On α_1^{λ} -products of automata

. Z. ÉSIK

1. Introduction

In [3] we introduced α_1^{λ} -products and gave an algebraic characterization of (homomorphically) complete classes of automata for the α_1^{λ} -product:

Theorem 1.1. A class \mathscr{K} of automata is complete for the α_1^{λ} -product if and only if for every simple group G there exists an $\mathbf{A} \in \mathbf{P}_{1\alpha_1}^{\lambda}(\mathscr{K})$ such that G is a divisor of the characteristic semigroup of \mathbf{A} , written $G|S(\mathbf{A})$.

Further, we proved the following result.

Theorem 1.2. Let \mathcal{K} be a class of automata.

(i) If \mathscr{K} contains a nonmonotone automaton, i.e. an automaton in \mathscr{K} has a nontrivial cycle, then $\mathbf{A} \in \mathbf{HSP}^{\lambda}_{\alpha_{1}}(\mathscr{K})$ if and only if for every simple group G with $G|S(\mathbf{A})$ there exists an automaton $\mathbf{B} \in \mathbf{P}^{\lambda}_{1\alpha_{1}}(\mathscr{K})$ with $G|S(\mathbf{B})$.

(ii) If \mathscr{K} consists of monotone automata one of which is not discrete, then $\operatorname{HSP}_{\alpha}^{\lambda}(\mathscr{K})$ is the class of all monotone automata.

(iii) If \mathscr{K} consists of discrete automata one of which is not trivial then $\mathrm{HSP}_{a_1}^{\lambda}(\mathscr{K})$ is the class of all discrete automata.

(iv) Otherwise, i.e. if \mathscr{K} consists of trivial automata, then $\operatorname{HSP}_{\alpha_1}^{\lambda}(\mathscr{K})$ is the class of all trivial automata.

The aim of this paper is to give a graph theoretic characterization of complete classes for the α_1^{λ} -product and to give a description of the classes of the form $\text{HSP}_{\alpha_1}^{\lambda}(\mathcal{H})$ on the basis of graph theoretic terms. We believe this solution to be the final one as regards α_1^{λ} -products. The proofs are based on the fact that the symmetric group of degree n-1 (n>1) can be "realized" in a biconnected graph on n vertices. For recent results on α_0 -products and α_1 -products see [2] and [1].

Received July 10, 1986.

2. Notions and notations

An automaton is a system $\mathbf{A} = (A, X, \delta)$ with finite nonvoid sets A and X, the state set and input set, respectively, and transition $\delta: A \times X \to A$. The transition extends to a mapping $\delta: A \times X^* \to A$ in the usual way, where X^* is the free semigroup with unit element λ generated by X. The characteristic semigroup of \mathbf{A} , denoted $S(\mathbf{A})$, is the transformation semigroup on A consisting of all the mappings $\delta_u: A \to A$, $\delta_u(a) = \delta(a, u)$ $(a \in A, u \in X^*)$.

Given a system of automata $\mathbf{A}_t = (A_t, X_t, \delta_t)$ and a family of feedback functions

$$\varphi_t: A_1 \times \ldots \times A_n \times X \to X_t \cup \{\lambda\},$$

t=1, ..., n, the g^{λ} -product of the A_t 's with respect to X and φ is defined to be the automaton A with state set $A_1 \times ... \times A_n$, input set X, and transition

$$\delta((a_1, ..., a_n), x) = (\delta_1(a_1, u_1), ..., \delta_n(a_n, u_n))$$

where $(a_1, ..., a_n) \in A_1 \times ... \times A_n$, $x \in X$ and

•

$$u_t = \varphi_t(a_1, \ldots, a_n, x),$$

t=1, ..., n. If none of the feedback functions $\varphi(a_1, ..., a_n, x)$ depends on the state variables a_s with s>t, we have an α_1^{λ} -product.

Given a (nonvoid) class \mathcal{K} of automata, we set:

 $\mathbf{P}_{\alpha_{1}}^{\lambda}(\mathscr{K})$: all α_{1}^{λ} -products of automata from \mathscr{K} ,

 $\mathbf{P}_{1\alpha_1}^{\lambda}(\mathscr{K})$: all α_1^{λ} -products with a single factor of automata from \mathscr{K} (i.e. n=1 above),

 $S(\mathscr{K})$: all subautomata of automata from \mathscr{K} ,

 $H(\mathcal{X})$: all homomorphic images of automata from \mathcal{K} .

