On the reflexivity of contractions with isometric parts

KATSUTOSHI TAKAHASHI

For a bounded linear operator T on a Hilbert space, let Alg T denote the weakly closed algebra generated by T and the identity. Also let Lat T and Alg Lat T denote the lattice of all invariant subspaces of T and the algebra of all operators A such that Lat $T \subseteq$ Lat A, respectively. An operator T is said to be reflexive if Alg Lat $T=\operatorname{Alg} T$. (Note that we always have $\operatorname{Alg} T \subseteq \operatorname{Alg}$ Lat T.) The first examples of reflexive operators were given by SARASON [7], that is, he proved that normal operators and analytic Toeplitz operators are reflexive. Subsequently Deddens [4] proved the reflexivity of isometries, and now various classes of operators are known to be reflexive.

In [9] and [10], Wu considered the generalizations of Deddens' result. In [9] the reflexivity was proved for contractions T on $\mathfrak{5}$ such that $T \mid \mathfrak{M}$ and $T^{*} \mid \mathfrak{S} \ominus \mathfrak{M}$ are isometries for some $\mathfrak{M} \in \operatorname{Lat} T$, and in [10] for contractions which have parts similar to the adjoints of unilateral shifts, in particular, for contractions with a unilateral shift summand. The results of [10] were generalized in [2] as conjectured by Wu , that is, it was proved that if T is a contraction and there exists a nonzero operator X such that $X T=S X$ where S is a unilateral shift, then T is reflexive. In this note we prove the reflexivity of a contraction with a unilateral shift part. This result contains the main theorem of [9] as a special case. As an application, we obtain the reflexivity result for a contraction T on a separable Hilbert space such that $u \Theta_{T}^{*}$ is an operator-valued H^{∞}-function for some nonzero scalar H^{∞} function u, where Θ_{T} is the characteristic function of T and $\Theta_{T}^{*}\left(e^{i t}\right)=\left(\Theta_{T}\left(e^{i t}\right)\right)^{*}$ for almost every t, in particular, for a contraction T such that Θ_{T} is a polynomial. Our proof needs the reflexivity result of [2] stated above. We will extensively use the theory of contractions developed by Sz.-Nagy and Foinş [8].

Theorem 1. If T is a contraction on a Hilbert space \mathfrak{S} and there exists a nonzero $\mathfrak{M} \in L$ Lat T such that $T \mid \mathfrak{M}$ is a unilateral shift, then T is reflexive.

[^0]First let us prove the following lemma.
Lemma 2. If T is a contraction on \mathfrak{G} and there exists a nonzero $\mathfrak{M} \in \operatorname{Lat} T$ such that $T \mid \mathfrak{M}$ is a unilateral shift, then there exists a nonzero operator $Y: \mathfrak{S} \rightarrow L^{2}$ satisfying the following conditions (i) and (ii); (i) $Y T=W Y$ where W is the bilateral shift on L^{2} defined by $(W f)\left(e^{i t}\right)=e^{i t} f\left(e^{i t}\right)$ a.e. $t, f \in L^{2}$, (ii) there exists a linear manifold \mathfrak{L} dense in $\mathfrak{5} \ominus \operatorname{ker} Y$ such that $. W \mid \mathfrak{N}_{Y x}$ is a unilateral shift for all $0 \neq x \in \mathfrak{L}$, where $\mathfrak{N}_{Y x}=\bigvee\left\{W^{n} Y x: n \geqq 0\right\}$ (a cyclic subspace for W).

Proof. By assumption, if \mathfrak{M}_{1} is a cyclic subspace for T included in \mathfrak{M}, then $T \mid \mathfrak{M}_{1}$ is unitarily equivalent to the unilateral shift $S=W \mid H^{2}$ (cf. [6, Theorem 3.33]), hence there exists an isometry $Z: H^{2} \rightarrow \mathfrak{G}$ such that $T Z=Z S$. Let U be the minimal unitary dilation of T acting on \mathfrak{G}, thus U is a unitary operator such that $P U \mid \mathfrak{G}=T$ where P is the orthogonal projection of \mathfrak{G} onto $\mathfrak{5}$, and if $\mathfrak{G}_{+}=\vee_{n \leq 0} U^{n} \mathfrak{G}$, then $\boldsymbol{\sigma}_{+} \Theta \mathfrak{H} \in$ Lat U (cf. [8, Theorem I.4.1 and 4.2]). By the lifting theorem of Sz.-Nagy and Foias (cf. [8, Theorem II.2.3] and [5, Corollary 5.1]) there exists an operator $\tilde{Z}: L^{2} \rightarrow\left(\mathfrak{G}\right.$ satisfying the conditions (a) $U \tilde{Z}=\tilde{Z} W$, (b) $P \tilde{Z} \mid H^{2}=Z$ and (c) $\|\tilde{Z}\|=$ $=\|Z\|=1$. Let us show that the operator $Y=\tilde{Z}^{*} \mid \mathfrak{S}: \mathfrak{F} \mapsto L^{2}$ is a required one.

