On the reflexivity of contractions with isometric parts

KATSUTOSHI TAKAHASHI

For a bounded linear operator T on a Hilbert space, let Alg T denote the weakly closed algebra generated by T and the identity. Also let Lat T and Alg Lat T denote the lattice of all invariant subspaces of T and the algebra of all operators A such that Lat $T \subseteq \text{Lat } A$, respectively. An operator T is said to be *reflexive* if Alg Lat T=Alg T. (Note that we always have Alg $T \subseteq \text{Alg Lat } T$.) The first examples of reflexive operators were given by SARASON [7], that is, he proved that normal operators and analytic Toeplitz operators are reflexive. Subsequently DEDDENS [4] proved the reflexivity of isometries, and now various classes of operators are known to be reflexive.

In [9] and [10], WU considered the generalizations of Deddens' result. In [9] the reflexivity was proved for contractions T on \mathfrak{H} such that $T|\mathfrak{M}$ and $T^*|\mathfrak{H}\mathfrak{H}\mathfrak{H}\mathfrak{H}$ are isometries for some $\mathfrak{M}\in \operatorname{Lat} T$, and in [10] for contractions which have parts similar to the adjoints of unilateral shifts, in particular, for contractions with a unilateral shift summand. The results of [10] were generalized in [2] as conjectured by Wu, that is, it was proved that if T is a contraction and there exists a nonzero operator X such that XT=SX where S is a unilateral shift, then T is reflexive. In this note we prove the reflexivity of a contraction with a unilateral shift part. This result contains the main theorem of [9] as a special case. As an application, we obtain the reflexivity result for a contraction T on a separable Hilbert space such that $u \Theta_T^*$ is an operator-valued H^{∞} -function for some nonzero scalar H^{∞} -function u, where Θ_T is the characteristic function of T and $\Theta_T^*(e^t) = (\Theta_T(e^t))^*$ for almost every t, in particular, for a contraction T such that Θ_T is a polynomial. Our proof needs the reflexivity result of [2] stated above. We will extensively use the theory of contractions developed by Sz.-NAGY and FOIAS [8].

Theorem 1. If T is a contraction on a Hilbert space \mathfrak{H} and there exists a nonzero $\mathfrak{M} \in \operatorname{Lat} T$ such that $T | \mathfrak{M}$ is a unilateral shift, then T is reflexive.

Received December 3, 1985.

First let us prove the following lemma.

Lemma 2. If T is a contraction on \mathfrak{H} and there exists a nonzero $\mathfrak{M} \in \operatorname{Lat} T$ such that $T|\mathfrak{M}$ is a unilateral shift, then there exists a nonzero operator $Y: \mathfrak{H} \to L^2$ satisfying the following conditions (i) and (ii); (i) YT = WY where W is the bilateral shift on L^2 defined by $(Wf)(e^{it}) = e^{it}f(e^{it})$ a.e. $t, f \in L^2$, (ii) there exists a linear manifold \mathfrak{L} dense in $\mathfrak{H} \oplus \ker Y$ such that $W|\mathfrak{M}_{Yx}$ is a unilateral shift for all $0 \neq x \in \mathfrak{L}$, where $\mathfrak{M}_{Yx} = \bigvee \{W^n Yx : n \geq 0\}$ (a cyclic subspace for W).

