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On (¡¡¿-products of automata 

. z . £SIK 

1. Introduction 

In [3] we introduced o^-products and gave an algebraic characterization of 
(homomorphically) complete classes of automata for the a^-product: 

Theorem 1.1. A class № of automata is complete for the a.\-product if and 
only if for every simple group G there exists an AGP^ ( j f ) such that G is a divisor 
of the characteristic semigroup of A, written G|iS(A). 

Further, we proved the following result. 

Theorem 1.2. Let № be a class of automata. 
(i) If Jf" contains a nonmonotone automaton, i.e. an automaton in Jf has a non-

trivial cycle, then if and only if for every simple group G with G\S(A) 
there exists an automaton with G\S(B). 

(ii) If Jf consists of monotone automata one of which is not discrete, then 
HSP^(JT) is the class of all monotone automata. 

(iii) If X" consists of discrete automata one of which is not trivial then HSP^(JT) 
is the class of all discrete automata. 

(iv) Otherwise, i.e. if Jf consists of trivial automata, then HSP^(Jf ) is the class 
of all trivial automata. 

The aim of this paper is to give a graph theoretic characterization of complete 
classes for the aj-product and to give a description of the classes of the 
form HSP^(Jf) on the basis of graph theoretic terms. We believe this solution to 
be the final one as regards a^-products. The proofs are based on the fact that the 
symmetric group of degree n— 1 («>1) can be "realized" in a biconnected graph 
on n vertices. For recent results on a0-products and ax-products see [2] and [1]. 
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2. Notions and notations 

An automaton is a system A=(A, X, 8) with finite nonvoid sets A and X, the 
state set and input set, respectively, and transition <5: AXX—A. The transition 
extends to a mapping S: A XX*-* A in the usual way, where X* is the free semigroup 
with unit element X generated by X. The characteristic semigroup of A, denoted 
S(A), is the transformation semigroup on A consisting of all the mappings 5U: A—A, 
5u(a)=5(a, u) (at A, u£X*). 

Given a system of automata At=(A„Xt,St) and a family of feedback func-
tions 

< ; . . . XAnXX - XtU{X\, 

t=l,..., n, the gA-product of the At's with respect to X and (p is defined to be the 
automaton A with state set A1X-.-XA„, input set X, and transition 

¿((A, ..., a„), x) = (¿iK, Mj),..., 5n(an, u„)) 

where (au ...,an)€A1X...XA„, x£X and 

u, = <p,(a1,...,an,x), 

t=\,...,n. If none of the feedback functions (p (alt ...,a„,x) depends on the 
state variables as with s>-t, we have an aj-product. 

Given a (nonvoid) class Jf of automata, we set: 
P ^ ( j f ) : all ai-products of automata from Jf, 
P ^ (^f): all a^-products with a single factor of automata from X (i.e. « = 1 

above), 
S(Jf) : all subautomata of automata from X, 
H(Jf) : all homomorphic images of automata from X. 

Recall that a class X is called (homomorphically) complete for the aj-product if 
and only if HSP^(jT) is the class of all automata. 

By a semigroup (group) we shall mean a finite semigroup (group). We write 
S,

1|52 for two semigroups and S2 if Si is a homomorphic image of a subsemi-
group of S2- If «Si is a group, this just means that S^ is a homomorphic image of a 
subgroup of S2. The following statement is known e.g. from [4]: 

Proposi t ion 2.1. If G\G1X.-.XG„ for a simple group G and a direct product 
of groups Gi, ...,(?„ («> 0), then G|Gf for some i. 



On a{ -products of automata 247 

3. Some useful facts 

To investigate aj-products of automata we introduce the (directed) graph 
D(A) of an automaton A=(A, X, <5) as follows. We put D(A)=(V, E) where 
the vertex set V is just the state set A and 

E = {(a, b)£AxA\a b, 3x£X d(a, x) = b}. 

We see that E does not contain loop edges, henceforth, by a (directed) graph we shall 
always mean a graph without loop edges. 

Take a graph D=(V,E). We say that D is connected if for every pair a, b 
of different vertices there is a (directed) path from a to b. A maximal connected sub-
graph of D is a connected graph D'=(V',E') with V'QV, E'QE and such that 
whenever D"={V",E") is a connected graph satisfying V'QV'QV and E'QE"Q 
QE, we have V'=V", E'=E". 

A cycle is a graph D—(V,E) with V= {ax, ..., a„}, and E= {(a1? ..., 
(i*„_i, a„), (a„, flx)}. Thus, cycles are connected graphs. Connected graphs other 
than cycles and having at least two vertices will be referred to biconnected graphs. 

