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Generalized projections for hyponormal and subnormal operators 

C. R. PUTNAM 

0. Sufficient conditions for the existence of certain invariant subspaces of a 
pure hyponormal operator, T, are obtained. In case T is also subnormal these sub-
spaces are even reducing. In particular, a pure subnormal operator T is shown to 
be reducible in case o(T) is bisected by the imaginary axis and if, in addition, that 
part of c(r),iwhich has a projection onto the real axis lying in the absolutely con-
tinuous support of Re (T), is sufficiently sparse near the imaginary axis. 

1. Let T be a pure hyponormal operator on the separable Hilbert space ^f . 
Thus, T* T^TT* and there is no nontrivial reducing subspace of T on which 
r i s normal. In particular, op{T) is empty. Let C be a rectifiable, positively oriented, 
simple closed curve separating the spectrum a(T); thus, a(T) intersects both int C 
and extC, the interior and exterior, respectively, of C. It may be noted that, in 
general, the set CC\a(T) may have positive (arc length on C) measure. There will 
be proved the following 

Theorem 1. Let T be purely hyponormal on and satisfy 

(1.1) / ||(r-0 -1x|||ifr| < » , *63T, 
c 

where 3C is a set dense in ffl. Then there exists a linearly independent pair of invariant 
subspaces Jii and Jic of T for which ^ C J t c and 

(1.2) <7(7W,.) = (<7(r)nintC)- and o(T\Mc) = {o(T)C\extC)-. 

Further, in case T is also subnormal, Mi and J f e are reducing subspaces of T on 
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P r o o f of Theorem 1. Define the "projection" Pc by 

(1.3) PCX=-(27T/)-1 ¡(T-t^xdt, xi.SC, 
c 

so that, by (1.1), (Pcx, y) = -(2ni)~l J ( ( T - / ) _ 1 x , y) dt is defined as a Lebesgue 
c 

integral for any x in and y in . Clearly, it may be assumed that S£ is a linear 
manifold. If Jt{ and Jte are the respective closures of the linear manifolds Pc3C 
and (I—Pc)SC, then, in particular, J({ and J(e are hyperinvariant subspaces of T. 
Relation (1.2) now follows from a proof analogous to that of [5], pp. 13—14, and 
will be omitted. (The set L and the curve CR of [5] correspond to the present S£ 
and C.) A crucial part of the argument in [5] is that the set {x: <JT(X)C<T} is a sub-
space whenever a is any nonempty compact subset of the plane and <rT(x) is the 
local spectrum of any vector x in jif. This result is due to STAMPFLI [7] (p. 288, see 
also p. 295) in case T* has no point spectrum and to RADJABALIPOUR [6] in the 
general case. 

Also, Jt=Jf(r\J/e={0}. For if 0}, then a(T\Jt)<zC and hence 
a(T\Ji) has (area) measure zero. Consequently (cf. [3]), Ji^ {0} is a reducing 
space of T on which T is normal, in contradiction to the hypothesis that T is purely 
hyponormal. 

Before completing the proof of the remainder of Theorem 1 when T is sub-
normal, there will be proved the following 

Lemma. If T is a pure hyponormal operator satisfying (1.1) then 

(1.4) H<rp(T*) for t£C-Z, 

where Z is a subset of C of (arc length) measure zero. In case T is also subnormal 
on with the minimal normal extension N=J z dEz on J f z ) then 

(1.5) E(C) = 0. 

P roof of Lemma. As noted above, since T is purely hyponormal, ap(T) is 
empty. Further, by (1.1), for x fixed in SC and for almost all t on C, yl=(T—t)^1x 
is defined. Thus, for each x in SC, there exists a set Z(x) on C of arc length measure 
zero and with the property that x£R(T—t) for t£C—Z(x). If (x l5 x2, ...} is a 

countable subset of 2£ which is dense in 2/C then Z = (J Z(xk) is also a zero set. 
k = l 

Thus, St(T—t) is dense in «5f for all t in C—Z and, in particular, relation (1.4) 
follows. 

