On α_{1}^{λ}-products of automata

Z. ÉSIK

1. Introduction

In [3] we introduced α_{1}^{λ}-products and gave an algebraic characterization of (homomorphically) complete classes of automata for the α_{1}^{λ}-product:

Theorem 1.1. A class \mathscr{K} of automata is complete for the α_{1}^{λ}-product if and only if for every simple group G there exists an $\mathbf{A} \in \mathbf{P}_{1 \alpha_{1}}^{\lambda}(\mathscr{K})$ such that G is a divisor of the characteristic semigroup of A, written $G \mid S(A)$.

Further, we proved the following result.
Theorem 1.2. Let \mathscr{K} be a class of automata.
(i) If \mathscr{K} contains a nonmonotone automaton, i.e. an automaton in \mathscr{K} has a nontrivial cycle, then $\mathbf{A} \in \mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ if and only if for every simple group G with $G \mid S(A)$ there exists an automaton $B \in \mathbf{P}_{1 \alpha_{1}}^{\lambda}(\mathscr{K})$ with $G \mid S(B)$.
(ii) If \mathscr{K} consists of monotone automata one of which is not discrete, then $\mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ is the class of all monotone automata.
(iii) If \mathscr{K} consists of discrete automata one of which is not trivial then $\mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ is the class of all discrete automata.
(iv) Otherwise, i.e. if \mathscr{K} consists of trivial automata, then $\operatorname{HSP}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ is the class of all trivial automata.

The aim of this paper is to give a graph theoretic characterization of complete classes for the α_{1}^{λ}-product and to give a description of the classes of the form $\operatorname{HSP}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ on the basis of graph theoretic terms. We believe this solution to be the final one as regards α_{1}^{λ}-products. The proofs are based on the fact that the symmetric group of degree $n-1(n>1)$ can be "realized" in a biconnected graph on n vertices. For recent results on α_{0}-products and α_{1}-products see [2] and [1].

Received July 10, 1986.

2. Notions and notations

An automaton is a system $A=(A, X, \delta)$ with finite nonvoid sets A and X, the state set and input set, respectively, and transition $\delta: A \times X \rightarrow A$. The transition extends to a mapping $\delta: A \times X^{*} \rightarrow A$ in the usual way, where X^{*} is the free semigroup with unit element λ generated by X. The characteristic semigroup of \mathbf{A}, denoted $S(A)$, is the transformation semigroup on A consisting of all the mappings $\delta_{u}: A \rightarrow A$, $\delta_{u}(a)=\delta(a, u) \quad\left(a \in A, u \in X^{*}\right)$.

Given a system of automata $\mathrm{A}_{t}=\left(A_{t}, X_{t}, \delta_{t}\right)$ and a family of feedback functions

$$
\varphi_{t}: A_{1} \times \ldots \times A_{n} \times X \rightarrow X_{t} \cup\{\lambda\}
$$

$t=1, \ldots, n$, the g^{λ}-product of the A_{t} 's with respect to X and φ is defined to be the automaton \boldsymbol{A} with state set $A_{1} \times \ldots \times A_{n}$, input set X, and transition

$$
\delta\left(\left(a_{1}, \ldots, a_{n}\right), x\right)=\left(\delta_{1}\left(a_{1}, u_{1}\right), \ldots, \delta_{n}\left(a_{n}, u_{n}\right)\right)
$$

where $\left(a_{1}, \ldots, a_{n}\right) \in A_{1} \times \ldots \times A_{n}, x \in X$ and

$$
u_{t}=\varphi_{t}\left(a_{1}, \ldots, a_{n}, x\right)
$$

$t=1, \ldots, n$. If none of the feedback functions $\varphi\left(a_{1}, \ldots, a_{n}, x\right)$ depends on the state variables a_{s} with $s>t$, we have an α_{1}^{λ}-product.