Proof. By assumption, if \mathfrak{M}_1 is a cyclic subspace for T included in \mathfrak{M} , then $T|\mathfrak{M}_1$ is unitarily equivalent to the unilateral shift $S = W|H^2$ (cf. [6, Theorem 3.33]), hence there exists an isometry Z: $H^2 \mapsto \mathfrak{H}$ such that TZ = ZS. Let U be the minimal unitary dilation of T acting on \mathfrak{G} , thus U is a unitary operator such that $PU|\mathfrak{H}=T$ where P is the orthogonal projection of \mathfrak{G} onto \mathfrak{H} , and if $\mathfrak{G}_+ = \bigvee_{n \ge 0} U^n \mathfrak{H}$, then $\mathfrak{G}_+ \ominus \mathfrak{H} \in Lat U$ (cf. [8, Theorem I.4.1 and 4.2]). By the lifting theorem of Sz.-Nagy and Foiaş (cf. [8, Theorem II.2.3] and [5, Corollary 5.1]) there exists an operator $\tilde{Z}: L^2 \mapsto \mathfrak{G}$ satisfying the conditions (a) $U\tilde{Z} = \tilde{Z}W$, (b) $P\tilde{Z}|H^2 = Z$ and (c) $\|\tilde{Z}\| = Z$ =||Z||=1. Let us show that the operator $Y=\tilde{Z}^*|\mathfrak{H}:\mathfrak{H}\to L^2$ is a required one. Since the condition (a) implies $\tilde{Z}^*U = W\tilde{Z}^*$, to prove YT = WY, it suffices to show that $\mathfrak{G}_+ \ominus \mathfrak{H} \subseteq \ker \tilde{Z}^*$. Since $\mathfrak{G}_+ \ominus \mathfrak{H} \in \operatorname{Lat} U$, $\mathfrak{G}_+ \ominus \mathfrak{H}$ is orthogonal to $\bigvee U^{*n}\mathfrak{H}$. On the other hand, since Z is isometric, it follows from (b) and (c) that $\tilde{Z}|H^2 = Z$, and since $\tilde{Z}W^{*n} = U^{*n}\tilde{Z}$ (n = 1, 2, ...) by (a), we see that \tilde{Z} is an isometry and ran $\widetilde{Z} \subseteq \bigvee_{n \ge 0} U^{*n} \mathfrak{H}$. Therefore it follows that $\mathfrak{G}_+ \ominus \mathfrak{H} \subseteq \ker \widetilde{Z}^*$. Next to see (ii), let $\mathfrak{M}_0 = \{Zp; p \text{ is an analytic polynomial}\}$. Clearly \mathfrak{M}_0 is linear and dense in ZH². Also since $\tilde{Z}|_{H^2=Z}$, we have $ZH^2\subseteq\mathfrak{H}\otimes \ker Y$. We consider $\mathfrak{L}=\mathfrak{M}_0\oplus$ \oplus (($\mathfrak{H} \oplus \ker Y$) $\oplus ZH^2$), which is linear and dense in $\mathfrak{H} \oplus \ker Y$. If $0 \neq x = Zp + x_1 \in \mathfrak{L}$ where p is a polynomial of degree n and $x_1 \in (\mathfrak{H} \ominus \ker Y) \ominus ZH^2$, then $Yx = p + Yx_1$ because $\tilde{Z}|H^2=Z$ and \tilde{Z} is an isometry. Since x_1 is orthogonal to ZH^2 , or equivalently Yx_1 is orthogonal to H^2 , it follows that $\chi^{-(n+1)}Yx$, where $\chi(e^{it})=e^{it}$, is orthogonal to H^2 , so that Yx = qg ($Yx \neq 0$), where q is a function in L^{∞} such that $|q(e^{it})|=1$ a.e. t and g is an outer function in H^2 (cf. [3, Chapter IV, Theorem 6.1 and Corollary 6.4]). This shows $\Re_{Yx} = qH^2$, hence the isometry $W|\Re_{Yx}$ is a unilateral shift. Thus the condition (ii) holds.