Since the condition (a) implies $\tilde{Z}^{*} U=W \tilde{Z}^{*}$, to prove $Y T=W Y$, it suffices to show that $\mathfrak{G}_{+} \Theta \mathfrak{G} \subseteq \operatorname{ker} \tilde{\boldsymbol{Z}}^{*}$. Since $\mathfrak{G}_{+} \Theta \mathfrak{G} \in \operatorname{Lat} U, \mathfrak{G}_{+} \Theta \mathfrak{G}$ is orthogonal to $\vee U^{* n} \mathfrak{5}$. On the other hand, since Z is isometric, it follows from (b) and (c) that $n \geq 0$ $\tilde{Z} \mid H^{2}=Z$, and since $\tilde{Z} W^{* n}=U^{* n} \tilde{Z}(n=1,2, \ldots)$ by (a), we see that \tilde{Z} is an isometry and $\operatorname{ran} \tilde{Z} \cong \bigvee_{n \geq 0} U^{* n} \mathfrak{G}$. Therefore it follows that $\mathfrak{G}_{+} \ominus \mathfrak{G} \cong \operatorname{ker} \tilde{Z}^{*}$. Next to see (ii), let $\mathfrak{M}_{0}=\{Z p ; p$ is an analytic polynomial $\}$. Clearly \mathfrak{M}_{0} is linear and dense in $Z H^{2}$. Also since $\tilde{Z} \mid H^{2}=Z$, we have $Z H^{2} \subseteq \mathfrak{G} \ominus$ ker γ. We consider $\mathfrak{L}=\mathfrak{M}_{0} \oplus$ $\oplus\left((\mathfrak{G} \ominus\right.$ ker $\left.Y) \ominus Z H^{2}\right)$, which is linear and dense in $\mathfrak{G} \ominus$ ker Y. If $0 \neq x=Z p+x_{1} \in \mathcal{I}$ where p is a polynomial of degree n and $x_{1} \in(\mathfrak{S} \ominus$ ker $Y) \ominus Z H^{2}$, then $Y x=p+Y x_{1}$ because $\tilde{Z} \mid H^{2}=Z$ and \tilde{Z} is an isometry. Since x_{1} is orthogonal to $Z H^{2}$, or equivalently $Y x_{1}$ is orthogonal to H^{2}, it follows that $\chi^{(n+1)} Y x$, where $\chi\left(e^{i t}\right)=e^{i t}$, is orthogonal to H^{2}, so that $Y x=q g$ ($Y x \neq 0$), where q is a function in L^{∞} such that $\left|q\left(e^{t}\right)\right|=1$ a.e. t and g is an outer function in H^{2} (cf. [3, Chapter IV, Theorem 6.1 and Corollary 6.4]). This shows $\mathfrak{M}_{Y_{x}}=q H^{2}$, hence the isometry $W \mid \Re_{Y x}$ is a unilateral shift. Thus the condition (ii) holds.

Any contraction T can be decomposed uniquely as $T=U \oplus T_{1}$ where U is a unitary operator and T_{1} is a completely non-unitary (c.n.u.) contraction, that is, T_{1} has no nontrivial unitary direct summand. The operators U and T_{1} are called the unitary part and the c.n.u. part of T, respectively. For a contraction T whose unitary part is absolutely continuous, the H^{∞}-functional calculus defines a weak*weak continuous algebra homomorphism, $u \mapsto u(T)$, from H^{∞} to $\operatorname{Alg} T$, and T is said to be of class C_{0} if $u(T)=0$ for some nonzero $u \in H^{\infty}$ (cf. [8, Chapter III]).