Recall that a class \mathscr{K} is called (homomorphically) complete for the α_1^{λ} -product if and only if $\mathrm{HSP}_{\alpha}^{\lambda}(\mathscr{K})$ is the class of all automata.

By a semigroup (group) we shall mean a finite semigroup (group). We write $S_1|S_2$ for two semigroups S_1 and S_2 if S_1 is a homomorphic image of a subsemigroup of S_2 . If S_1 is a group, this just means that S_1 is a homomorphic image of a subgroup of S_2 . The following statement is known e.g. from [4]:

Proposition 2.1. If $G|G_1 \times ... \times G_n$ for a simple group G and a direct product of groups $G_1, ..., G_n$ (n>0), then $G|G_i$ for some *i*.

e e 2015 - Carlos Carlos and Arrange 2017 - Carlos Carlos and Arrage

3. Some useful facts

To investigate α_1^{λ} -products of automata we introduce the (directed) graph $D(\mathbf{A})$ of an automaton $\mathbf{A} = (A, X, \delta)$ as follows. We put $D(\mathbf{A}) = (V, E)$ where the vertex set V is just the state set A and

$$E = \{(a, b) \in A \times A \mid a \neq b, \exists x \in X \ \delta(a, x) = b\}.$$

We see that E does not contain loop edges, henceforth, by a (directed) graph we shall always mean a graph without loop edges.

Take a graph D = (V, E). We say that D is connected if for every pair a, b of different vertices there is a (directed) path from a to b. A maximal connected subgraph of D is a connected graph D' = (V', E') with $V' \subseteq V$, $E' \subseteq E$ and such that whenever D'' = (V'', E'') is a connected graph satisfying $V' \subseteq V'' \subseteq V$ and $E' \subseteq E'' \subseteq \subseteq E$, we have V' = V'', E' = E''.

A cycle is a graph D=(V, E) with $V=\{a_1, ..., a_n\}$, n>1, and $E=\{(a_1, a_2), ..., (a_{n-1}, a_n), (a_n, a_1)\}$. Thus, cycles are connected graphs. Connected graphs other than cycles and having at least two vertices will be referred to biconnected graphs.

Take a graph D with vertex set $V = \{a_1, ..., a_n\}$ and place a pebble p_i onto a_i for every i=1, ..., n. Suppose we are allowed to move the pebbles according to the following three rules:

R1: Each step, an arbitrary number of pebbles can be moved. (Thus, some pebbles may stay where they are.)

R2: Each step, a pebble on a vertex a can be moved to a vertex b only if (a, b) is an edge.

R3: Once two or more pebbles hit the same vertex, they cannot be separated, i.e. have to be moved jointly.

Suppose that after a (possibly zero) number of steps p_i is on vertex a_{j_i} , i=1, ..., n. To this sequence of transformations we assign the mapping $V \rightarrow V$ given by $a_i \rightarrow a_{j_i}$, i=1, ..., n. Denote by S(D) the set of all mappings obtained in this way. Clearly, S(D) is a transformation semigroup on V. We let G(D) denote the group of all permutations in S(D). The following observation easily comes from the definitions:

Fact 3.1. Let **A** be an automaton and D=D(A). Then, for every $\mathbf{B}\in \mathbf{P}_{1\alpha_1}^{\lambda}(\{A\})$, $S(\mathbf{B})$ is a subsemigroup of S(D). Further, there exists an automaton $\mathbf{C}\in \mathbf{P}_{1\alpha_1}^{\lambda}(\{A\})$ with $S(\mathbf{C})=S(D)$.

Our game can be further generalized. Take a graph D=(V, E) and fix a nonvoid subset V' of V, say $V'=\{a_1, ..., a_n\}$. Put pebble p_i onto a_i , i=1, ..., n, and move the pebbles in the graph according to R1, R2 and R3. Suppose that after a (possibly zero) number of steps the pebbles get back to the vertices in V', i.e. for every *i*, p_i is located on a vertex a_{j_i} in V'. We obtain a mapping $V' \rightarrow V'$ that assigns a_{j_i} to a_i . The collection of all these mappings is a transformation semigroup on V', denoted S(D, V'). Put G(D, V') for the group of all permutations in S(D, V'). The following statement is obvious.