Take a graph D with vertex set V={%,..., an} and place a pebble pt onto for 
every i = l , ..., n. Suppose we are allowed to move the pebbles according to the 
following three rules: 

R l : Each step, an arbitrary number of pebbles can be moved. (Thus, some 
pebbles may stay where they are.) 

R2: Each step, a pebble on a vertex a can be moved to a vertex b only if (a, b) 
is an edge. 

R3: Once two or more pebbles hit the same vertex, they cannot be separated, 
i.e. have to be moved jointly. 

Suppose that after a (possibly zero) number of steps p{ is on vertex a j t , / = 1, ...,«. 
To this sequence of transformations we assign the mapping V—V given by a^ajt, 
i = l , . . . , n. Denote by S(D) the set of all mappings obtained in this way. Clearly, 
S(D) is a transformation semigroup on V. We let G(D) denote the group of all 
permutations in S(D). The following observation easily comes from the definitions: 

Fact 3.1. Let A be an automaton and D=D(A). Then, for every B£P*a ({A}), 
S(B) is a subsemigroup of S(D). Further, there exists an automaton C^P^ ({A}) 
with S(C)=S(D). 

Our game can be further generalized. Take a graph D=(V, E) and fix a non-
void subset V' of V, say V'= {al5 ..., a„}. Put pebble pt onto a{, i= 1, ..., n, and 
move the pebbles in the graph according to Rl, R2 and R3. Suppose that after a 
(possibly zero) number of steps the pebbles get back to the vertices in V, i.e. for 
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every i, Pi is located on a vertex aJt in V'. We obtain a mapping V'-»V that assigns 
aj to flj. The collection of all these mappings is a transformation semigroup on V, 
denoted S(D, V). Put G(D, V ) for the group of all permutations in S(D, V'). 
The following statement is obvious. 

Fac t 3.2. S(D, FOIS^D) and G(D, FOIS^D). 

The next assertion is a reformulation of a well-known fact. 

Fact 3.3. If G is a subgroup of S(D) then there is a nonvoid subset V' of the 
vertex set of D such that G is isomorphic to a subgroup of G(D, V). 

Directly from Fact 3.3 and the observation that it is impossible to move a 
pebble back in a maximal connected subgraph if it has been moved out, we obtain: 

Fac t 3.4. If G is a subgroup of S(D) then G has maximal connected subgraphs 
Dx, ...,D„ («>0) such that for some nonvoid subsets ^ of the vertex sets of the 
graphs Di it holds that G is isomorphic to a subgroup of the direct product G(DJQx 
X...XG(D„, Vn). 

Fact 3.5. Let G be a simple group. Then G\S(D) if and only if G\G(D', V ) 
for a maximal connected subgraph D' of D and a nonvoid subset V' of the vertex set 
of D'. 

Proof. Suppose that G\S(D). There is a subgroup H of S(D) which can be 
mapped homomorphically.onto G. By Fact 3.4, H is isomorphic to a subgroup of 
a direct product G(D1, V1)x...XG(D„, Vn) where the graphs Dt are maximal 
connected subgraphs of D and for every i, Vt is a nonvoid subset of the vertex set of 
Di. Thus, G[G(D1,K)X...XG(D„, V„). From Proposition 2.1, G|G(D,, K) for 
some i. 

Conversely, G|G(D', V) and G(D', V)\S(D) yield G|S(D). 

Suppose we are given a graph D=(V,E) with V={a0, ...,a„}, « s 1, i.e. D 
has at least two vertices. Set. V—V— {a,}, /=0, ...,«. Fix a pair of different in-
tegers i, {0,..., «} and define the mapping \j/UJ: by 

{ aj if i = k, 
ak otherwise: 

Let us say that ^ j has a realization in D if starting with pebble pk located on ak, 
k—0, ..., n, k^j, the placement that pk is located on <J/itJ(ak), k=0,..., n, k?±j, 
can be achieved by a sequence of moves according to Rl , R2, R3. Obviously, if 
i¡/iyj can be realized for every pair of different integers i, {0,..., «}, then for every 
i€{0, ..., n}, G(D, Jty is the group of all permutations on Vt: to interchange two 
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pebbles on a, and ait ( a^a^V: , a ^ a j , take a realization of followed by 
a realization of t and a realization of ¡¡/¡t ̂ . 