Any contraction T can be decomposed uniquely as $T=U\oplus T_1$ where U is a unitary operator and T_1 is a completely non-unitary (c.n.u.) contraction, that is, T_1 has no nontrivial unitary direct summand. The operators U and T_1 are called the unitary part and the c.n.u. part of T, respectively. For a contraction T whose unitary part is absolutely continuous, the H^{∞} -functional calculus defines a weak^{*}weak continuous algebra homomorphism, $u \mapsto u(T)$, from H^{∞} to Alg T, and Tis said to be of class C_0 if u(T)=0 for some nonzero $u \in H^{\infty}$ (cf. [8, Chapter III]). Proof of Theorem 1. Let $T=U_s\oplus T_1$ on $\mathfrak{H}=\mathfrak{H}_s\oplus\mathfrak{H}_1$ where U_s is a singular unitary operator and T_1 is a contraction whose unitary part is absolutely continuous. It is known that the reflexivity of T is equivalent to that of T_1 (cf. the proof of [9, Theorem 4.1]). Since T has a unilateral shift part, as in the proof of Lemma 2, we have an isometry Z such that TZ=ZS where S is the unilateral shift on H^2 . If P_s is the orthogonal projection onto \mathfrak{H}_s , then $U_s(P_sZ)=(P_sZ)S$ and it follows from [5, Corollary 5.1 and Theorem 3] that $P_sZ=0$, hence ran $Z\subseteq\mathfrak{H}_1$. This shows that T_1 has a unilateral shift part. Thus we may assume that the unitary part of T is absolutely continuous and it suffices to show that for each $A \in \text{Alg Lat } T$, there exists $f \in H^{\infty}$ such that A=f(T).

Let Y, W and \mathfrak{L} be as in Lemma 2, and let $\tilde{\mathfrak{L}}$ be the set $\{x_1+x_2: x_1 \in \ker Y \text{ and } 0 \neq x_2 \in \mathfrak{L}\}$ that is dense in \mathfrak{H} . If $x \in \tilde{\mathfrak{L}}$, that is, $x = x_1 + x_2$ where $x_1 \in \ker Y$ and $0 \neq x_2 \in \mathfrak{L}$, then since $Yx = Yx_2(\neq 0)$, by Lemma 2 the isometry $W|\mathfrak{N}_{Yx}$ is a unilateral shift and $(W|\mathfrak{N}_{Yx})(Y|\mathfrak{M}_x) = (Y|\mathfrak{M}_x)(T|\mathfrak{M}_x)$ with $Y|\mathfrak{M}_x \neq 0$, where $\mathfrak{M}_x = = \bigvee \{T^n x : n \geq 0\}$, so it follows from [2, Theorem 4] that

Alg Lat
$$(T|\mathfrak{M}_x) = \{f(T)|\mathfrak{M}_x: f \in H^\infty\}.$$

Here note that the unitary parts of T and $T|\mathfrak{M}_x$ are absolutely continuous. Take $A \in A \lg \operatorname{Lat} T$. For each $x \in \tilde{\mathfrak{Q}}$, since $\mathfrak{M}_x \in \operatorname{Lat} T \subseteq \operatorname{Lat} A$ and $A|\mathfrak{M}_x \in \operatorname{Alg} \operatorname{Lat} (T|\mathfrak{M}_x)$, by the above fact there is $f_x \in H^\infty$ such that $A|\mathfrak{M}_x=f_x(T)|\mathfrak{M}_x$, in particular, $Ax=f_x(T)x$. Here note that it follows from the identity WY=YT with $Yx \neq 0$ that $T|\mathfrak{M}_x$ is not of class C_0 (cf. [8, Proposition III.4.1]), so that the function f_x is determined uniquely by x. Since $\tilde{\mathfrak{Q}}$ is dense in \mathfrak{H} , in order to show A=f(T) for some $f \in H^\infty$, it suffices to prove that $f_x=f_y$ for all $x, y \in \tilde{\mathfrak{Q}}$. First suppose $x-y \in \ker Y$. Then since Yx=Yy and $\ker Y \in \operatorname{Lat} T \subseteq \operatorname{Lat} A$, we have

$$(f_x - f_y)(W)Yx = Yf_x(T)x - Yf_y(T)y = YAx - YAy = YA(x - y) = 0,$$

and since $Yx \neq 0$, it follows that $f_x = f_y$. Next assume that $x - y \notin \ker Y$. Then since clearly $x - y \in \tilde{\mathfrak{Q}}$, there is $f_{x-y} \in H^{\infty}$ such that