Fact 3.2. S(D, V')|S(D) and G(D, V')|S(D).

The next assertion is a reformulation of a well-known fact.

Fact 3.3. If G is a subgroup of S(D) then there is a nonvoid subset V' of the vertex set of D such that G is isomorphic to a subgroup of G(D, V').

Directly from Fact 3.3 and the observation that it is impossible to move a pebble back in a maximal connected subgraph if it has been moved out, we obtain:

Fact 3.4. If G is a subgroup of S(D) then G has maximal connected subgraphs $D_1, ..., D_n$ (n>0) such that for some nonvoid subsets V_i of the vertex sets of the graphs D_i it holds that G is isomorphic to a subgroup of the direct product $G(D_1, V_1) \times \times ... \times G(D_n, V_n)$.

Fact 3.5. Let G be a simple group. Then G|S(D) if and only if G|G(D', V') for a maximal connected subgraph D' of D and a nonvoid subset V' of the vertex set of D'.

Proof. Suppose that G|S(D). There is a subgroup H of S(D) which can be mapped homomorphically onto G. By Fact 3.4, H is isomorphic to a subgroup of a direct product $G(D_1, V_1) \times \ldots \times G(D_n, V_n)$ where the graphs D_i are maximal connected subgraphs of D and for every i, V_i is a nonvoid subset of the vertex set of D_i . Thus, $G|G(D_1, V_1) \times \ldots \times G(D_n, V_n)$. From Proposition 2.1, $G|G(D_i, V_i)$ for some i.

Conversely, G|G(D', V') and G(D', V')|S(D) yield G|S(D).

Suppose we are given a graph D = (V, E) with $V = \{a_0, ..., a_n\}$, $n \ge 1$, i.e. D has at least two vertices. Set $V_i = V - \{a_i\}$, i = 0, ..., n. Fix a pair of different integers $i, j \in \{0, ..., n\}$ and define the mapping $\psi_{i, i}: V_i \rightarrow V_i$ by

$$\psi_{i,j}(a_k) = \begin{cases} a_j & \text{if } i = k, \\ a_k & \text{otherwise.} \end{cases}$$

Let us say that $\psi_{i,j}$ has a realization in D if starting with pebble p_k located on a_k , $k=0, ..., n, k \neq j$, the placement that p_k is located on $\psi_{i,j}(a_k), k=0, ..., n, k \neq j$, can be achieved by a sequence of moves according to R1, R2, R3. Obviously, if $\psi_{i,j}$ can be realized for every pair of different integers $i, j \in \{0, ..., n\}$, then for every $i \in \{0, ..., n\}$, $G(D, V_i)$ is the group of all permutations on V_i : to interchange two pebbles on a_{i_1} and $a_{i_2}(a_{i_1}, a_{i_2} \in V_i, a_{i_1} \neq a_{i_2})$, take a realization of ψ_{i_1, i_1} followed by a realization of ψ_{i_1, i_1} and a realization of ψ_{i_1, i_2} .

Conversely, suppose that D is connected and for every $i \in \{0, ..., n\}$, $G(D, V_i)$ is the group of all permutations on V_i . It then follows that $\psi_{i, f}$ can be realized for every choise of i and j $(i, j \in \{0, ..., n\}, i \neq j)$. Take a path $a_i = b_0, b_1, ..., b_i = a_j$ from a_i to a_j . If the length of this path is 1, i.e. t=1, just move the pebble on a_i to a_j , the others stand still. If t>1, since the permutation $(b_0b_{t-1}...b_1)$ is in $G(D, V_j)$, we can move the pebbles on $b_0, ..., b_{t-1}$ onto the vertices $b_{t-1}, b_0, ..., b_{t-2}$, respectively, so that the rest of the pebbles get back to their initial positions. To achive the final situation just move the pebbles on $b_0, ..., b_{t-1}$ one vertex forward along the path $b_0, ..., b_t$.