Next, relation (1.5) will be established when J" is also subnormal. Let x be any 
vector in SC. For t in C—Z(x) one has y,—(T—t)~1x, hence x—(T—t)y,= 
—{N—t)yt, and so / (z-t^dE^. (Note that £'({i})jc=0.) Con-

ff(iV) 
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sequently, for any u in Jf, an application of the Schwarz inequality and (1.1) yields 

/( f\z-tn\d(Ezx,u)\)\dt\S /( f\z-t\-*d\\Ezx\f)ll2{ fd\\E:ur)lii\dt\ = 
C <R(JV) C <R(JV) A(N) 

= {j\\(T-t)-ix\\\dt\)\\u\\ <». 
c 

(Note that J = / •) Consequently, in view of Fubini's theorem, 
C C-Z(X) 

(1.6) / ( / \ t - z \ - * \ d t \ ) \d(Ezx, u)I 
ff(JV) c 

However, J" \t-z\~1 \dt\ = <*= for all z on C. (In fact, otherwise, there would 
c 

exist some z* on C for which j\t—z*\~1 However, z* is not an atom 
c Z* 

of the measure \dt\ on C and so I s J \t—z*|_1 \dt\+ 0 as t*—z*, a contradic-
t* 

tion.) Hence, by (1.6), (E(C)x , u)=0 for u arbitrary in j f and x arbitrary in SC. 
Thus, for x in E\C)X=0 and hence also 0=N*KE(C)x=E(C)N*kx 
(k=0,1, 2,...). Since SC is dense in JF and N is the minimal normal extension of T, 
the linear span of {N*kSC} (k=0,1, 2, ...) is dense in J f and (1.5) follows. This 
completes the proof of the Lemma. 

The assertion of Theorem 1 when T is purely subnormal now follows from 
the above Lemma and Corollary 1 of [4], p. 106. In fact, only the hypothesis (5.1) 
of Corollary 1, corresponding to (1.1) of the present paper, is need to ensure the 
validity of the assertion of Corollary 1. Indeed, the remaining hypotheses there, 
namely, that {z£C: AP(T*)} has measure zero and that E(C)=0, are con-
sequences of (1.1), in. view of the Lemma. For completeness, however, an alternate 
proof of the assertion of Theorem 1 when Tis purely subnormal will be given below. 

By the Lemma, E(C)=0, and so for x in SC and 14 111 one has, by Fubini's 
theorem, 

(Pcx, u) = j [-(2TT/)-1 / ( z - / ) - 1 dt] d(Ezx, u)= f 4>(z) d(Ezx, u), 
A(.N)-C C O(N)-C 

where <£(z) is the characteristic function of int C. Thus, (Pcx, u)=(E(int C)x, u) 
for all u in X and so Pcx=E('mt C)x for all x in SC. Let P denote the 
orthogonal projection P: Jf—Jf. Since the (orthogonal projection) E(intC) is 
bounded on X and £(int C)x=PcxiJf for x in SC, then clearly E(iatC)P= 
=PE(intC)P(=PE(int C)). Thus E'=E(mtC)\3^ is an orthogonal projection 
and E'\SC=Pc. Since TPcx=PcTx for x in 9C and SC is dense in then T com-
mutes with £". Further, it is clear that E' =jK-t, and so the spaces and 
defined earlier reduce T and =JTI®JLE. This completes the proof of Theo-
rem 1. 
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2. For use below, note that if T is purely hyponormal then Re (T) is absolutely 
continuous; see [2], p. 46. 

Theo rem 2. Let T be purely subnormal on 34? and suppose that o(T) inter-
sects both the right and left open half planes 2?={z: Re (z)>0) and L={z: Re (z)<0| . 
In addition, let 

(2.1) f t~2F(t) dt < 2n, 
a 

where a is the absolutely continuous support of Re (T) and F(t) is the linear measure 
of the vertical cross section a(T)r\{z: Re {z)=t} of a(T). Then there exist sub-
spaces JtR and Jih of reducing T, satisfying №=JlR@J(L and 

oCTM = (A(T)N^)- and O{T\ML) ={G{T)C\L)~. 

Theorem 2 follows from Theorem (*) and its proof in [5] and from Theorem 1 
above. In fact, let C denote the positively oriented boundary of the semicircular 
disk {z: Re(z)>0, |z |<r) , where /->0 is chosen so large that O(T)A (Z: |z|-=r}. 
It was shown in [5] that S£ of Theorem 1 above can now be chosen so as to contain 
the range of EA (/?) where {EA} is the spectral family of ^4=Re (T) and P is any 
Borel set of the real line whose closure does not contain 0. This completes the proof 
of Theorem 2. 

For other sufficient conditions ensuring the reducibility of a subnormal operator 
see the references in CONWAY [1], pp. 299—300. 

The author is grateful to the referee for very helpful comments and sugges-
tions. 
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