Conversely, suppose that D is connected and for every i£{0, ...,/i}, G(D, iQ 
is the group of all permutations on Vt. It then follows that \j/UJ can be realized for 
every choise of i and j (/,/€ {0,..., n}, iVj). Take a path ai=b0, ..., b,=aj from 
flf to aj. If the length of this path is 1, i.e. t=1, just move the pebble on at to as, 
the others stand still. If 1, since the permutation (¿?0b<_1...&1) is in G(D, Vj), 
we can move the pebbles on b0, ..., ¿t_x onto the vertices bt-1, b0, ..., f),_2, respec-
tively, so that the rest of the pebbles get back to their initial positions. To achive 
the final situation just move the pebbles on b0, ..., one vertex forward along 
the path b0, ..., bt. 

4. The main results 

In this section we give a graph theoretic characterization of complete classes 
for the ai-product. Further, we give a complete description of the classes of the 
form HSP^(X). 

We start with two lemmas. In these lemmas the following designations will be 
used. Given a path a0, ..., an, n^ 1, so that a„ is free and for each i=0, ..., n— 1 
there is a pebble on at, by moving the pebbles along the path a0, ..., an we shall 
mean the transformation that, in a single step, we move each pebble on at to ai+1, 
i=0, ...,«— 1. This definition extends to the case «=0: the placement of the 
pebbles remains unchanged. Given a cycle a0, ..., («&2) with at most one 
pebble on at, i—0, ..., n— 1, by rotating the pebbles around the cycle we shall mean 
the transformation obtained by moving the pebble on at to a i+imod„ for every i, 
provided that there was a pebble on at. 

Lemma 4.1. Let D—(V,E) be a graph with D = {a0, ..., an+m}, 1, 
£•={(<20, ..., (a„+m_i, a„+m), (a„+m, a0), (an, <z0)}- Then for every pair i, j of 
different integers in {0, ..., n+m}, 4>uj can be realized in D. 

Proof. Fix an integer {0, ..., n+m}. We shall show that G(D, JQ is the 
group of all permutations on V;. Since a0, ..., a„+m is a cycle in D, we may restrict 
ourselves to i—n+l. To see that G(D, Vn+i) is the group of all permutations on 

if suffices to prove that the cyclic permutation (a0...a„an+2, ..., a„+m) and the 
transposition (an^1an) are in G(D, Vn+y). 

Place pebble pi onto au i=0,..., n, n+2, ..., n+m. Move pn from a„ to a„+1, 
then rotate the pebbles around the cycle OQ, ..., an+m. We see that (a0. ..a„a„+2.. .¿zn+m)£ 
€G(D, Vn+1). For the transposition (an_1a„), apply the following procedure: 

Step 1. Move p„ from a„ to an+1. 
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Step 2. Check if pn is located on a„+m, if so, go to Step 3. Move the pebbles 
along the path an+m, a0, ..., a„. (It is garanteed that a„ is free when this transforma-
tion applies.) Next, rotate the pebbles n times around the cycle a0,..., a„, and after 
that, move the pebbles along the path a„, ..., an+m and go back to Step 2. 

Step 3. Before this step applies, the placement of the pebbles is this: for every 
0, ...,«—1}, Pi is located on a,-; an is free; for every. id {«+2,..., n+m}, pt is 

on-flj-j.; p„ is on an+m. Move pn-1 from to a„ and then rotate the pebbles around 
the cycle aQ, ..., a„ until a0 gets free, we see that a0 is free, />„_! is located on at, and 
for every /£{0, ..., n—2}, pt is on ai+i. Now move p„ from an+m to a0, rotate the 
pebbles «—1 times around the cycle a0, • ••, an, and move the pebbles along the 
path an+1, ..., an+m. 

Lemma 4.2. Let G=(V,E) be a graph with V— {a0, ..., an+m+l}, 
T I S O , m, / ^ 1 , and E={{a0, A A ) , ..., (an+m.1, an+J, (an+m, O 0 ) , ( A „ , an+m+0, ..., 
...,(an+m+l_1, an+m+l), (an+m+l, a0)}. Then, for every pair of different integers 
i, {0,..., n+m+l], \j/uk can be realized in D. 

Proof. Place p, onto a„ t=0, ..., n+m+l, t^k. First we.show that we may 
restrict the consideration to the case that k=n. Either k£ {0,..., n+m} or k£ 
£{0, ..., n, n+m + l,..., n+m+l}. If k£{0,..., n+m} rotate the pebbles around the 
cycle a0, ...,an+m until a„ gets free, then movep, to a„ so that the rest of the pebbles 
get back to the position they were after the rotations. Finally, rotate the pebbles 
around the cycle a0, ..., an+m so that pt gets onto ak. The pebbles p, other than pt 
get back to a„ respectively. Similar procedure applies when kd {0,..., n+m+l, ..., 
..., n+m+l). 