4. The main results

In this section we give a graph theoretic characterization of complete classes for the α_1^{λ} -product. Further, we give a complete description of the classes of the form $\text{HSP}^{\lambda}_{\alpha}(\mathscr{H})$.

We start with two lemmas. In these lemmas the following designations will be used. Given a path a_0, \ldots, a_n , $n \ge 1$, so that a_n is free and for each $i=0, \ldots, n-1$ there is a pebble on a_i , by moving the pebbles along the path a_0, \ldots, a_n we shall mean the transformation that, in a single step, we move each pebble on a_i to a_{i+1} , $i=0, \ldots, n-1$. This definition extends to the case n=0: the placement of the pebbles remains unchanged. Given a cycle a_0, \ldots, a_{n-1} ($n\ge 2$) with at most one pebble on a_i , $i=0, \ldots, n-1$, by rotating the pebbles around the cycle we shall mean the transformation obtained by moving the pebble on a_i to $a_{i+1 \mod n}$ for every i, provided that there was a pebble on a_i .

Lemma 4.1. Let D = (V, E) be a graph with $D = \{a_0, ..., a_{n+m}\}, n, m \ge 1, E = \{(a_0, a_1), ..., (a_{n+m-1}, a_{n+m}), (a_{n+m}, a_0), (a_n, a_0)\}$. Then for every pair *i*, *j* of different integers in $\{0, ..., n+m\}, \psi_{i,j}$ can be realized in D.

Proof. Fix an integer $i \in \{0, ..., n+m\}$. We shall show that $G(D, V_i)$ is the group of all permutations on V_i . Since $a_0, ..., a_{n+m}$ is a cycle in D, we may restrict ourselves to i=n+1. To see that $G(D, V_{n+1})$ is the group of all permutations on V_{n+1} if suffices to prove that the cyclic permutation $(a_0...a_na_{n+2}, ..., a_{n+m})$ and the transposition $(a_{n-1}a_n)$ are in $G(D, V_{n+1})$.

Place pebble p_i onto a_i , i=0, ..., n, n+2, ..., n+m. Move p_n from a_n to a_{n+1} , then rotate the pebbles around the cycle $a_0, ..., a_{n+m}$. We see that $(a_0...a_n a_{n+2}...a_{n+m}) \in G(D, V_{n+1})$. For the transposition $(a_{n-1}a_n)$, apply the following procedure:

Step 1. Move p_n from a_n to a_{n+1} .

Step 2. Check if p_n is located on a_{n+m} , if so, go to Step 3. Move the pebbles along the path a_{n+m} , a_0 , ..., a_n . (It is garanteed that a_n is free when this transformation applies.) Next, rotate the pebbles *n* times around the cycle a_0 , ..., a_n , and after that, move the pebbles along the path a_n , ..., a_{n+m} and go back to Step 2.

Step 3. Before this step applies, the placement of the pebbles is this: for every $i \in \{0, ..., n-1\}$, p_i is located on a_i ; a_n is free; for every $i \in \{n+2, ..., n+m\}$, p_i is on a_{i-1} ; p_n is on a_{n+m} . Move p_{n-1} from a_{n-1} to a_n and then rotate the pebbles around the cycle $a_0, ..., a_n$ until a_0 gets free, we see that a_0 is free, p_{n-1} is located on a_1 , and for every $i \in \{0, ..., n-2\}$, p_i is on a_{2+i} . Now move p_n from a_{n+m} to a_0 , rotate the pebbles n-1 times around the cycle $a_0, ..., a_n$, and move the pebbles along the path $a_{n+1}, ..., a_{n+m}$.

Lemma 4.2. Let G = (V, E) be a graph with $V = \{a_0, ..., a_{n+m+l}\}$, $n \ge 0$, $m, l \ge 1$, and $E = \{(a_0, a_1), ..., (a_{n+m-1}, a_{n+m}), (a_{n+m}, a_0), (a_n, a_{n+m+1}), ..., ..., (a_{n+m+l-1}, a_{n+m+l}), (a_{n+m+l}, a_0)\}$. Then, for every pair of different integers $i, k \in \{0, ..., n+m+l\}, \psi_{i,k}$ can be realized in D.