Given a (nonvoid) class \mathscr{K} of automata, we set:
$\mathbf{P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$: all $\alpha_{\alpha_{1}}^{\lambda}$-products of automata from \mathscr{K},
$\mathbf{P}_{1 \alpha_{1}}^{\lambda_{1}}(\mathscr{K})$: all α_{1}^{λ}-products with a single factor of automata from \mathscr{K} (i.e. $n=1$ above),
$\mathbf{S}(\mathscr{K})$: all subautomata of automata from \mathscr{K},
$\mathbf{H}(\mathscr{K})$: all homomorphic images of automata from \mathscr{K}.
Recall that a class \mathscr{K} is called (homomorphically) complete for the α_{1}^{λ}-product if and only if $\operatorname{HSP}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ is the class of all automata.

By a semigroup (group) we shall mean a finite semigroup (group). We write $S_{1} \mid S_{2}$ for two semigroups S_{1} and S_{2} if S_{1} is a homomorphic image of a subsemigroup of S_{2}. If S_{1} is a group, this just means that S_{1} is a homomorphic image of a subgroup of S_{2}. The following statement is known e.g. from [4]:

Proposition 2.1. If $G \mid G_{1} \times \ldots \times G_{n}$ for a simple group G and a direct product of groups $G_{1}, \ldots, G_{n}(n>0)$, then $G \mid G_{i}$ for some i.

3. Some useful facts

To investigate α_{1}^{λ}-products of automata we introduce the (directed) graph $D(A)$ of an automaton $A=(A, X, \delta)$ as follows. We put $D(A)=(V, E)$ where the vertex set V is just the state set A and

$$
E=\{(a, b) \in A \times A \mid a \neq b, \quad \exists x \in X \quad \delta(a, x)=b\} .
$$

We see that E does not contain loop edges, henceforth, by a (directed) graph we shall always mean a graph without loop edges.

Take a graph $D=(V, E)$. We say that D is connected if for every pair a, b of different vertices there is a (directed) path from a to b. A maximal connected subgraph of D is a connected graph $D^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ and such that whenever $D^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ is a connected graph satisfying $V^{\prime} \subseteq V^{\prime \prime} \subseteq V$ and $E^{\prime} \subseteq E^{\prime \prime} \subseteq$ $\subseteq E$, we have $V^{\prime}=V^{\prime \prime}, E^{\prime}=E^{\prime \prime}$.

A cycle is a graph $D=(V, E)$ with $V=\left\{a_{1}, \ldots, a_{n}\right\}, n>1$, and $E=\left\{\left(a_{1}, a_{2}\right), \ldots\right.$, $\left.\left(a_{n-1}, a_{n}\right),\left(a_{n}, a_{1}\right)\right\}$. Thus, cycles are connected graphs. Connected graphs other than cycles and having at least two vertices will be referred to biconnected graphs.

Take a graph D with vertex set $V=\left\{a_{1}, \ldots, a_{n}\right\}$ and place a pebble p_{i} onto a_{i} for every $i=1, \ldots, n$. Suppose we are allowed to move the pebbles according to the following three rules:

R1: Each step, an arbitrary number of pebbles can be moved. (Thus, some pebbles may stay where they are.)

R2: Each step, a pebble on a vertex a can be moved to a vertex b only if (a, b) is an edge.

R3: Once two or more pebbles hit the same vertex, they cannot be separated, i.e. have to be moved jointly.

Suppose that after a (possibly zero) number of steps p_{i} is on vertex $a_{j_{i}}, i=1, \ldots, n$. To this sequence of transformations we assign the mapping $V \rightarrow V$ given by $a_{i} \rightarrow a_{f_{l}}$, $i=1, \ldots, n$. Denote by $S(D)$ the set of all mappings obtained in this way. Clearly, $S(D)$ is a transformation semigroup on V. We let $G(D)$ denote the group of all permutations in $S(D)$. The following observation easily comes from the definitions:

Fact 3.1. Let \mathbf{A} be an automaton and $D=D(A)$. Then, for every $B \in \mathbf{P}_{1 \alpha_{1}}^{\lambda}(\{A\})$, $S(B)$ is a subsemigroup of $S(D)$. Further, there exists an automaton $C \in \mathbf{P}_{1 a_{1}}^{\lambda_{1}}(\{A\})$ with $S(C)=S(D)$.