$$f_{x-y}(T)x - f_{x-y}(T)y = f_{x-y}(T)(x-y) = A(x-y) = Ax - Ay = f_x(T)x - f_y(T)y,$$

hence $(f_{x-y}-f_x)(T)x = (f_{x-y}-f_y)(T)y \in \mathfrak{M}_x \cap \mathfrak{M}_y$. Therefore we have

$$f_x(T)(f_{x-y}-f_x)(T)x = A(f_{x-y}-f_x)(T)x = f_y(T)(f_{x-y}-f_x)(T)x,$$

and since $T|\mathfrak{M}_x$ is not of class C_0 , $(f_x-f_y)(f_{x-y}-f_x)=0$. Similarly we have $(f_x-f_y)(f_{x-y}-f_y)=0$. This shows $f_x=f_y$ and completes the proof.

Let T be a contraction on a separable Hilbert space. The characteristic function Θ_T of T is defined by

$$\mathcal{O}_T(\lambda) = [-T + \lambda D_{T^*} (I - \lambda T^*)^{-1} D_T] [\mathfrak{D}_T \quad (|\lambda| < 1),$$

Katsutoshi Takahashi

where $D_T = (I - T^* T)^{1/2}$, $D_{T^*} = (I - TT^*)^{1/2}$ and $\mathfrak{D}_T = (\operatorname{ran} D_T)^-$. The function Θ_T is an operator-valued H^{∞} -function whose values are contractions from \mathfrak{D}_T to $\mathfrak{D}_{T^*} := (\operatorname{ran} D_{T^*})^-$ (cf. [8, Chapter VI]). If T is c.n.u., then it follows from [8, Theorem VII.4.7] that there exists a nonzero $\mathfrak{M} \in \operatorname{Lat} T$ such that $T | \mathfrak{M}$ is a unilateral shift if and only if there exists a nonzero $h \in H^2(\mathfrak{D}_{T^*})$ such that $\Theta_T^* h \in \Delta_T L^2(\mathfrak{D}_T)$, where $H^2(\mathfrak{D}_{T^*})$ (resp. $L^2(\mathfrak{D}_T)$) is the space of \mathfrak{D}_{T^*} -valued H^2 -functions (resp. \mathfrak{D}_T valued L^2 -functions), $\Theta_T^*(e^{it}) = (\Theta_T(e^{it}))^*$ a.e. t and $\Delta_T(e^{it}) = (I - \Theta_T(e^{it})^* \Theta_T(e^{it}))^{1/2}$ a.e. t.

Now we obtain the reflexivity result for a contraction T such that $u\Theta_T^*$ is an operator-valued H^{∞} -function for some nonzero scalar function $u \in H^{\infty}$. If such a contraction T is of class C_{00} , that is, $T^n \rightarrow 0$ and $T^{*n} \rightarrow 0$ strongly as $n \rightarrow \infty$, then since $\Theta_T(e^{it})$ is unitary a.e. t (cf. [8, Proposition VI.3.5]), the condition that $u\Theta_T^*$ is an operator-valued H^{∞} -function with a nonzero $u \in H^{\infty}$ means that u(T) = 0 and so T is of class C_0 (cf. [8, Theorem VI.5.1]). Reflexive contractions of class C_0 were characterized in terms of their Jordan models [1].

Theorem 3. Let T be a contraction on a separable Hilbert space such that $u\Theta_T^*$ is an operator-valued H^{∞} -function for some nonzero $u \in H^{\infty}$. If the c.n.u. part of T is not of class C_{00} , then T is reflexive.