Proof. Place p_i onto a_i , t=0, ..., n+m+l, $t \neq k$. First we show that we may restrict the consideration to the case that k=n. Either $k \in \{0, ..., n+m\}$ or $k \in \{0, ..., n, n+m+1, ..., n+m+l\}$. If $k \in \{0, ..., n+m\}$ rotate the pebbles around the cycle $a_0, ..., a_{n+m}$ until a_n gets free, then move p_i to a_n so that the rest of the pebbles get back to the position they were after the rotations. Finally, rotate the pebbles around the cycle $a_0, ..., a_{n+m}$ so that p_i gets onto a_k . The pebbles p_i other than p_i get back to a_i , respectively. Similar procedure applies when $k \in \{0, ..., n+m+1, ..., ..., n+m+l\}$.

Let k=n. Because the assumptions $i \in \{0, ..., n+m\}$ and $i \in \{0, ..., n, n+m+1, ..., ..., n+m+l\}$ are symmetrical, we may suppose $i \in \{0, ..., n+m\}$. We shall realize $\psi_{i,n}$ in five steps.

Step 1. Rotate the pebbles once around the cycle $a_0, ..., a_n, a_{n+m+1}, ..., a_{n+m+l}$. Observe that a_{n+m+1} becomes free and p_{n+m+l} gets onto a_0 .

Step 2. Rotate the pebbles around the cycle $a_0, ..., a_{n+m}$ until p_i hits a_n . Then move p_i from a_n to a_{n+m+1} , so that a_n becomes free.

Step 3. When this step applies, one of the vertices $a_0, ..., a_{n+m}$ is free, and exactly one of $p_{n+m+1}, ..., p_{n+m+l}$, say p_t , is in the cycle $a_0, ..., a_{n+m}$ (p_{n+m+l} for the first time). Check if p_i is on a_{n+m+l} , if so, go to Step 4. Otherwise rotate the pebbles around the cycle $a_0, ..., a_{n+m}$ until p_t gets onto a_n , and rotate the pebbles once around the cycle $a_0, ..., a_n, a_{n+m+1}, ..., a_{n+m+l}$. Go to Step 3.

Step 4. Observe that the placement of the pebbles is this. The cycle $a_0, ..., a_{n+m}$ contains p_{n+m+1} and the pebbles p_j with $j \in \{0, ..., n+m\}, j \neq i, j \neq n$. Thus, one of

 $a_0, ..., a_{n+m}$ is free. The relative order of the pebbles p_j $(j \in \{0, ..., n+m\}, j \neq i, j \neq n)$ is their original order. Further, p_i is on a_{n+m+1}, p_{n+m+2} is on $a_{n+m+1}, ..., ..., p_{n+m+l}$ is on $a_{n+m+l-1}$. It is now clear that the pebbles in the cycle $a_0, ..., a_{n+m}$ can be arranged in such a way that a_0 gets free and after moving the pebbles along the path $a_{n+m+1}, ..., a_{n+m+l}, a_0$ (so that p_i gets onto a_0), the relative order of the pebbles $p_j, j \in \{0, ..., n+m\}, j \neq n$, in the cycle $a_0, ..., a_{n+m}$ will be just as desired.

Step 5. We have p_{n+m+1} free. The pebbles $p_{n+m+2}, ..., p_{n+m+l}$ are back on $a_{n+m+2}, ..., a_{n+m+l}$, respectively. Further, the cycle $a_0, ..., a_{n+m}$ contains the pebbles $p_j \ j \in \{0, ..., n+m\}, \ j \neq n$, and the pebble p_{n+m+1} . The relative order of the pebbles $p_j \ (j \in \{0, ..., n+m\}, \ j \neq n)$ is just as desired. Rotate the pebbles around the cycle $a_0, ..., a_{n+m}$ until p_{n+m+1} gets onto a_n then move p_{n+m+1} from a_n to a_{n+m+1} . The pebbles $p_{n+m+1}, ..., p_{n+m+l}$ are now back on $a_{n+m+1}, ..., a_{n+m+l}$, respectively. Further, it is clear that the pebbles in the cycle $a_0, ..., a_{n+m}$ can be arranged so that p_i is on a_n , and for $j \in \{0, ..., n+m\}, \ j \neq i, \ j \neq n, \ p_j$ is on a_j .

Theorem 4.3. $S_n|S(D)$ for every biconnected graph D on n+1 vertices.