Proof of Theorem 1. Let $T=U_{s} \oplus T_{1}$ on $\mathfrak{G}=\mathfrak{S}_{s} \oplus \mathfrak{G}_{1}$ where U_{s} is a singular unitary operator and T_{1} is a contraction whose unitary part is absolutely continuous. It is known that the reflexivity of T is equivalent to that of T_{1} (cf. the proof of [9, Theorem 4.1]). Since T has a unilateral shift part, as in the proof of Lemma 2, we have an isometry Z such that $T Z=Z S$ where S is the unilateral shift on H^{2}. If P_{s} is the orthogonal projection onto \mathfrak{H}_{s}, then $U_{s}\left(P_{s} Z\right)=\left(P_{s} Z\right) S$ and it follows from [5, Corollary 5.1 and Theorem 3] that $P_{s} Z=0$, hence ran $Z \subseteq \mathfrak{S}_{1}$. This shows that T_{1} has a unilateral shift part. Thus we may assume that the unitary part of T is absolutely continuous and it suffices to show that for each $A \in \operatorname{Alg} \operatorname{Lat} T$, there exists $f \in H^{\infty}$ such that $A=f(T)$.

Let Y, W and \mathscr{L} be as in Lemma 2, and let $\tilde{\mathscr{L}}$ be the set $\left\{x_{1}+x_{2}: x_{1} \in\right.$ ker Y and $\left.0 \neq x_{2} \in \mathscr{E}\right\}$ that is dense in \mathfrak{H}. If $x \in \tilde{\mathscr{I}}$, that is, $x=x_{1}+x_{2}$ where $x_{1} \in \operatorname{ker} Y$ and $0 \neq x_{2} \in \mathcal{I}$, then since $Y x=Y x_{2}(\neq 0)$, by Lemma 2 the isometry $W \mid \Re_{Y x}$ is a unilateral shift and $\left(W \mid \mathfrak{N}_{Y x}\right)\left(Y \mid \mathfrak{M}_{x}\right)=\left(Y \mid \mathfrak{M}_{x}\right)\left(T \mid \mathfrak{M}_{x}\right)$ with $Y \mid \mathfrak{M}_{x} \neq 0$, where $\mathfrak{M}_{x}=$ $=\bigvee\left\{T^{n} x: n \geqq 0\right\}$, so it follows from [2, Theorem 4] that

$$
\operatorname{Alg} \operatorname{Lat}\left(T \mid \mathfrak{M}_{x}\right)=\left\{f(T) \mid \mathfrak{M}_{x}: f \in H^{\infty}\right\}
$$

Here note that the unitary parts of T and $T \mid \mathfrak{M}_{x}$ are absolutely continuous. Take $A \in \operatorname{Alg}$ Lat T. For each $x \in \tilde{\mathcal{L}}$, since $\mathfrak{M}_{x} \in \operatorname{Lat} T \subseteq$ Lat A and $A \mid \mathfrak{M}_{x} \in \operatorname{Alg} \operatorname{Lat}\left(\dot{T} \mid \mathfrak{M}_{x}\right)$, by the above fact there is $f_{x} \in H^{\infty}$ such that $A\left|\mathfrak{M}_{x}=f_{x}(T)\right| \mathfrak{M}_{x}$, in particular, $A x=f_{x}(T) x$. Here note that it follows from the identity $W Y=Y T$ with $Y x \neq 0$ that $T \mid \mathfrak{M}_{x}$ is not of class C_{0} (cf. [8, Proposition III.4.1]), so that the function \dot{f}_{x} is determined uniquely by x. Since $\tilde{\mathfrak{L}}$ is dense in \mathfrak{F}, in order to show $A=f(T)$ for some $f \in H^{\infty}$, it suffices to prove that $f_{x}=f_{y}$ for all $x, y \in \tilde{\underline{L}}$. First suppose $x-y \in \operatorname{ker} Y$. Then since $Y x=Y y$ and ker $Y \in$ Lat $T \subseteq$ Lat A, we have

$$
\left(f_{x}-f_{y}\right)(W) Y x=Y f_{x}(T) x-Y f_{y}(T) y=Y A x-Y A y=Y A(x-y)=0
$$