Proof. By Theorem 1 it suffices to show that T or T^* has a unilateral shift part. Since the characteristic function of a contraction is equal to the one of its c.n.u. part, we may assume that T is a c.n.u. contraction. Since $\Theta_T^*(I - \Theta_T \Theta_T^*) =$ $= \Delta_T^2 \Theta_T^*$ and by the assumption for Θ_T the function $u(I - \Theta_T \Theta_T^*)$ is an operatorvalued H^∞ -function, if $\lim ||T^n x|| \neq 0$ for some x, or equivalently $\Theta_T(e^{it})$ is not coisometric on a set of t's of positive Lebesgue measure (cf. [8, Proposition VI.3.5]), then there is a nonzero $h \in H^2(\mathfrak{D}_{T^*})$ such that $\Theta_T^* h \in \Delta_T L^2(\mathfrak{D}_T)$, and so T has a unilateral shift part by the fact remarked above. Also since $\Theta_{T^*}(e^{it}) = (\Theta_T(e^{-it}))^*$ a.e. t for the characteristic function Θ_{T^*} of T^* (cf. [8, p. 239]), the contraction T^* satisfies the same condition as T, that is, $\tilde{u} \Theta_{T^*}^*$ is an operator-valued H^∞ -function where \tilde{u} is a function in H^∞ defined by $\tilde{u}(e^{it}) = \overline{u(e^{-it})}$ a.e. t. Thus if $\lim ||T^{*n}x|| \neq 0$ for some x, then it follows that T^* has a unilateral shift part.

The following theorem gives a complement of Theorem 3.

Theorem 4. Let $T=U\oplus T_1$ where U is a unitary operator and T_1 is a contraction of class C_0 . Then T is reflexive if and only if the following condition (i) or (ii) holds:

- (i) U has a (nontrivial) bilateral shift summand;
- (ii) T_1 is reflexive.

150

Proof. Again we may assume that U is absolutely continuous (cf. the proof of [9, Theorem 4.1]). If U has a bilateral shift summand, then by Theorem 1 T is reflexive. If U has no bilateral shift summand, then by Lemma 5 below we have Alg T=Alg $U\oplus$ Alg T_1 and Lat T=Lat $U\oplus$ Lat T_1 , so Alg Lat T=Alg Lat $U\oplus$ \oplus Alg Lat T_1 . Therefore it follows from the reflexivity of the unitary operator U(cf. [7]) that T is reflexive if and only if T_1 is. This shows Theorem 4.

The implication $(2) \Rightarrow (1)$ in the following lemma was pointed out by P. Y. WU.

Lemma 5. Let $T=U\oplus T_1$ on $\mathfrak{H}=\mathfrak{H}_0\oplus\mathfrak{H}_1$ where U is an absolutely continuous unitary operator and T_1 is a contraction of class C_0 . Then the following conditions are equivalent:

- (1) U has no bilateral shift summand;
- (2) Lat $T = \text{Lat } U \oplus \text{Lat } T_1$;
- (3) Alg $T = \text{Alg } U \oplus \text{Alg } T_1$.

Proof. (1)=(2): Since the inclusion Lat $U \oplus \text{Lat } T_1 \subseteq \text{Lat } T$ is obvious, we have to show that any $\mathfrak{M} \in \text{Lat } T$ is decomposed into $\mathfrak{M} = \mathfrak{L} \oplus \mathfrak{N}$ where $\mathfrak{L} \in \text{Lat } U$ and $\mathfrak{N} \in \text{Lat } T_1$. Suppose $\mathfrak{M} \in \text{Lat } T$. Since T_1 is of class C_0 , there is a nonzero function $f \in H^\infty$ such that $f(T_1)=0$. We set $\mathfrak{L} = (f(T)\mathfrak{M})^- \subseteq \mathfrak{M}$. Then clearly $\mathfrak{L} \in \text{Lat } T$ and $\mathfrak{L} \subseteq (\operatorname{ran } f(T))^- = (\operatorname{ran } f(U))^- \subseteq \mathfrak{H}_0$, so \mathfrak{L} is an invariant subspace of U. But since U has no bilateral shift summand, \mathfrak{L} reduces U (cf. [3, Chapter VII, Proposition 5.2]), hence \mathfrak{L} also reduces T. Then the subspace $\mathfrak{N} = \mathfrak{M} \oplus \mathfrak{L}$ is invariant for T and since $f(T)\mathfrak{N} \subseteq \mathfrak{N}$ and $f(T)\mathfrak{N} \subseteq f(T)\mathfrak{M} \subseteq \mathfrak{L}$, we have $f(T)\mathfrak{N} = \{0\}$. But since $f(T) = f(U) \oplus 0$ and obviously f(U) is injective, we conclude $\mathfrak{N} \subseteq \mathfrak{H}_1$, and therefore $\mathfrak{N} \in \text{Lat } T_1$. This shows (2).