Proof. Let D = (V, E) with $V = \{a_0, ..., a_n\}$. We are going to show that $\psi_{i,j}$ can be realized in D for every possible pair of different integers *i*, *j*. Consequently, $G(D, V_i)$ is the group of all permutations on V_i for every *i* $(0 \le i \le n)$. Hence the result follows by Fact 3.2.

Put pebble p_t onto a_t for every $t \in \{0, ..., n\}$, $t \neq j$. Take a path

$$a_i = b_0, b_1, \dots, b_k = a_j$$

from a_i to a_j . If k=1, $\psi_{i,j}$ can be realized obviously. We proceed by induction on k. Assume k>1. There are an $m \in \{0, ..., k-1\}$ and a path

$$a_j = b_k, b_{k+1}, \dots, b_{k+l} = b_m$$

with $\{b_0, ..., b_k\} \cap \{b_{k+1}, ..., b_{k+l-1}\} = \emptyset$. We distinguish two cases.

Case $m \neq 0$. Let us rotate the pebbles *l* times around the cycle $b_m, ..., b_k$, $b_{k+1}, ..., b_{k+l-1}$. We see that b_m is free now. By induction hypothesis, p_1 can be moved from a_i to b_m in such a way that meanwhile all the other pebbles get back to the vertex they were before. Finally, rotate the pebbles k-m times around the cycle $b_m, ..., b_k, b_{k+1}, ..., b_{k+l-1}$. Obviously, we obtained a realization of $\psi_{i,j}$.

Case m=0. We have a cycle

$$b_0, b_1, ..., b_k, b_{k+1}, ..., b_{k+l-1}.$$

Two subcases arise according to whether this cycle contains all the vertices of D or not.

Subcase $V = \{b_0, ..., b_{k+l-1}\}$. Since D is biconnected, there is at least one edge in E other than the edges $(b_0, b_1), ..., (b_{k+l-2}, b_{k+l-1}), (b_{k+l-1}, b_0)$. The result follows by Lemma 4.1.

Subcase $V \neq \{b_0, ..., b_{k+l-1}\}$. Take a vertex $c \in V - \{b_0, ..., b_{k+l-1}\}$ closest to the cycle $b_0, ..., b_{k+l-1}$. We then have paths $b_t = c_0, c_1, ..., c_u = c$ and $c = d_0, ..., d_v = b_s$ for $t, s \in \{0, ..., k+l-1\}$ such that the sets $\{b_0, ..., b_{k+l-1}\}$, $\{c_1, ..., c_u\}$ and $\{d_1, ..., d_{v-1}\}$ are pairwise disjoint. The result follows by Lemma 4.2.

Theorem 4.4. Let D=(V, E) be a cycle with n vertices. Then for every group G, G|S(D) if and only if $G|Z_m$ for some $m \le n$.

Proof. It suffices to show that a group is isomorphic to a subgroup of S(D) if and only if it is isomorphic to a subgroup of Z_m with $m \leq n$.

Suppose that H is isomorphic to a subgroup of S(D). From Fact 3.3, there is a subset V' of the vertex set of D such that H is isomorphic to a subgroup of G(D, V'). Let m be the cardinality of V'. We prove that G(D, V') is a cyclic group of order m.

Set $V = \{a_1, ..., a_n\}$ and $V' = \{a_{i_1}, ..., a_{i_m}\}$ so that $a_1, ..., a_n$ is a cycle and $i_1 < ... < i_m$. Place pebble p_j onto a_{i_j} , j=1, ..., m. Rotate the pebbles once around the cycle $a_1, ..., a_n$. If each of the pebbles p_j is on the vertex $a_{i_{j+1}}$, or on a_{i_1} if j=m, we see that the cyclic permutation $(a_{i_1}...a_{i_m})$ is in G(D, V'). Otherwise, rotate those pebbles around the cycle $a_1, ..., a_n$ for which it does not hold. In a finite number of steps we obtain a realization of the cyclic permutation $(a_{i_1}...a_{i_m})$. Thus, $(a_{i_1}...a_{i_m}) \in G(D, V')$. On the other hand, since by our rules and the structure of D the pebbles can never pass each other, every permutation in G(D, V') is a power of the cyclic permutation $(a_{i_1}...a_{i_m})$.