Let k=n. Because the assumptions id {0,..., n+m} and id {0,..., n, n+m+l, ..., 
..., n+m+l} are symmetrical, we may suppose /€{0,..., n+m}. We shall realize 
in five steps. 

Step 1. Rotate the pebbles once around the cycle a0, ..., a„, an+m+1 , ..., an+m+l. 
Observe that a„+m+1 becomes free and pn+m+i gets onto a0. 

Step 2. Rotate the pebbles around the cycle a0, ..., a„+m until pt hits a„. Then 
move Pi from an to an + m + 1 , so that an becomes free. 

Step 3. When this step applies, one of the vertices.a0,...., a„+m is free, and 
exactly one of pn+m+1 , ...,pn+m+l, say p„ is in the cycle a0,..., an+m (pn+m+l for the 
first time). Check if pf is on a„+m+l, if so, go to Step 4. Otherwise rotate the pebbles 
around the cycle a0, ...,an+m until p, gets onto a„, and rotate the pebbles once 
around the cycle a0, ..., a„, an+m+1, ..., an+m+l. Go to Step 3. 

Step 4. Observe that the placement of the pebbles is this. The cycle aQ, ...', an+m 

contains p„+m+1 and the pebbles p} with jd{0,..., n+m}, j^i, j^n. Thus, one of 
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a0, ..., an+m is free. The relative order of the pebbles pj ( {0, ..., n+m}, 
j^i, j^n) is their original order. Further, pt is on a„+m+l, p„+m+2 is on an+m+1, ..., 
...,p„+m+l is on an+m+l_1. It is now clear that the pebbles in the cycle a0, ..., a„+m 
can be arranged in such a way that a0 gets free and after moving the pebbles along 
the path an+m+l, . . . ,on + m + i , a0 (so that pt gets onto a0), the relative order of 
the pebbles pj, /€{0, ...,n+m}, j^n, in the cycle a0, ...,an+m will be just as 
desired. 

Step 5. We have p„+m+1 free. The pebbles pn+m+2, ...,p„+m+l are back on 
an+m+2> •••» an+m+i, respectively. Further, the cycle aQ, ..., an+m contains the 
pebbles pj /€{0, ..., n+m), j^n, and the pebble pn+m+1. The relative order of 
the pebbles Pj O'€{0, ..., n+m}, j ^ n ) is just as desired. Rotate the pebbles around 
the cycle a0, ..., an+m until />„+ra+1 gets onto a„ then move pn+m+1 from a„ to an+m+1. 
The pebbles p„+m+1, ...,pn+m+l are now back on an+m+1, ...,an+m+l, respectively. 
Further, it is clear that the pebbles in the cycle a0, ..., a„+m can be arranged so 
that pi is on a„, and for {0,..., n+m}, j^i, jiAn, pj is on ctj. 

Theorem 4.3. S„\S(D) for every biconnectedgraph D on n+1 vertices. 

Proof. Let D=(V, E) with V={a0, ..., a„}. We are going to show that 
ipif j can be realized in D for every possible pair of different integers i, j. Consequently, 
G(D, VJ is the group of all permutations on V( for every i (Os/^n). Hence the 
result follows by Fact 3.2. 

Put pebblept onto a, for every t£{0,..., «}, t^j. Take a path 

^ = b0, ¿j, ..., bk = aj 
from a( to ctj. If k= 1, ij/UJ can be realized obviously. We proceed by induction on 

Assume There are an md {0, ..., k— 1} and a path 

ai = bk> bk+1,..., bk+t ' bm 

with {b0, . . . ^ J ^ f e + n •••»&k+i-i}=0- We distinguish two cases. 
Case m?±0. Let us rotate the pebbles / times around the cycle bm, ..., bk, 

bk+i, •••, bk+i_i. We see that bm is free now. By induction hypothesis, px can be 
moved from at to bm in such a way that meanwhile all the other pebbles get back to 
the vertex they-were before. Finally, rotate the pebbles k—m times around the cycle 
bm, ..., bk, bk+1, ..., bk+Obviously, we obtained a realization oii]/itJ. 

Case m=0. We have a cycle 

bo, blt ..., bk, bk+1,..., bk+i^1. 

Two subcases arise according to whether this cycle contains all the vertices of D 
or not. , 
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Subcase V= {b0, ..., bk+l-J. Since D is biconnected, there is at least one edge 
in E other than the edges (b0, bj, ..., (6fe+I_2, bk+i-i), b0). The result 
follows by Lemma 4.1. 