Our game can be further generalized. Take a graph $D=(V, E)$ and fix a nonvoid subset V^{\prime} of V, say $V^{\prime}=\left\{a_{1}, \ldots, a_{n}\right\}$. Put pebble p_{i} onto $a_{i}, i=1, \ldots, n$, and move the pebbles in the graph according to R1, R2 and R3. Suppose that after a (possibly zero) number of steps the pebbles get back to the vertices in V^{\prime}, i.e. for
every i, p_{i} is located on a vertex $a_{j_{i}}$ in V^{\prime}. We obtain a mapping $V^{\prime} \rightarrow V^{\prime}$ that assigns $a_{j_{i}}$ to a_{i}. The collection of all these mappings is a transformation semigroup on V^{\prime}, denoted $S\left(D, V^{\prime}\right)$. Put $G\left(D, V^{\prime}\right)$ for the group of all permutations in $S\left(D, V^{\prime}\right)$. The following statement is obvious.

Fact 3.2. $S\left(D, V^{\prime}\right) \mid S(D)$ and $G\left(D, V^{\prime}\right) \mid S(D)$.
The next assertion is a reformulation of a well-known fact.
Fact 3.3. If G is a subgroup of $S(D)$ then there is a nonvoid subset V^{\prime} of the vertex set of D such that G is isomorphic to a subgroup of $G\left(D, V^{\prime}\right)$.

Directly from Fact 3.3 and the observation that it is impossible to move a pebble back in a maximal connected subgraph if it has been moved out, we obtain:

Fact 3.4. If G is a subgroup of $S(D)$ then G has maximal connected subgraphs $D_{1}, \ldots, D_{n}(n>0)$ such that for some nonvoid subsets V_{i} of the vertex sets of the graphs D_{i} it holds that G is isomorphic to a subgroup of the direct product $G\left(D_{1}, V_{1}\right) \times$ $\times \ldots \times G\left(D_{n}, V_{n}\right)$.

Fact 3.5. Let G be a simple group. Then $G \mid S(D)$ if and only if $G \mid G\left(D^{\prime}, V^{\prime}\right)$ for a maximal connected subgraph D^{\prime} of D and a nonvoid subset V^{\prime} of the vertex set of D^{\prime}.

Proof. Suppose that $G \mid S(D)$. There is a subgroup H of $S(D)$ which can be mapped homomorphically, onto G. By Fact $3.4, H$ is isomorphic to a subgroup of à direct product $G\left(D_{1}^{\prime}, V_{1}\right) \times \ldots \times G\left(D_{n}, V_{n}\right)$ where the graphs D_{i} are maximal connected subgraphs of D and for every i, V_{i} is a nonvoid subset of the vertex set of D_{i}. Thus, $G \mid G\left(D_{1}, V\right) \times \ldots \times G\left(D_{n}, V_{n}\right)$. From Proposition 2.1, $G \mid G\left(D_{i}, V_{i}\right)$ for some i.

Conversely, $G \mid G\left(D^{\prime}, V^{\prime}\right)$ and $G\left(D^{\prime}, V^{\prime}\right) \mid S(D)$ yield $G \mid S(D)$.
Suppose we are given a graph $D=(V, E)$ with $V=\left\{a_{0}, \ldots, a_{n}\right\}, n \geqq 1$, i.e. D has at least two vertices. Set. $V_{i}=V-\left\{a_{i}\right\}, i=0, \ldots, n$. Fix a pair of different integers $i, j \in\{0, \ldots, n\}$ and define the mapping $\psi_{i, j}: V_{j} \rightarrow V_{i}$ by

$$
\psi_{i, j}\left(a_{k}\right)= \begin{cases}a_{j} & \text { if } i=k \\ a_{k} & \text { otherwise }\end{cases}
$$

Let us say that $\psi_{i, j}$ has a realization in D if starting with pebble p_{k} located on a_{k}, $k=0, \ldots, n, k \neq j$, the placement that p_{k} is located on $\psi_{i, j}\left(a_{k}\right), k=0, \ldots, n, k \neq j$, can be achieved by a sequence of moves according to R1, R2, R3. Obviously, if $\psi_{i, j}$ can be realized for every pair of different integers $i, j \in\{0, \ldots, n\}$, then for every $i \in\{0, \ldots, n\}, G\left(D ; V_{i}\right)$ is the group of all permutations on V_{i} : to interchange two
pebbles on $a_{i_{1}}$ and $a_{i_{2}}\left(a_{i_{1}}, a_{i_{2}} \in V_{i}, a_{i_{1}} \neq a_{i_{2}}\right)$, take a realization of $\psi_{i_{1}, i}$ followed by a realization of $\psi_{i_{2}, i_{1}}$ and a realization of $\psi_{i, i_{2}}$.

Conversely, suppose that D is connected and for every $i \in\{0, \ldots, n\}, G\left(D, V_{i}\right)$ is the group of all permutations on V_{i}. It then follows that $\psi_{i, j}$ can be realized for every choise of i and $j(i, j \in\{0, \ldots, n\}, i \neq j)$. Take a path $a_{i}=b_{0}, b_{1}, \ldots, b_{t}=a_{j}$ from a_{i} to a_{j}. If the length of this path is 1 , i.e. $t=1$, just move the pebble on a_{i} to a_{j}, the others stand still. If $t>1$, since the permutation $\left(b_{0} b_{t-1} \ldots b_{1}\right)$ is in $G\left(D, V_{j}\right)$, we can move the pebbles on b_{0}, \ldots, b_{t-1} onto the vertices $b_{t-1}, b_{0}, \ldots, b_{t-2}$, respectively, so that the rest of the pebbles get back to their initial positions. To achive the final situation just move the pebbles on b_{0}, \ldots, b_{t-1} one vertex forward along the path b_{0}, \ldots, b_{t}.

4. The main results

In this section we give a graph theoretic characterization of complete classes for the α_{1}^{λ}-product. Further, we give a complete description of the classes of the form $\operatorname{HSP}_{\alpha_{1}}^{\lambda}(\mathscr{K})$.

We start with two lemmas. In these lemmas the following designations will be used. Given a path $a_{0}, \ldots, a_{n}, n \geqq 1$, so that a_{n} is free and for each $i=0, \ldots, n-1$ there is a pebble on a_{i}, by moving the pebbles along the path a_{0}, \ldots, a_{n} we shall mean the transformation that, in a single step, we move each pebble on a_{i} to a_{i+1}, $i=0, \ldots, n-1$. This definition extends to the case $n=0$: the placement of the pebbles remains unchanged. Given a cycle a_{0}, \ldots, a_{n-1} ($n \geqq 2$) with at most one pebble on $a_{i}, i=0, \ldots, n-1$, by rotating the pebbles around the cycle we shall mean the transformation obtained by moving the pebble on a_{i} to $a_{i+1 \bmod n}$ for every i, provided that there was a pebble on a_{i}.

Lemma 4.1. Let $D=(V, E)$ be a graph with $D=\left\{a_{0} ; \ldots, a_{n+m}\right\}, \quad n, m \geqq 1$, $E=\left\{\left(a_{0}, a_{1}\right), \ldots,\left(a_{n+m-1}, a_{n+m}\right),\left(a_{n+m}, a_{0}\right),\left(a_{n}, a_{0}\right)\right\}$. Then for every pair i, j of different integers in $\{0, \ldots, n+m\}, \psi_{i, j}$ can be realized in D.

Proof. Fix an integer $i \in\{0, \ldots, n+m\}$. We shall show that $G\left(D, V_{i}\right)$ is the group of all permutations on V_{i}. Since a_{0}, \ldots, a_{n+m} is a cycle in D, we may restrict ourselves to $i=n+1$. To see that $G\left(D, V_{n+1}\right)$ is the group of all permutations on V_{n+1} if suffices to prove that the cyclic permutation $\left(a_{0} \ldots a_{n} a_{n+2}, \ldots, a_{n+m}\right)$ and the transposition ($a_{n-1} a_{n}$) are in $G\left(D, V_{n+1}\right)$.

Place pebble p_{i} onto $a_{i}, i=0, \ldots, n, n+2, \ldots, n+m$. Move p_{n} from a_{n} to a_{n+1}, then rotate the pebbles around the cycle a_{0}, \ldots, a_{n+m}. We see that $\left(a_{0} \ldots a_{n} a_{n+2} \ldots a_{n+m}\right) \in$ $\in G\left(D, V_{n+1}\right)$. For the transposition ($a_{n-1} a_{n}$), apply the following procedure:

Step 1. Move p_{n} from a_{n} to a_{n+1}.

Step 2. Check if p_{n} is located on a_{n+m}, if so, go to Step 3. Move the pebbles along the path $a_{n+m}, a_{0}, \ldots, a_{n}$. (It is garanteed that a_{n} is free when this transformation applies.) Next, rotate the pebbles n times around the cycle a_{0}, \ldots, a_{n}, and after that, move the pebbles along the path a_{n}, \ldots, a_{n+m} and go back to Step 2.

Step 3. Before this step applies, the placement of the pebbles is this: for every $i \in\{0, \ldots, n-1\}, p_{i}$ is located on $a_{i} ; a_{n}$ is free; for every $i \in\{n+2, \ldots, n+m\}, p_{i}$ is on $a_{i-1} ; p_{n}$ is on a_{n+m}. Move p_{n-1} from a_{n-1} to a_{n} and then rotate the pebbles around the cycle a_{0}, \ldots, a_{n} until a_{0} gets free, we see that a_{0} is free, p_{n-1} is located on a_{1}, and for every $i \in\{0, \ldots, n-2\}, p_{i}$ is on a_{2+i}. Now move p_{n} from a_{n+m} to a_{0}, rotate the pebbles $n-1$ times around the cycle a_{0}, \ldots, a_{n}, and move the pebbles along the path a_{n+1}, \ldots, a_{n+m}.

Lemma 4.2. Let $G=(V, E)$ be a graph with $V=\left\{a_{0}, \ldots, a_{n+m+l}\right\}$, $n \geqq 0, \quad m, l \geqq 1, \quad$ and $\quad E=\left\{\left(a_{0}, a_{1}\right), \ldots,\left(a_{n+m-1}, a_{n+m}\right),\left(a_{n+m}, a_{0}\right),\left(a_{n}, a_{n+m+1}\right), \ldots\right.$, $\left.\ldots,\left(a_{n+m+l-1}, a_{n+m+l}\right),\left(a_{n+m+l}, a_{0}\right)\right\}$. Then, for every pair of different integers $i, k \in\{0, \ldots, n+m+l\}, \psi_{i, k}$ can be realized in D.

Proof. Place p_{t} onto $a_{t}, t=0, \ldots, n+m+l, t \neq k$. First we show that we may restrict the consideration to the case that $k=n$. Either $k \in\{0, \ldots, n+m\}$ or $k \in$ $\in\{0, \ldots, n, n+m+1, \ldots, n+m+l\}$. If $k \in\{0, \ldots, n+m\}$ rotate the pebbles around the cycle a_{0}, \ldots, a_{n+m} until a_{n} gets free, then move p_{i} to a_{n} so that the rest of the pebbles get back to the position they were after the rotations. Finally, rotate the pebbles around the cycle a_{0}, \ldots, a_{n+m} so that p_{i} gets onto a_{k}. The pebbles p_{i} other than p_{i} get back to a_{t}, respectively. Similar procedure applies when $k \in\{0, \ldots, n+m+1, \ldots$, $\ldots, n+m+l\}$.

Let $k=n$. Because the assumptions $i \in\{0, \ldots, n+m\}$ and $i \in\{0, \ldots, n, n+m+1, \ldots$, $\ldots, n+m+l\}$ are symmetrical, we may suppose $i \in\{0, \ldots, n+m\}$. We shall realize $\psi_{i, n}$ in five steps.

Step 1. Rotate the pebbles once around the cycle $a_{0}, \ldots, a_{n}, a_{n+m+1}, \ldots, a_{n+m+1}$. Observe that a_{n+m+1} becomes free and p_{n+m+l} gets onto a_{0}.

Step 2. Rotate the pebbles around the cycle a_{0}, \ldots, a_{n+m} until p_{i} hits a_{n}. Then move p_{i} from a_{n} to a_{n+m+1}, so that a_{n} becomes free.

Step 3. When this step applies, one of the vertices a_{0}, \ldots, a_{n+m} is free, and exactly one of $p_{n+m+1}, \ldots, p_{n+m+l}$, say p_{t}, is in the cycle a_{0}, \ldots, a_{n+m} (p_{n+m+l} for the first time). Check if p_{i} is on a_{n+m+l}, if so, go to Step 4. Otherwise rotate the pebbles around the cycle a_{0}, \ldots, a_{n+m} until p_{t} gets onto a_{n}, and rotate the pebbles once around the cycle $a_{0}, \ldots, a_{n}, a_{n+m+1}, \ldots, a_{n+m+1}$. Go to Step 3.

Step 4. Observe that the placement of the pebbles is this. The cycle a_{0}, \ldots, a_{n+m} contains p_{n+m+1} and the pebbles p_{j} with $j \in\{0, \ldots, n+m\}, j \neq i ; j \neq n$. Thus, one of
a_{0}, \ldots, a_{n+m} is free. The relative order of the pebbles $p_{j}(j \in\{0, \ldots, n+m\}$, $j \neq i, j \neq n$) is their original order. Further, p_{i} is on a_{n+m+1}, p_{n+m+2} is on a_{n+m+1}, \ldots, \ldots, p_{n+m+l} is on $a_{n+m+l-1}$. It is now clear that the pebbles in the cycle a_{0}, \ldots, a_{n+m} can be arranged in such a way that a_{0} gets free and after moving the pebbles along the path $a_{n+m+1}, \ldots, a_{n+m+l}, a_{0}$ (so that p_{i} gets onto a_{0}), the relative order of the pebbles $p_{j}, j \in\{0, \ldots, n+m\}, j \neq n$, in the cycle a_{0}, \ldots, a_{n+m} will be just as desired.

Step 5. We have p_{n+m+1} free. The pebbles $p_{n+m+2}, \ldots, p_{n+m+l}$ are back on $a_{n+m+2}, \ldots, a_{n+m+l}$, respectively. Further, the cycle a_{0}, \ldots, a_{n+m} contains the pebbles $p_{j} j \in\{0, \ldots, n+m\}, j \neq n$, and the pebble p_{n+m+1}. The relative order of the pebbles $p_{i}(j \in\{0, \ldots, n+m\}, j \neq n)$ is just as desired. Rotate the pebbles around the cycle a_{0}, \ldots, a_{n+m} until p_{n+m+1} gets onto a_{n} then move p_{n+m+1} from a_{n} to a_{n+m+1}. The pebbles $p_{n+m+1}, \ldots, p_{n+m+l}$ are now back on $a_{n+m+1}, \ldots, a_{n+m+l}$, respectively. Further, it is clear that the pebbles in the cycle a_{0}, \ldots, a_{n+m} can be arranged so that p_{i} is on a_{n}, and for $j \in\{0, \ldots, n+m\}, j \neq i, j \neq n, p_{j}$ is on a_{j}.

Theorem 4.3. $S_{n} \mid S(D)$ for every biconnected graph D on $n+1$ vertices.
Proof. Let $D=(V, E)$ with $V=\left\{a_{0}, \ldots, a_{n}\right\}$. We are going to show that $\psi_{i, j}$ can be realized in D for every possible pair of different integers i, j. Consequently, $G\left(D, V_{i}\right)$ is the group of all permutations on V_{i} for every $i(0 \leqq i \leqq n)$. Hence the result follows bỳ Fact 3.2.

Put pebble p_{t} onto a_{t} for every $t \in\{0, \ldots, n\}, t \neq j$. Take a path

$$
a_{i}=b_{0}, b_{1}, \ldots, b_{k}=a_{j}
$$

from a_{i} to a_{j}. If $k=1, \psi_{i, j}$ can be realized obviously. We proceed by induction on k. Assume $k>1$. There are an $m \in\{0, \ldots, k-1\}$ and a path

$$
a_{j}=b_{k}, b_{k+1}, \ldots, b_{k+l}=b_{m}
$$

with $\left\{b_{0}, \ldots, b_{k}\right\} \cap\left\{b_{k+1}, \ldots, b_{k+l-1}\right\}=\emptyset$. We distinguish two cases.
Case $m \neq 0$. Let us rotate the pebbles l times around the cycle b_{m}, \ldots, b_{k}, $b_{k+1}, \ldots, b_{k+l-1}$. We see that b_{m} is free now. By induction hypothesis, p_{1} can be moved from a_{i} to b_{m} in such a way that meanwhile all the other pebbles get back to the vertex they.were before. Finally, rotate the pebbles $k-m$ times around the cycle $b_{m}, \ldots, b_{k}, b_{k+1}, \ldots, b_{k+l-1}$. Obviously, we obtained a realization of $\psi_{i, j}$.

Case $m=0$. We have a cycle

$$
b_{0}, b_{1}, \ldots, b_{k}, b_{k+1}, \ldots, b_{k+l-1}
$$

Two subcases arise according to whether this cycle contains all the vertices of \boldsymbol{D} or not.

Subcase $V=\left\{b_{0}, \ldots, b_{k+l-1}\right\}$. Since D is biconnected, there is at least one edge in E other than the edges $\left(b_{0}, b_{1}\right), \therefore,\left(b_{k+l-2}, b_{k+l-1}\right),\left(b_{k+l-1}, b_{0}\right)$. The result follows by Lemma 4.1.

Subcase $V \neq\left\{b_{0}, \ldots, b_{k+l-1}\right\}$. Take a vertex $c \in V-\left\{b_{0}, \ldots, b_{k+l-1}\right\}$ closest to the cycle b_{0}, \ldots, b_{k+l-1}. We then have paths $b_{t}=c_{0}, c_{1}, \ldots, c_{u}=c$ and $c=d_{0}, \ldots$, $d_{v}=b_{s}$ for $t, s \in\{0, \ldots, k+l-1\}$ such that the sets $\left\{b_{0}, \ldots, b_{k+l-1}\right\},\left\{c_{1}, \ldots, c_{u}\right\}$ and $\left\{d_{1}, \ldots, d_{v-1}\right\}$ are pairwise disjoint. The result follows by Lemma 4.2.

Theorem 4.4. Let $D=(V, E)$ be a cycle with n vertices. Then for every group $G, G \mid S(D)$ if and only if $G \mid Z_{m}$ for some $m \leqq n$.

Proof. It suffices to show that a group is isomorphic to a subgroup of $S(D)$ if and only if it is isomorphic to a subgroup of Z_{m} with $m \leqq n$.

Suppose that H is isomorphic to a subgroup of $S(D)$. From Fact 3.3, there is a subset V^{\prime} of the vertex set of D such that H is isomorphic to a subgroup of $G\left(D, V^{\prime}\right)$. Let m be the cardinality of V^{\prime}. We prove that $G\left(D, V^{\prime}\right)$ is a cyclic group of order m.

Set $V=\left\{a_{1}, \ldots, a_{n}\right\}$ and $V^{\prime}=\left\{a_{i_{1}}, \ldots, a_{i_{m}}\right\}$ so that a_{1}, \ldots, a_{n} is a cycle and $i_{1}<\ldots<i_{m}$. Place pebble p_{j} onto $a_{i}, j=1, \ldots, m$. Rotate the pebbles once around the cycle a_{1}, \ldots, a_{n}. If each of the pebbles p_{j} is on the vertex $a_{i_{j+1}}$, or on $a_{i_{1}}$ if $j=m$, we see that the cyclic permutation $\left(a_{i_{1}} \ldots a_{i_{m}}\right)$ is in $G\left(D, V^{\prime}\right)$. Otherwise, rotate those pebbles around the cycle a_{1}, \ldots, a_{n} for which it does not hold. In a finite number of steps we obtain a realization of the cyclic permutation ($a_{i_{1}} \ldots a_{i_{m}}$). Thus, $\left(a_{i_{1}} \ldots a_{i_{m}}\right) \in$ $\in G\left(D, V^{\prime}\right)$. On the other hand, since by our rules and the structure of D the pebbles can never pass each other, every permutation in $G\left(D, V^{\prime}\right)$ is a power of the cyclic permutation ($a_{i_{1}} \ldots a_{i_{m}}$).

Conversely, it is clear from the above proof that if H is isomorphic to a subgroup of a cyclic group Z_{m} with $m \leqq n$ then H is isomorphic to a subgroup of $G\left(D, V^{\prime}\right)$ for every subset V^{\prime} of V with m elements. Thus, Fact 4.2 yields $G \mid S(D)$.

Let \mathscr{K} be a class of automata. Set $D(\mathscr{K})=\{D \mid \exists A \in \mathscr{K} D$ is a subgraph of $D(A)\}$, where the notion of a subgraph of a graph is used in the usual sense. With the concept of $D(\mathscr{K})$ and that of a biconnected graph we are able to characterize complete classes for the α_{1}^{λ}-product:

Theorem 4.5. A class \mathscr{K} is complete for the $\alpha_{1}^{\hat{\lambda}}$-product if and only if for every positive integer $n, D(\mathscr{K})$ contains a biconnected graph on at least n vertices.

Proof. If $D(\mathscr{K})$ does not contain biconnected graphs then, by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple group dividing $S(\boldsymbol{A})$ for some $\boldsymbol{A} \in \mathbf{P}_{1 a_{1}}^{\lambda}(\mathscr{K})$ is commutative. If n is the highest integer such that $D(\mathscr{K})$ contains a biconnected graph on n vertices then, again by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple group dividing $S(A)$ for an $A \in \mathrm{P}_{1 d_{1}}^{\lambda}(\mathscr{K})$ is either commutative or a divisor of S_{n}. In either case, \mathscr{K} cannot be complete for the α_{1}^{λ}-product by Theorem 1.1.

For the converse, suppose that for every positive integer n there exists a biconnected graph in $D(\mathscr{K})$ having at least n vertices. Take a simple group G. There is a positive integer n with $G \mid S_{n}$. By Theorem 4.3, Fact 3.2 and Fact 3.1, it is easy to see that $S_{n} \mid S(A)$ for some $A \in \mathrm{P}_{1 \alpha_{1}}^{\lambda}(\mathscr{K})$. Thus, \mathscr{K} is complete for the α_{1}^{λ}-product by Theorem 1.1.

In exactly the same way we obtain the following result:
Theorem 4.6. Let \mathscr{K} be a class of automata. If \mathscr{K} is not complete for the α_{1}^{λ}-product then three cases arise.
(i) There is a highest integer n such that $D(\mathscr{K})$ contains a biconnected graph on n vertices. Then $\mathbf{A} \in \mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ if and only if for every simple group G with $G \mid S(A)$, either $G \mid S_{n-1}$ or $G \mid G(D)$ for a biconnected graph $D \in D(\mathscr{K})$ on n vertices or G is a prime group of order p and $D(\mathscr{K})$ contains a cycle of length at least p.
(ii) $D(\mathscr{K})$ does not contain biconnected graphs but there is at least one cycle in $D(\mathscr{K})$. Then $\mathbf{A} \in \mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ if and only if for every simple group with $G \mid S(A), G$ is a prime group of order p such that $D(\mathscr{K})$ contains a cycle of length at least p.
(iii) Otherwise, i.e. if there is no cycle in $D(\mathscr{K})$, then $\mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$ is the class of all monotone automata or the class of all discrete automata or the class of all trivial automata, just as in Theorem 1.2.

Corollary 4.7. There are a countable number of classes of automata of the form $\mathbf{H S P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$.

References

[1] Z. Ésik, Complete classes of automata for the α_{1}-product, Found. Control Engineering, 11 (1986), 95-107.
[2] Z. Ésik and P. Dömöst, Complete classes of automata for the α_{0}-product, Theoret. Comput. Sci., 47 (1986), 1-14.
[3] Z. Ésir and J. VirÁgh, On products of automata with identity, Acta Cybernet., 7(1986), 299-311.
[4] A. Ginzburg, Algebraic theory of automata, Academic Press (New York-London, 1968).

