indices, [5, Corollary to Theorem 4.5) for sub-
normal contractions and [14, Corollary 3.11] for hyponormal contractions. An ex-
ample of HASTINGS [5] shows that (1) may not imply (2) without the assumption
Py, <. It is interesting to contrast this theorem it with [10, Theorem 2] where
“quasisimilarity” is replaced by “similarity” in which case p; <-<o won’t be needed.

- 3. Some consequences. In this section, we will derive two results for which an
operator quasisimilar to an isometry is even unitarily equivalent to it. More precisely,
we show that if V=U®S, is an isometry, where U is unitary and n<e, and
T is a quasinormal operator or T€Alg ¥V (the weakly closed algebra generated by

T and 1), then TV implies T=V. For the first one, we prove the following
more general result.

Proposition 3.1. If T is a contraction whose c.n.u. part is of class C., and
V=U®S, is an isometry with n< o, then iy implies T~V.

Proof. Let T=U'@T’, where U’ is unitary and 7” is c.n.u. Since U’ and
U are of class C., and T’ and S, are of class C.,, we deduce from TSV that

S Thus T'~S, by Proposition2.1 and therefore T~U'®S, v [15 :
Lemma 3.4] yields that U’&@S,=V. Thus T~V as asserted.

Corollary 3.2. If T is a hyponormal operator and V= U@S is an isometry
with n<co, then iy implies T~V. C S
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Proof. TV implies that their spectra are equal [2, Theorem 2], so are their
spectral radii: #(T)=r(V'). Hence ||T||=r(T)=r(¥V)=1 showing that T is a con-
traction. Now the assertion follows from Proposition 3.1 and the fact that c.n.u.
hyponormal contractions are of class C., [6].

Corollary 3.3. If T is a quasinormal operator and V=U®S, is an isometry
With n<eo, then T~V implies T=V.

Proof. By Corollary 3.2, we have T~V. For quasinormal T, this implies
T=V (cf. [15, Proposition 4.2]).

Now for our final result. In [15], we asked whether for isometry ¥, Tc€AlgV
and T~V imply T=V, and showed that this is indeed the case if T~V [I5,
Proposition 4.6]. We will now verify its validity when V=U®S, with n<-, We
start with the following. For any operator T, T™ denotes the direct sum of n co-
pies of T.

Lemma 3.4. Let T be a contraction. If T("’riS,, for some l=n<-co, then
T~S,. A

Proof. Since @rw=0%, Proposition 2.1 and Theorem 2.4 imply that 7™
is of class Cyo and there exists a bounded analytic function Q such that QO =51
for some outer function é in H*. If ¢ denotes the (1, 1)-entry of Q, then ®O =4l
Thus, by Theorem 2.4 again, T~ S, for some 1=k=<eco, Since S,~T™~S,,, we
conclude that k=1 and T~S,.

Prop031t10n 3.5. Let V=U®S, be an isometry with n<oo. If TEAlgV
and T V, then T==V.

Proof. Let U=U®U,, where U, and U, are singular and absolutely con-
tinuous unitary operators, respectively. In view of [15, Lemma 4.3], we may assume
that ¥ is not unitary. Hence TcAlgV implies that T=W®¢(U,®S,), where
WeAlg U, and @€H™ (cf. [13, Lemma 1.3] and [11, Lemma 3.11]). This shows
that T is hyponormal and therefore Ty implies, by Corollary 3.2, that T~V.
If ¢ is a constant function, then T'is normal whence 7'~V implies that ¥ is unitary,
a contradiction. Thus ¢ is nonconstant and therefore ¢(S,) is completely non-
normal (cf. [15, Lemmas 4.4 and 4.5]). Hence T~V implies that Wee(U)=U
and qo(S,,)«d‘S,, by [5, Proposition 3.5]. We apply Lemma 3.4 to obtain that
@(SP~S,. It follows from [3, Theorem 1] that ¢(S;)=S; whence ¢(S,)=S, and
T=V follows.

Added in proof. TakaHasHI [16] showed that for isometry V. TeAlgV
and T~V imply T=V which answered the question asked in [15]. -
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