Subcase V^•••> Take a vertex c£V— {b0, ..., bk+l-1} closest to 
the cycle b0, ..., ¿t+j-i- We then have paths bt=c0,cl5 ..., c„=c and c=d0, ..., 
d„=bs for ^{O, ..., k+1— 1} such that the sets {b0, ..., ..., c„} and 
{i/l5 ..., d0_l} are pairwise disjoint. The result follows by Lemma 4.2. 

Theorem 4.4. Let D=(V,E) be a cycle with n vertices. Then for every group 
G, G\S(D) if and only if G\Zm for some m^n. 

Proof. It suffices to show that a group is isomorphic to a subgroup of S(D) 
if and only if it is isomorphic to a subgroup of Zm with m^n. 

Suppose that H is isomorphic to a subgroup of S(D). From Fact 3.3, there is a 
subset V' of the vertex set of D such that His isomorphic to a subgroup of G(D, V). 
Let m be the cardinality of V. We prove that G(D, V) is a cyclic group of order m. 

Set F={a l 5 ..., a„} and V'= {a., ..., atJ so that a1,...,a„ is a cycle and 
Place pebble Pj onto atj, j= 1,..., m. Rotate the pebbles once around 

the cycle a±, ..., an. If each of the pebbles ps is on the vertex or on ah if j=m, 
we see that the cyclic permutation (a, ...atJ is in G(D, V). Otherwise, rotate those 
pebbles around the cycle alt ...,a„ for which it does not hold. In a finite number of 
steps we obtain a realization of the cyclic permutation (a. ...a, ). Thus, (a, ...a. )£ r m *1 'm 
€G(D, V). On the other hand, since by our rules and the structure of D the pebbles 
can never pass each other, every permutation in G(D, V) is a power of the cyclic 
permutation (eii ...ai ). 

Conversely, it is clear from the above proof that if H is isomorphic to a sub-
group of a cyclic group Zm with m^n then H is isomorphic to a subgroup of G (D, V) 
for every subset V' of V with m elements. Thus, Fact 4.2 yields G\S(D). 

Let JT be a class of automata. Set D (jf)={D | 3 AgjT D is a subgraph of 
D(A)}, where the notion of a subgraph of a graph is used in the usual sense. With 
the concept of D(Jif) and that of a biconnected graph we are able to characterize 
complete classes for the <xx-product: 

Theorem 4.5. A class X is complete for the a^-product if and only if for every 
positive integer n, D ( J f ) contains a biconnected graph on at least n vertices. 

Proof. If D(jif) does not contain biconnected graphs then, by Theorem 4.4, 
Fact 3.5 and Fact 3.1, every simple group dividing S(A) for some AdP^CJT) is 
commutative. If n is the highest integer such that D(Jf) contains a biconnected 
graph on n vertices then, again by Theorem 4.4, Fact 3.5 and Fact 3.1, every simple 
group dividing S(A) for an AgP^ ^jf) is either commutative or a divisor of Sn. 
In either case, X cannot be complete for the aj-product by Theorem 1.1. 
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For the converse, suppose that for every positive integer n there exists a bicon-
nected graph in D ( j f ) having at least n vertices. Take a simple group G. There is a 
positive integer n with G|&„. By Theorem 4.3, Fact 3.2 and Fact 3.1, it is easy to see 
that Sn\S(A) for some A c p ^ ( j f ) . Thus, Jf is complete for the a^-product by 
Theorem 1.1. 

In exactly the same way we obtain the following result: 

Theorem 4.6. Let X be a class of automata. If Jf is not complete for the 
cc\-product then three cases arise. 

(i) There is a highest integer n such that D(yf) contains a biconnected graph on 
n vertices. Then HSP^(Jf) if and only if for every simple group G with GIS^A), 
either G|Sn_x or G\G(D) for a biconnected graph DdD(jf) on n vertices or G is a 
prime group of order p and D (¿f) contains a cycle of length at least p. 

(ii) D(X~) does not contain biconnected graphs but there is at least one cycle in 
D(X). Then AGHSPf ( J f ) if and only if for every simple group with G\S(A), G is a 
prime group of order p such that D ( j f ) contains a cycle of length at least p. 

(iii) Otherwise, i.e. if there is no cycle in D(c#~), then HSP^( j f ) is the class of 
all monotone automata or the class of all discrete automata or the class of all trivial 
automata, just as in Theorem 1.2. 

Corol lary 4.7. There are a countable number of classes of automata of the 
form HSP^ ( J f ) . 
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