Conversely, it is clear from the above proof that if H is isomorphic to a subgroup of a cyclic group Z_m with $m \le n$ then H is isomorphic to a subgroup of G(D, V')for every subset V' of V with m elements. Thus, Fact 4.2 yields G|S(D).

Let \mathscr{K} be a class of automata. Set $D(\mathscr{K}) = \{D \mid \exists A \in \mathscr{K} \mid D \text{ is a subgraph of } D(A)\}$, where the notion of a subgraph of a graph is used in the usual sense. With the concept of $D(\mathscr{K})$ and that of a biconnected graph we are able to characterize complete classes for the α_1^2 -product:

Theorem 4.5. A class \mathscr{K} is complete for the α_1^{λ} -product if and only if for every positive integer n, $D(\mathscr{K})$ contains a biconnected graph on at least n vertices.

Proof. If $D(\mathscr{K})$ does not contain biconnected graphs then, by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple group dividing $S(\mathbf{A})$ for some $\mathbf{A} \in \mathbf{P}_{1a_1}^{\lambda}(\mathscr{K})$ is commutative. If *n* is the highest integer such that $D(\mathscr{K})$ contains a biconnected graph on *n* vertices then, again by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple group dividing $S(\mathbf{A})$ for an $\mathbf{A} \in \mathbf{P}_{1a_1}^{\lambda}(\mathscr{K})$ is either commutative or a divisor of S_n . In either case, \mathscr{K} cannot be complete for the α_1^{λ} -product by Theorem 1.1.

1

For the converse, suppose that for every positive integer *n* there exists a biconnected graph in $D(\mathcal{K})$ having at least *n* vertices. Take a simple group *G*. There is a positive integer *n* with $G|S_n$. By Theorem 4.3, Fact 3.2 and Fact 3.1, it is easy to see that $S_n|S(A)$ for some $A \in P_{1\alpha_1}^{\lambda}(\mathcal{K})$. Thus, \mathcal{K} is complete for the α_1^{λ} -product by Theorem 1.1.

In exactly the same way we obtain the following result:

Theorem 4.6. Let \mathcal{K} be a class of automata. If \mathcal{K} is not complete for the α_1^{λ} -product then three cases arise.

(i) There is a highest integer n such that $D(\mathcal{K})$ contains a biconnected graph on n vertices. Then $\mathbf{A} \in \mathbf{HSP}_{a_1}^{\lambda}(\mathcal{K})$ if and only if for every simple group G with $G|S(\mathbf{A})$, either $G|S_{n-1}$ or G|G(D) for a biconnected graph $D \in D(\mathcal{K})$ on n vertices or G is a prime group of order p and $D(\mathcal{K})$ contains a cycle of length at least p.

(ii) $D(\mathcal{K})$ does not contain biconnected graphs but there is at least one cycle in $D(\mathcal{K})$. Then $\mathbf{A} \in \mathbf{HSP}^{\lambda}_{\alpha_1}(\mathcal{K})$ if and only if for every simple group with $G|S(\mathbf{A})$, G is a prime group of order p such that $D(\mathcal{K})$ contains a cycle of length at least p.

(iii) Otherwise, i.e. if there is no cycle in $D(\mathcal{K})$, then $\operatorname{HSP}_{\alpha_1}^{\lambda}(\mathcal{K})$ is the class of all monotone automata or the class of all discrete automata or the class of all trivial automata, just as in Theorem 1.2.

Corollary 4.7. There are a countable number of classes of automata of the form $\operatorname{HSP}_{\alpha}^{\lambda}(\mathcal{K})$.

References

- [1] Z. ÉSIK, Complete classes of automata for the α_1 -product, Found. Control Engineering, 11 (1986), 95–107.
- [2] Z. ÉSIK and P. DÖMÖSI, Complete classes of automata for the α₀-product, Theoret. Comput. Sci., 47 (1986), 1-14.

[3] Z. ÉSIK and J. VIRÁGH, On products of automata with identity, Acta Cybernet., 7 (1986), 299-311.

[4] A. GINZBURG, Algebraic theory of automata, Academic Press (New York-London, 1968).

A. JÓZSEF UNIVERSITY BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY