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On the reflexivity of contractions with isometric parts

KATSUTOSHI TAKAHASHI

For a bounded linear operator T on a Hilbert space, let Alg T denote the
weakly closed algebra generated by T and the identity. Also let Lat T and AlgLat T
denote the lattice of all invariant subspaces of T and the algebra of all operators
A such that Lat TCLat 4, respectively. An operator T is said to be reflexive if
Alg Lat T=Alg T. (Note that we always have Alg TS Alg Lat T.) The first exam-
ples of reflexive operators were given by SARASON [7], that is, he proved that normal
operators and analytic Toeplitz operators are reflexive. Subsequently DEDDENS [4]
proved the reflexivity of isometries, and now various classes of operators are known
to be reflexive. B

In [9] and [10]}, Wu considered the generalizations of Deddens’ result. In 9]
the reflexivity was proved for contractions T on $ such that T|M and T*HOM
are isometries for some McLat 7, and in [10] for contractions which have parts
similar to the adjoints of unilateral shifts, in particular, for contractions with a
unilateral shift summand. The results of [10] were generalized in [2] as conjectured
by Wu, that is, it was proved that if T is a contraction and there exists a nonzero
operator X such that X7T=SX where S is a unilateral shift, then T is reflexive.
In this note we prove the reflexivity of a contraction with a unilateral shift part.
This result contains the main theorem of [9] as a special case. As an application,
we obtain the reflexivity result for a contraction 7 on a separable Hilbert space
such that u@% is an operator-valued H*-function for some nonzero scalar H*-
function u, where @y is the characteristic function of T and ©%(e")=(Or(e")*
for almost every ¢, in particular, for a contraction T such that @, is a polynomial.
Our proof needs the reflexivity result of [2] stated above. We will extensively use
the theory of contractions developed by Sz.-NaGy and Foiag [8].

Theorem 1. If T is a contraction on a Hilbert space $ and there exists a non-
zero WMcLat T such that T|\M is a unilateral shift, then T is reflexive.
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First let us prove the following lemma.

Lemma 2. If T is a contraction on $ and there exists a nonzero IMcLat T
such that T|\M is a unilateral shift, then there exists a nonzero operator Y: H— L2
satisfying the following conditions (i) and (ii); O) YT=WY where W is the bilateral
shift on L? defined by (Wf)(e")=e"f(e") ae.t, f€L? (ii) there exists a linear mani-
fold £ dense in HSOker Y such that ‘W|WRy, is a unilateral shift for all 0=x€L,
where My, =\ {W"Yx: n=0} (a cyclic subspace for W).

Proof. By assumption, if I, is a cyclic subspace for T included in 9, then
T|M, is unitarily equivalent to the unilateral shift S=W|H? (cf. [6, Theorem 3.33)),
hence there exists an isometry Z: H%—$ such that TZ=ZS. Let U be the minimal
unitary dilation of T acting on ®, thus U is a unitary operator such that PU{HS=T
where P is the orthogonal projection of ® onto $, and if G,.= V0 U"$, then

®,0%cLat U (cf. [8, Theorem 1.4.1 and 4.2]). By the lifting theorem of Sz.-Nagy
and Foias (cf. [8, Theorem I1.2.3] and [5, Corollary 5.1]) there exists an operator
Z: 12~ satisfying the conditions (a) UZ=ZW, (b) PZ|H*=Z and (c) |Z|=
=] Z]|=1. Let us show that the operator Y=Z*|%: $—L? is a required one.

Since the condition (a) implies Z*U=WZ*, to prove YT=WY, it suffices
to show that & ,©9Cker Z*. Since 6,0HcLat U, 6,09 is orthogonal to
V U*$. On the other band, since Z is isometric, it follows from (b) and (c) that

n=0

Z|H?=Z, andsince ZW*"=U*"Z (n=1,2,...) by (a), we see that Z is an isometry
and ran ZS \/ U*"$§. Therefore it follows that &, 0 HTker Z*. Next to see (ii),

n=0

let My={Zp; p is an analytic polynomial}. Clearly M, is linear and dense
in ZH?. Also since Z|H?>=Z, we have ZH2C $Oker Y. We consider L=M,®
®((Hoker Y)O ZH?), which is linear and dense in $Oker Y. If 0%x=Zp+x,€2
where p is a polynomial of degree n and x,€(HSOker Y)OZH?, then Yx=p+Yx;
because Z|H2=Z and Z is an isometry. Since x, is orthogonal to ZH?2, or equi-
valently Yx, is orthogonal to H?, it follows that x~"+VYx, where y(e")=e", is
orthogonal to H? so that ¥Yx=qg (¥x20), where ¢ is a function in L™ such that
lg(e¥)|=1 a.e. ¢t and g is an outer function in H?2 (cf. [3, Chapter IV, Theorem 6.1
and Corollary 6.4]). This shows Ry,=qH? hence the isometry W|R,, is a uni-
lateral shift. Thus the condition (ii) holds.

Any contraction T can be decomposed uniquely as T=U@T, where U is a
unitary operator and 7 is a completely non-unitary (c.n.u.) contraction, that is,
7; has no nontrivial unitary direct summand. The operators U and T; are called
the unitary part and the c.n.u. part of T, respectively. For a contraction T whose
unitary part is absolutely continuous, the H*-functional calculus defines a weak™-
weak continuous algebra homomorphism, w—u(T), from H= to AlgT, and T
is said to be of class Cy if u(T)=0 for some nonzero u¢ H* (cf. [8, Chapter III)).
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Proof of Theorem 1. Let T=U;®T; on H=9H,0$; where U, is a sin-
gular unitary operator and T; is a contraction whose unitary part is absolutely
continuous. It is known that the reflexivity of T is equivalent to that of T} (cf. the
proof of [9, Theorem 4.1]). Since T has a unilateral shift part, as in the proof of
Lemma 2, we have an isometry Z such that TZ=ZS where S is the unilateral
shift on H2 If P, is the orthogonal projection onto $,, then U,(P.Z)=(P.Z)S
and it follows from [5, Corollary 5.1 and Theorem 3] that P.Z=0, hence ran ZS $,.
This shows that 7] has a unilateral shift part. Thus we may assume that the unitary
part of T'is absolutely continuous and it suffices to show that for each 4¢ Alg Lat T,
there exists f€ H* such that A=f(T). :

Let ¥, Wand £ be as in Lemma 2, and let £ be the set {x,+x5: x,€ker Y and
05£x,€ 2} that is dense in §. If xc@, thatis, x=x,+x, where x,cker ¥ and
0=x,€28, then since Yx=Yx,(#0), by Lemma 2 the isometry W|Ry, is a uni-
lateral shift and (W|Ny )(Y|MM,)=(Y|M)(T|M,) with Y|M =0, where EIR =
=V {T"x: n=0}, so it follows from [2, Theorem 4] that '

AlgLat(TM,) = {f(T)M,: feH=}.

Here note that the unitary parts of 7 and T, are absolutely continuous. Take
AcAlg Lat T. For each x€&, since M cLat TCLat A and A4|M €Alg Lat (T|9,),
by the above fact there is f,€ H” such that A[M,=f(T)|M,, in particular,
Ax=f.(T)x. Here note that it follows from the identity WY=YT with Yx520
that T|9, is not of class C, (cf. [8, Proposition I11.4.1]), so that the function f,

is determined uniquely by x. Since & is dense in $, in order to show A=f(T) for
some f€ H*, it suffices to prove that f, =f, for all x, y¢€ . First suppose x —y€ker Y
Then since ¥Yx=Yy and ker Y¢Lat TSLat A, we have

(Fu—F) W)Y = Yfu(T)x—Yf,(T)y = YAx—YAy = YA(x—y) = 0,

and since Yx#O0, it follows that fx=fy'. Next assume that x—yg¢ker Y. Then
since clearly x—y€®, there is Jfx—y€H> such that

fesMX~foey(D)Y = fomy T (x—p) = A(x—) = Ax—Ay = fu(T)x—f,(T)y,
hence (fr—,—f D) x=(feocy— )Ty M, NM,. Therefore we have

LM Samy=fID)x = Afamy =SfID)x = [(TD) (f2-y =) (Dx,

and since T|M, is not of class Cy, (f; fy)( JSi—y—f:)=0. Similarly we have
(fi=f)(fuey—1,)=0. This shows f,=f, and completes the proof.

Let T be a contraction on a separable Hllbert space. The charactertsttc functzonv
@y of T is defined by

Or(3) = [-T+AD+(I—-AT*)"1D;)| Dy (lil <1),
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where Dp=(I—T*T)Y?, Dps=(I—TT*)* and D;=(ran D;)~. The function O
is an operator-valued H>-function whose values are contractions from Dy to
Dpe:=(ran D)~ (cf. [8, Chapter VI]). If T'is c.n.u., then it follows from [8, Theo-
rem VIL.4.7] that there exists a nonzero MeLat T such that T|P is a unilateral
shift if and only if there exists a nonzero h€ H3(Dy.) such that OFh€A;L*(Dq),
where H?(Drs) (resp. L3(Dy)) is the space of Dy«-valued H>-functions (resp. Dr-
valued L*-functions), @%(e")=(@r(eM)* a.e. t and Ar(e")=(I—O1(¢")* O (e")*
a.e. t.

Now we obtain the reflexivity result for a contraction T such that uO@7% is an
operator-valued H>-function for some nonzero scalar function u€H*. If such
a contraction T is of class Cy, that is, T"—~0 and 7*"—~0 strongly as n— oo,
then since @(e") is unitary a.e. ¢ (cf. [8, Proposition VI.3.5]), the condition that
uO?%. is an operator-valued H*=-function with a nonzero u€ H= means that u(T)=0
and so T is of class C, (cf. [8, Theorem VI.5.1]). Reflexive contractions of class C,
were characterized in terms of their Jordan models [1].

Theorem 3. Let T be a contraction on a separable Hilbert space such that
u@7y is an operator-valued H>-function for some nonzero u¢ H*. If the c.n.u. part
of T is not of class Cyy, then T is reflexive.

Proof. By Theorem 1 it suffices to show that T or T has a unilateral shift
part. Since the characteristic function of a contraction is equal to the one of its
c.n.u. part, we may assume that T is a c.n.u. contraction. Since O%F(I—-0;0%)=
=4%0% and by the assumption for @y the function u(/—©,07) is an operator-
valued H=-function, if lim || 7"x||0 for some x, or equivalently @,(e") is not
coisometric on a set of #’s of positive Lebesgue measure (cf. [8, Proposition VL3.5)),
then there is a nonzero h€ H2(Dr.) such that @Fh€A;L%(Dy), and so T has a
unilateral shift part by the fact remarked above. Also since @r.(e")=(Or(e~*))*
a.e. t for the characteristic function @ of T* (cf. [8, p. 239]), the contraction 7*
satisfies the same condition as T, that is, #©73, is an operator-valued H>-function
where i is a function in H> defined by #(e*)=u(e-") a.e. . Thus if lim || 7*"x| 0
for some x, then it follows that T* has a unilateral shift part.

The following theorem gives a complement of Theorem 3.

Theorem 4. Let T=U®T, where U is a unitary operator and Ty is a contrac-
tion of class C,. Then T is reflexive if and only if the following condition (i) or (ii)
holds:

(i) U has a (nontrivial) bilateral shift summand;

(ii) T‘ is reflexive,
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Proof. Again we may assume that U is absolutely continuous (cf. the proof
of [9, Theorem 4.1]). If U has a bilateral shift summand, then by Theorem 1 T is
reflexive. If U has no bilateral shift summand, then by Lemma 5 below we have
Alg T=Alg UdAlgT, and LatT=Lat U®LatT;, so "AlgLat T=AlgLat U®
®AlgLatT;. Therefore it follows from the reflexivity of the unitary operator*U
(cf. [7]) that T is reflexive if and only if T; is. This shows Theorem 4.

" The implication (2)=(1) in the following lemma was pointed out by P. Y. Wu.

Lemma 5. Let T=U®T, on H=9,0%9, where U is an absolutely continuous
unitary operator and T, is a contraction of class C,y. Then the following conditions are
equivalent: ' '

(1) U has no bilateral shift summand;

(2) Lat T=Lat U®LatT;;

(3) Alg T=Alg UdAlgT;.

‘Proof. (1)=>(2): Since the inclusion Lat UdLatT;SLlat T is obvious, we.
have to show that any MeLlat T is decomposed into M=LPHN where LeLat U
and MeLatT,. Suppose McLatT. Since T; is of class C,, there is a nonzero
function f¢H* such that f(T;)=0. We set L=(f(T)M)~SM. Then clearly
ecLat T and 2&(ranf(T))~ =(ran f(U))"E9H,, so L is an invariant subspace
of U. But since U has no bilateral shift summand, £ reduces U (cf. [3, Chapter VII,
Proposition 5.2]), hence £ also reduces 7. Then the subspace #=IMO & is invariant
for T and since f(T)NER and f(T)NCSFH(T)MSL, we have f(T)N={0}. But
since f(T)=f(U)®0 and obviously f(U) is injective, we conclude NES$H,, and
therefore elatT,. This shows (2).

(D=(3): For n=1,2,..., T®=UW@T™ satisfies the same condition as T,
where for an operator A4, A™ denotes the direct sum of n copies of A. Therefore,
using the implication (1)=(2) proved already, we have Lat 7™ =Lat U™ @Lat 7",
If AcAlg U and B€AlgT,, then clearly Lat U @®Lat T"CLat (A®B)™, so that
Lat T™CLat (4®B)™ for n=1,2,..., hence it follows from Sarason’s lemma
(cf. [6, Theorem 7.1]) that A@BcAlg T. This shows Alg UdAlgT,SAlg T. Since
the converse inclusion is obvious, we conclude Alg T=Alg UpAlgT;.

(3)=(2) is obvious. (2)=>(1): If U has a bilateral shift summand, then by the
proof of Theorem 1 AlgLat T={f(T): f€ H=}. Since the condition (2) implies
the inclusion AlgLat UdAlgLatT,SAlgLlatT, we have O0@IcAlglatT, so
that there is f€ H* such that f(U)=0 and f(T;)=I, but this is impossible because
f(U)=0 implies f=0. This shows (2)=>(1).
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