and since $Y x \neq 0$, it follows that $f_{x}=f_{y}$. Next assume that $x-y \ddagger$ ker Y. Then since clearly $x-y \in \tilde{\mathbb{Z}}$, there is $f_{x-y} \in H^{\infty}$ such that

$$
f_{x-y}(T) x-f_{x-y}(T) y=f_{x-y}(T)(x-y)=A(x-y)=A x-A y=f_{x}(T) x-f_{y}(T) y
$$

hence $\left(f_{x-y}-f_{x}\right)(T) x=\left(f_{x-y}-f_{y}\right)(T) y \in \mathfrak{M}_{x} \cap \mathfrak{M}_{y}$. Therefore we have

$$
f_{x}(T)\left(f_{x-y}-f_{x}\right)(T) x=A\left(f_{x-y}-f_{x}\right)(T) x=f_{y}(T)\left(f_{x-y}-f_{x}\right)(T) x
$$

and since $T \mid \mathfrak{M}_{x}$ is not of class $C_{0},\left(f_{x}-f_{y}\right)\left(f_{x-y}-f_{x}\right)=0$. Similarly we have $\left(f_{x}-f_{y}\right)\left(f_{x-y}-f_{y}\right)=0$. This shows $f_{x}=f_{y}$ and completes the proof.

Let T be a contraction on a separable Hilbert space. The characteristic function Θ_{T} of T is defined by

$$
\Theta_{T}(\lambda)=\left[-T+\lambda D_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} D_{T}\right] \mid \mathfrak{D}_{T} \quad(|\lambda|<1)
$$

where $D_{T}=\left(I-T^{*} T\right)^{1 / 2}, D_{T^{*}}=\left(I-T T^{*}\right)^{1 / 2}$ and $\mathcal{D}_{T}=\left(\operatorname{ran} D_{T}\right)^{-}$. The function Θ_{T} is an operator-valued H^{∞}-function whose values are contractions from \mathfrak{D}_{T} to $\mathcal{D}_{T^{*}}:=\left(\operatorname{ran} D_{T^{*}}\right)^{-}$(cf. [8, Chapter VI]). If T is c.n.u., then it follows from [8, Theorem VII.4.7] that there exists a nonzero $\mathfrak{M} \in L$ Lat T such that $T \mid \mathfrak{M}$ is a unilateral shift if and only if there exists a nonzero $h \in H^{2}\left(\mathfrak{D}_{T^{*}}\right)$ such that $\Theta_{T}^{*} h \in \Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)$, where $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$ (resp. $L^{2}\left(\mathfrak{D}_{T}\right)$) is the space of $\mathfrak{D}_{T^{*}}$-valued H^{2}-functions (resp. $\mathfrak{D}_{T^{-}}$ valued L^{2}-functions), $\Theta_{T}^{*}\left(e^{i t}\right)=\left(\Theta_{T}\left(e^{i t}\right)\right)^{*}$ a.e. t and $\Delta_{T}\left(e^{i t}\right)=\left(I-\Theta_{T}\left(e^{i t}\right)^{*} \Theta_{T}\left(e^{i t}\right)\right)^{1 / 2}$ a.e. t.

Now we obtain the reflexivity result for a contraction T such that $u \Theta_{T}^{*}$ is an operator-valued H^{∞}-function for some nonzero scalar function $u \in H^{\infty}$. If such a contraction T is of class C_{00}, that is, $T^{n} \rightarrow 0$ and $T^{* n} \rightarrow 0$ strongly as $n \rightarrow \infty$, then since $\Theta_{T}\left(e^{i t}\right)$ is unitary a.e. t (cf. [8, Proposition VI.3.5]), the condition that $u \Theta_{T}^{*}$ is an operator-valued H^{∞}-function with a nonzero $u \in H^{\infty}$ means that $u(T)=0$ and so T is of class C_{0} (cf. [8, Theorem VI.5.1]). Reflexive contractions of class C_{0} were characterized in terms of their Jordan models [1].

Theorem 3. Let T be a contraction on a separable Hilbert space such that $u \Theta_{T}^{*}$ is an operator-valued H^{∞}-function for some nonzero $u \in H^{\infty}$. If the c.n.u. part of T is not of class C_{00}, then T is reflexive.

Proof. By Theorem 1 it suffices to show that T or T^{*} has a unilateral shift part. Since the characteristic function of a contraction is equal to the one of its c.n.u. part, we may assume that T is a c.n.u. contraction. Since $\Theta_{T}^{*}\left(I-\Theta_{T} \Theta_{T}^{*}\right)=$ $=\Delta_{T}^{2} \Theta_{T}^{*}$ and by the assumption for Θ_{T} the function $u\left(I-\Theta_{T} \Theta_{T}^{*}\right)$ is an operatorvalued H^{∞}-function, if $\lim \left\|T^{n} x\right\| \neq 0$ for some x, or equivalently $\Theta_{T}\left(e^{i r}\right)$ is not coisometric on a set of t 's of positive Lebesgue measure (cf. [8, Proposition VI.3.5]), then there is a nonzero $h \in H^{2}\left(\mathcal{D}_{T^{*}}\right)$ such that $\Theta_{T}^{*} h \in \Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)$, and so T has a unilateral shift part by the fact remarked above. Also since $\Theta_{T^{*}}\left(e^{i t}\right)=\left(\Theta_{T}\left(e^{-i t}\right)\right)^{*}$ a.e. t for the characteristic function $\Theta_{T^{*}}$ of T^{*} (cf. [8, p. 239]), the contraction T^{*} satisfies the same condition as T, that is, $\tilde{u} \Theta_{T^{*}}^{*}$ is an operator-valued H^{∞}-function where \tilde{u} is a function in H^{∞} defined by $\tilde{u}\left(e^{i t}\right)=\overline{u\left(e^{-i t}\right)}$ a.e. t. Thus if $\lim \left\|T^{* n} x\right\| \neq 0$ for some x, then it follows that T^{*} has a unilateral shift part.

The following theorem gives a complement of Theorem 3.

Theorem 4. Let $T=U \oplus T_{1}$ where U is a unitary operator and T_{1} is a contraction of class C_{0}. Then T is reflexive if and only if the following condition (i) or (ii) holds:
(i) U has a (nontrivial) bilateral shift summand;
(ii) T_{1} is reflexive.

Proof. Again we may assume that U is absolutely continuous (cf. the proof of [9, Theorem 4.1]). If U has a bilateral shift summand, then by Theorem $1 T$ is reflexive. If U has no bilateral shift summand, then by Lemma 5 below we have $\operatorname{Alg} T=\mathrm{Alg} U \oplus \operatorname{Alg} T_{1} \quad$ and \quad Lat $T=\mathrm{Lat} U \oplus \operatorname{Lat} T_{1}$, so $\operatorname{Alg} \operatorname{Lat} T=\mathrm{Alg} \operatorname{Lat} U \oplus$ \oplus Alg Lat T_{1}. Therefore it follows from the reflexivity of the unitary operator ${ }^{4} U$ (cf. [7]) that T is reflexive if and only if T_{1} is. This shows Theorem 4.

The implication $(2) \Rightarrow(1)$ in the following lemma was pointed out by P. Y. Wu.
Lemma 5. Let $T=U \oplus T_{1}$ on $\mathfrak{G}=\mathfrak{G}_{0} \oplus \mathfrak{G}_{1}$ where U is an absolutely continuous unitary operator and T_{1} is a contraction of class C_{0}. Then the following conditions are equivalent:
(1) U has no bilateral shift summand;
(2) Lat $T=$ Lat $U \oplus \operatorname{Lat} T_{1}$;
(3) $\mathrm{Alg} T=\mathrm{Alg} U \oplus \operatorname{Alg} T_{1}$.

Proof. (1) $\Rightarrow(2)$: Since the inclusion Lat $U \oplus$ Lat $T_{1} \subseteq$ Lat T is obvious, we have to show that any $\mathfrak{M} \in \operatorname{Lat} T$ is decomposed into $\mathfrak{M}=\mathfrak{L} \oplus \mathfrak{N}$ where $\mathfrak{L} \in$ Lat U and $\mathfrak{N} \in \operatorname{Lat} T_{1}$. Suppose $\mathfrak{M} \in \operatorname{Lat} T$. Since T_{1} is of class C_{0}, there is a nonzero function $f \in H^{\infty}$ such that $f\left(T_{1}\right)=0$. We set $\mathbb{Q}=(f(T) \mathfrak{M})^{-} \subseteq \mathfrak{M}$. Then clearly $\mathscr{L} \in$ Lat T and $\mathscr{E} \subseteq(\operatorname{ran} f(T))^{-}=(\operatorname{ran} f(U))^{-} \subseteq \mathfrak{S}_{0}$, so \mathscr{E} is an invariant subspace of U. But since U has no bilateral shift summand, \mathcal{E} reduces U (cf. [3, Chapter VII, Proposition 5.2]), hence \mathfrak{L} also reduces T. Then the subspace $\mathfrak{N}=\mathfrak{M} \ominus \mathfrak{L}$ is invariant for T and since $f(T) \mathfrak{N} \subseteq \mathfrak{M}$ and $f(T) \mathfrak{N} \subseteq f(T) \mathfrak{M} \subseteq \mathbb{L}$, we have $f(T) \mathfrak{N}=\{0\}$. But since $f(T)=f(U) \oplus 0$ and obviously $f(U)$ is injective, we conclude $\mathfrak{N} \subseteq \mathfrak{G}_{1}$, and therefore $\mathfrak{N} \in \operatorname{Lat} T_{1}$. This shows (2).
(1) $\Rightarrow(3)$: For $n=1,2, \ldots, T^{(n)}=U^{(n)} \oplus T_{1}^{(n)}$ satisfies the same condition as T, where for an operator $A, A^{(n)}$ denotes the direct sum of n copies of A. Therefore, using the implication (1) \Rightarrow (2) proved already, we have Lat $T^{(n)}=$ Lat $U^{(n)} \oplus \operatorname{Lat} T_{1}^{(n)}$. If $A \in \mathrm{Alg} U$ and $B \in \mathrm{Alg} T_{1}$, then clearly Lat $U^{(n)} \oplus \operatorname{Lat} T_{1}^{(n)} \subseteq \operatorname{Lat}(A \oplus B)^{(n)}$, so that Lat $T^{(n)} \subseteq$ Lat $(A \oplus B)^{(n)}$ for $n=1,2, \ldots$, hence it follows from Sarason's lemma (cf. [6, Theorem 7.1]) that $A \oplus B \in \mathrm{Alg} T$. This shows $\mathrm{Alg} U \oplus \operatorname{Alg} T_{1} \subseteq \mathrm{Alg} T$. Since the converse inclusion is obvious, we conclude $\mathrm{Alg} T=\mathrm{Alg} U \oplus \mathrm{Alg} T_{1}$.
$(3) \Rightarrow(2)$ is obvious. (2) $\Rightarrow(1)$: If U has a bilateral shift summand, then by the proof of Theorem 1 Alg Lat $T=\left\{f(T): f \in H^{\infty}\right\}$. Since the condition (2) implies the inclusion Alg Lat $U \oplus \operatorname{Alg}$ Lat $T_{1} \cong \mathrm{Alg}$ Lat T, we have $0 \oplus I \in \operatorname{Alg}$ Lat T, so that there is $f \in H^{\infty}$ such that $f(U)=0$ and $f\left(T_{1}\right)=I$, but this is impossible because $f(U)=0$ implies $f=0$. This shows (2) $\Rightarrow(1)$.

References

[1] H. Bercovici, C. Foias and B. Sz.-Nagy, Reflexive and hyperreflexive operators of class C_{6}, Acta Sci. Math., 43 (1981), 5-13.
[2] H. Bercovici and K. Takahashn, On the reflexivity of contractions on Hilbert space, J. London Math. Soc., (2) 32 (1985), 149-156.
[3] J. B. Conway, Subnormal operators, Research Notes in Math. 51, Pitman (Boston, 1981).
[4] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc., 28 (1971), 509-512.
[5] R: G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta Sci. Math., 30 (1969), 19- 32.
[6] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag (Berlin, 1973).
[7] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math., 17 (1966), 511-517.
[8] B. Sz.-NAGY and C. FoIAş, Harmonic analysis of operators on Hilbert spaces, North-Holland (Amsterdam, 1970).
[9] P. Y. WU, Contractions with constant characteristic functions are reflexive, J. London Math. Soc., (2) 29 (1984), 533-544.
[10] P. Y. Wu, Contractions with a unilateral shift summand are reflexive, Integral Equations Operator Theory, 7 (1984), 899-904.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE (GENERAL EDUCATION)
HOKKAIDO UNIVERSITY
SAPPORO 060
JAPAN

[^0]: Received December 3, 1985.