(1)=>(3): For $n=1, 2, ..., T^{(n)}=U^{(n)}\oplus T_1^{(n)}$ satisfies the same condition as T, where for an operator A, $A^{(n)}$ denotes the direct sum of n copies of A. Therefore, using the implication (1)=>(2) proved already, we have Lat $T^{(n)}=\text{Lat }U^{(n)}\oplus\text{Lat }T_1^{(n)}$. If $A\in Alg U$ and $B\in Alg T_1$, then clearly Lat $U^{(n)}\oplus\text{Lat }T_1^{(n)}\subseteq\text{Lat }(A\oplus B)^{(n)}$, so that Lat $T^{(n)}\subseteq\text{Lat }(A\oplus B)^{(n)}$ for n=1, 2, ..., hence it follows from Sarason's lemma (cf. [6, Theorem 7.1]) that $A\oplus B\in Alg T$. This shows $Alg U\oplus Alg T_1\subseteq Alg T$. Since the converse inclusion is obvious, we conclude $Alg T=Alg U\oplus Alg T_1$.

 $(3) \Rightarrow (2)$ is obvious. $(2) \Rightarrow (1)$: If U has a bilateral shift summand, then by the proof of Theorem 1 Alg Lat $T = \{f(T): f \in H^{\infty}\}$. Since the condition (2) implies the inclusion Alg Lat $U \oplus Alg$ Lat $T_1 \subseteq Alg$ Lat T, we have $0 \oplus I \in Alg$ Lat T, so that there is $f \in H^{\infty}$ such that f(U) = 0 and $f(T_1) = I$, but this is impossible because f(U) = 0 implies f = 0. This shows $(2) \Rightarrow (1)$.

References

- H. BERCOVICI, C. FOIAŞ and B. SZ.-NAGY, Reflexive and hyperreflexive operators of class C_e, Acta Sci. Math., 43 (1981), 5-13.
- [2] H. BERCOVICI and K. TAKAHASHI, On the reflexivity of contractions on Hilbert space, J. London Math. Soc., (2) 32 (1985), 149-156.
- [3] J. B. CONWAY, Subnormal operators, Research Notes in Math. 51, Pitman (Boston, 1981).
- [4] J. A. DEDDENS, Every isometry is reflexive, Proc. Amer. Math. Soc., 28 (1971), 509-512.
- [5] R. G. DOUGLAS, On the operator equation $S^*XT=X$ and related topics, Acta Sci. Math., 30 (1969), 19-32.
- [6] H. RADJAVI and P. ROSENTHAL, Invariant subspaces, Springer-Verlag (Berlin, 1973).
- [7] D. SARASON, Invariant subspaces and unstarred operator algebras, Pacific J. Math., 17 (1966), 511-517.
- [8] B. SZ.-NAGY and C. FOIAȘ, Harmonic analysis of operators on Hilbert spaces, North-Holland (Amsterdam, 1970).
- [9] P. Y. WU, Contractions with constant characteristic functions are reflexive, J. London Math. Soc., (2) 29 (1984), 533-544.
- [10] P. Y. WU, Contractions with a unilateral shift summand are reflexive, Integral Equations Operator Theory, 7 (1984), 899-904.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE (GENERAL EDUCATION) HOKKAIDO UNIVERSITY SAPPORO 060 JAPAN