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On general connections satisfying V/=ca®7 

NAOTO ABE, HIROAKI NEMOTO and SEIICHI YAMAGUCHI 

0. Introduction 

The notion of general connections was initiated by T. OTSUKI in 1 9 5 8 [10] . 

He obtained various result [ 1 1 — 2 1 ] . A . M O Ô R studied Riemannian manifolds with 
general connections, he called them Otsuki spaces [ 2 — 7 ] . T. OTSUKI [21 , 2 2 ] and 
H. NAGAYAMA [8] applied general connections to the theory of relativity. Recently 
N . A B E [1] defined general connections on arbitrary vector bundles and H. NEMOTO 

[9] studied the geometry of submanifolds in a Riemannian manifold with a general 
connection. 

One of the appealing facts in the theory of general connection is the fact that 
the covariant derivative of the identity endomorphism does not necessarily vanish. 
In this paper, we will study the case where the identity endomorphism is recurrent. 

1. Preliminaries 

In this section we review the theory of general connections along [1, 9, 11]. 
Throughout this paper, we assume that all objects are smooth and all vector bundles 
are real. Let M be a manifold, TM the tangent bundle and C(M) the ring of real-
valued functions on M. Let F and W be vector bundles over M. The fibre of F at 
p£M will be denoted by Vp and the dual bundle of F is denoted by V*. The space 
of cross-sections of F will be denoted by r (F) . By Horn (F, W) we will denote the 
vector bundle of which fibre Horn (F, W) at p is the vector space Horn (Vp, Wp) 
of linear maps from Vp to Wp. In particular, Horn (V, V) will be denoted by End (F). 
Let HOM (V, W) be the space of vector bundle homomorphisms from F to W. 
Especially HOM (V, F) will be denoted by END (F). Let IY be the identity endo-
morphism of V. Note that HOM (F, W) can be naturally identified with the space 
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r(Hom (V, W)). We will generally use the same symbol to denote a vector bundle 
homomorphism and the induced linear map on the space of cross-sections. 

For s£r(V), we will denote the 1-jet of s by jM1(s) and the 1-jet at p by y'J(i). 
Let71(F) be the 1-jet bundle of V. Now we define two vector bundle homomorphisms. 
The vector bundle homomorphism i: T M * % V ^ - i s defined to be 

i((df)P®s(p)) •=j1
P((f-f(p))s) for /€C(M), ser(V). 

The vector bundle homomorphism X: J1(V)-*F is defined to be 

Mj*(s)):=s(p) for ser(V). 

Defini t ion 1.1. A vector bundle homomorphism y£HOM is called 
a general connection on V. The endomorphism Pv:=/loy6END (V) is called the 
principal endomorphism of y. The linear operator V : r(V)-~r(TM*®V), 
defined by 

v - y - i - H W - O - v C O ) for s^r(V), 

is called the covariant derivative of y. 

It is easily shown that the covariant derivative Vy of a general connection y 
with the principal endomorphism Py satisfies 

(1.1) Vy(fs) = (df)®Pys+fVys for f£C(M), s(=r(F). 

For P6END (F), we will denote the set of linear operators on r(V) into r(TM*<g>V) 
satisfying (1.1) by 0(F; P). Then the following theorem is known [1]: 

Theorem A. IfV£0(V; P) for P£END (V), then there exists a unique general 
connection y such that Py=P and V)'=V. 

Thus we may say that a pair (V, P) of a linear operator V and an endomorphism 
P satisfying (1.1) is a general connection on V. Given v£TM and p€M, we define 
the linear mapV„: r(V)—Vp by Vvs:=iv(Vs) for s£r(V), where /„ is the inner 
product operator. Similarly, given XeT(TM), we define the linear operator Vx: 
r(V)-*r(V) by (Wxs)(p):=VX(p)s. We call V* the covariant derivative along X. 
Then we have 

(1.1)' V/xs=fVxs and Vx(fs) = (Xf)Ps+fVxs for f£C{M). 

When. P=IV, our general connection (V, Iy) is nothing but a usual connection 
on V, that is, the linear operator Vx: r (F)—P(F) satisfies V / x s = J V x s and 
Vx(fs)=(Xf)s+fVxs. 

Defini t ion 1.2. A general connection (V, P) on V is said to be regular if P 
is a regular endomorphism. 
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In the theory of general connection, we can define the product of V£0(F; P) 
and g€END (F) as follows: 

(QV)xs:=Q(Vxs) and (V<V := V^g-i). 

Then we have c V€0(F; QP) and VQ£0(V; PQ). Hence, if a general connection 
(V, P) is regular and Q is the inverse endomorphism of P, then the general connec-
tions GV and VQ are usual connections. Furthermore we can naturally extend a 
general connection (V, P) to general connections on the dual bundle and the tensor 
bundles. We will use the same symbol (V, P) for the extensions. For instance, we 
present here the following formulas: 

(Vxt])(s) = X(r,(Ps))-«(Vxs), 

(V* <p)s = Vx((pPs)-P(p(Vxs), 

(Vx g)(s, s') = X(g(Ps, Ps'))-g(yx s, Ps')-g(Ps, Vxs ') 

for titr(V*), <per(End (F)), gtr((F®V)*) and s,s /^T(F). In contrast to the 
case of usual connections, we must note that V/V does not vanish in general. 

Def in i t ion 1.3. Let g€r((F<g>F)*) be a fibre metric on F A general connec-
tion (V, P) on F is said to be metric if Vg=0, that is, 

(Vxg)(s,s') = X(g(Ps, Ps'))-g(Vxs, Ps')-g(Ps, Vxs') = 0 

for s , / e r ( F ) and X£r(TM). 

Defin i t ion 1.4. The element P(V)(:HOM (A2(TM), End (F)) defined by 

RMX, YS:=VX(VY (PS)) - V y (V x (Ps)) - P(VIX> y ] (Ps)) ~(VX/Y)VRS+(VY IV) V x ^ 

for s£T(V) and X, Y£T(TM), is called the curvature tensor field of the general 
connection (V, P). 

Remark. When the vector bundle is the tangent bundle TM, the curvature 
tensor field defined above coincides with the one defined by T. Otsuki [11]. 

In the case of V=TM, we can define a torsion tensor field of a general con-
nection (V, P) as follows: 

Def in i t ion 1.5. Let V=TM. The element *F€HOM (TM®TM, TM) de-
fined by 

T (X, Y) := Vx Y- Vy X-P[X, Y] 

for X, Y£T(TM), is called the torsioa tensor field of the general connection (V, P). 
If W=0, then the general connection on TM is said to be torsion free. 

4* 
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2. General connections of recurrent type 

In a theory of general connection we noted that the covariant derivative of the 
identity endomorphism VIy does not vanish in general. The case of V/K=0 was 
studied in [9]. The purpose of this paper is to study the case of (V* Iv)=a> (Z) I v , 
where co is some 1-form on M. 

Def in i t ion 2.1. Let (V, P) be a general connection on a vector bundle V over 
M. If the general connection (V, P) satisfies 

(2.1) (VxIr)s = co(X)s 

for some 1-form a> on M, then we call the general connection (V, P) to be of recur-
rent type. 

Example. For Q£C(M), we put P:=QIV. Let D be a usual connection on V. 
If we define a general connection (V, P) by PD, then it is easily seen that the general 
connection (V, P) is of recurrent type whose recurrent 1-form to is given by a>= 
=(1/2)d(Qi). For the curvature tensor fields R(W) and R(D), we can get the following 
formula: 

P(V) = Q*R(D), 

which will be generalized in the folloving section. If q does not vanish everywhere 
on M, the general connection (V, P) is regular. Let g be a fibre metric on V and Q 
does not vanish everywhere on M. We define the fibre metric G which is conformal 
to g by G:=Q2g. Then we obtain that 

(Vxg)(s,s'):=X(g(Ps, Ps'))-g(Vxs, Ps')-g(Ps, Wxs') = 

= X(g(Qs, Qs'))-g(QDxs, Qs')-g(es, QDxS') = 

= X(G(s,s'))-G(Dxs, s')—G(s, Dxs') = (DxG)(s, s'). 

Hence we know that the general connection (V, P) is a metric general connection 
with respect to g if and only if the usual connection D is a metric connection with 
respect to G. Especially when V—TM, it is clear that the general connection (V, P) 
is torsion free if and only if the usual connection D is torsion free. This type of 
general connections was treated by T. OTSUKI [ 2 1 ] and H. NAGAYAMA [ 8 ] when 
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3. Regular general connections of recurrent type 

In this section we study the case that the general connection (V, P) is recurrent 
type and regular. 

At first, we prepare several formulas for a regular general connection. Let Q 
be the inverse endomorphism of P, that is, 

PQ = QP = Iv. 

Thus the products GV and Vc are usual connections on V and are denoted by D and 
D' respectively. The following equations were proved in [9]. 

(3.1) (V* Iy)s = P(DxP)s = (D'xP)(Ps), 

(3.2) R(V)x,ys = P*R(D)X:Y(Ps)+P(DxP)(DYP)s-P(DYP)(DxP)s = 

= PR(D')X3y(P2s)+(D'xP)(D'YP)(Ps)-(D'YP)(D'xP)(Ps). 

Remark. When V=TM, these formulas are first proved by T. Otsuki in 
[11, 18]. 

Lemma 3.1. Let (V, P) be a regular general connection of recurrent type on V. 
Then we have the following equations: 

(3.3) (.DxP)s = (DxP)s = (o(X)Qs, 

(3.4) (DXQ) s = (D'xQ)s = -co(X)Q3s, 

where co is the recurrent l-form and Q is the inverse endomorphism of P. 

Proof. From (2.1) and (3.1), we obtain 

P(DxP)s = (D'xP){Ps) = (VxIv)s = co(X)s, 

from which we get (3.3). Since D is a usual connection, we have 

Dxs = Dx(PQs) = (DxP)Qs+PDx(Qs) = 
= tDxP)Qs+P{(DxQ)s+QDxs} = (DxP)Qs+P(DxQ)s+Dxs. 

Hence we find by (3.3) that ' 

(DxQ)s = -Q(DxP)Qs = -co(X)Q*s. 

Similarly we get (3.4)2. 
As a regular general connection (V, P) can be naturally related to usual con-

nections D:=CV and D':=Ve , we give a relation among the curvature tensor fields 
of i?(V), R(D) and /{(DO-
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Theorem 3.2. Let (V, P) be a regular general connection of recurrent type on 
V. Then we have the following equations: 

( 3 . 5 ) / ? ( V ) X , R I = P3R(D)XiYs+2dco(X, Y)Ps = P3R(D')XiYs+4d(o(X, Y)Ps, 
where 

2dco(X, Y) = X(a(Y))—Y(a>(X))—co([X, F]). 

Proof. At first, substituting (3.3) into (3.2), we have 

R(V)x,yS = P>R(D)XtY (Ps). 

Using (3.3) and (3.4), we calculate DxDY(Ps) and D[XtY](Ps) as follows: 

DxDy(Ps) =Dx{(DYP)s+PDxs} =Dx{co(Y)Qs+PDys} = 
= X(o}(Y))Qs+a>(YXDxQ)s+(o(Y)QDxs+(DxP)Dy s+PDxDYs = 
= X(co(Y)Qs-(o(X)cQ(Y)Q*s+co(Y)QDxs+co(X)QDrs+PDxDYs, 

Dlx,n(Ps) = (Dlx,nP)s+PD[x,ns = (o([X,Y])Qs+PDix,ns. 
Hence we obtain 

R(D)X.Y(Ps) = PR(D)X,r5+{^(F))-r(o)(Z))-a>([Z, Y])}Qs, 

from which we get (3.5X. By similar calculations we get (3.5)2. 

4. Regular metric general connections of recurrent type 

In this section we will deal with a regular metric general connection (V, P) of 
recurrent type. 

Let g be a fibre metric on V and P be regular. Now we define the new metric 
G by 
(4.1) G(s,s'):=g(Ps,Ps'). 

It is known that when V=TM and g is a Riemannian metric, G is also a Riemannian 
metric. Furthermore if the regular metric general connection is torsion free, the 
product eV is the Levi—Civita connection with respect to G [9]. 

Lemma 4.1. Let (V, P) be a regular metric general connection of recurrent type 
on V. Then we obtain 

(4.2) (Dxg)(s, s') = —a>(X)g(Ts, s% 
where we put 

T:=Q2+Q*2 

and Q* is defined by g(Q*s, s') :=g(s, Qs"). 
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Proof. As D is a usual connection, we get 

X(g(Ps,Ps')) = Dx(g(Ps,Ps')) = 

= (Dxg)(Ps, Ps')+g((DxP)s, Ps')+g(Ps, (DxP)s')+g(PDxs, Ps')+g(Ps, PDxs')= 

= (Dxg)(Ps,Ps')+g((DxP)s, Ps')+g(Ps, (.DxP)s')+g(Vxs, Ps')+g(Ps, Vxs'), 

where we used pDxs=Vxs. Therefore, substituting (3.3) and X(g(Ps, Ps'))= 
=g(Vxs, Ps^+giPs, VxsO into the above equation, we obtain 

(Dxg)(Ps, Ps') = -g((DxP)s, Ps')-g(Ps, (DxP)s') = 
= -co(X){g(Qs, Ps')+g(Ps, Qs% 

Changing s to Qs and / to Qs', we find (4.2). 
Theorem 4.2. Let (V, P) be a regular metric general connection of recurrent 

type onV.If G(s, /)=g(s, f ) , that is g(Ps, P/)=g(s, s'), then the recurrent 1-form 
to vanishes identically. 

Proof. At first, we note that g(Ps, sr)=g(s, Qs') because of g(Ps, P/)=g(s, / ) . 
Moreover, by virtue of Lemma 4.1 and Dg=DG=0, we obtain 

co(X){g(Q*s,s')+g(s,Q*s')} = 0, 
for any X£f{TM) and s, s'£r(F). Suppose that there is a point p £M such that 
co^O at p, then co^O on some open neighborhood U of p. Thus, on U, we have 

g(Q*s,s')+g(s,Q*s') = 0, 
from which we have 

Pi = - I r . 

Then from (3.3), we can easily get the following equation: 

-Dxs = Dx(-s) = Dx(P*s) = 4a>(X)P*s-Dxs, 
which yields that 

4 (o(X)P*s = 0. 

Since P is regular, this implies that co=0 on U. This is a contradiction. Therefore, 
there are no points pdM such that co^O at p. 

5. Regular metric general connections of recurrent type on TM 

. In Section 4, we mentioned that if the general connection (V, P) on TM is 
torsion free, regular and metric with respect to g, then D is the Levi—Civita con-
nection with respect to G. On the other hand, there is the Levi—Civita connection 
D with respect to the original metric g. From now on, we study the relation between 
D and 5. 
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From the definition of D, we have 

(5.1) X{g{Y,Z)) = g(DxY,Z)+g(Y,DxZ), DxY—DTX = [X,Y]. 

On the other hand, by Lemma 4.1, we also obtain 

(Dxg)(Y, Z) = X(g(Y, Z))-g(DxY, Z)—g(Y, DXZ) = -co(X)g(TY, Z). 

Substituting (5.1) into above equation, we have 

(5.2) g(DxY—DxY, Z)+g(Y, DXZ-DXZ) = (o(X)g{TY, Z). 

Since both D and D are torsion free, we get 

g(DxY-DxY, Z)+g(Y,DxZ-DxZ)+g(DYZ-DYZ, X) + 

+g(Z, DYX-DYX)-g(DzX-DzX, Y) — g(X, DZY-DZY) = 2g(DxY-DxY, Z). 

From (5.2), the left hand side of the above equation equals 

<o(X)g(TY, Z)+o>(Y)g(TZ, X)-co(Z)g(TX, Y). 

Therefore, we have 

(5.3) 2 ( D X Y - D X Y ) = (o(X)TY+(o(Y)TX—g(TX, Y)W, 

where W is the vector field defined by g(W, X):=co(X) and we used g(TX, Y) = 
=g(X, TY). For brevity, we set 

(5.4) S(X, Y) := (1/2){<o(X)TY+co(Y)TX-g(TX, Y)W). 

Then (5.3) is rewritten as 
(5.5) DXY = DxY+S(X,Y). 

Now, we consider the relation between the curvature tensor fields R(D) and 
R(D). Using (5.5) twice, we have 

DxDrZ = DxDyZ+(DxS)(Y,Z)+S(DxY, Z)+ 

+S(Y,DxZ) +.S(X, BYZ)+S(Y, Z)). 

Dix, y] 

Hence it follows from above equations and DXY—DYX=[X, Y] that 

(5.6) 

R(D)XtYZ = R(D)x,yZ+(DxS)(Y, Z)-(DyS)(X,Z)+S(X, S(Y,Z))-S(Y, S(X, Z)). 

To express the right hand side of (5.6) more precisely, we prepare several formulas. 
At first, we put 
(5.7) U :=Q2 and U* Q*2. 
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Then we have 
T=U+U*. 

From (3.4)l5 we easily get 
(5.8) (DXU)Y = - 2a (X) U2 Y. 

Let us calculate (Dx U*) Y. 

g((Dx U*)Y, Z) = g(Dx(U*Y), Z)—g(U*Dx Y, Z) = 

= X(g(U*Y, Z))—(Dxg)(U*Y, Z)—g(U*Y, DxZ)-g(U*DxY, Z) = 

= (Dxg)(Y, UZ)+g(DxY, UZ)+g(Y, (DxU)Z)+g(Y, UDXZ)+ 

+a>(X)g(TU*Y, Z)—g(Y, UDxZ)-g(DxY, UZ) = 

= -w(X)g(TY, UZ)-2co(X)g(Y, U2Z)+co(X)g(TU*Y, Z). 

Therefore we find that 

(5.9) (DXU*)Y = —co(X)[U*TY—TU*Y+2U*2Y]. 

Using (5.8) and (5.9), we compute (Dx T)Y. 

( 5 . 1 0 ) (DXT)Y= (DxU)Y+(DxU*)Y = -co(X)[2U2Y+2U*2Y+U*TY-TU*Y]. 

Next, we compute (Dx T) Y by the aids of (5.4), (5.5) and (5.10). 

( 5 . 1 1 ) ( D X T ) Y = Dx(TY)—TDXY = (DxT)Y-S(X, TY)+TS(X, Y) = 

= —co(X)[2U2Y+2U*2Y+U*TY—TU*Y] — 

- ( 1 / 2 ) [ w ( T Y ) T X - c o ( Y ) T 2 X - g ( T X , TY)W+g(TX, Y)TW]. 

By virtue of these equations, we can get the following: 

( 5 . 1 2 ) (DxS)(Y, Z)—(DrS)(X,Z) = 

= (1/2){[(Dxco)(Y)-(DYOJ)(X)]TZ+[(DxCO)(Z)TY-(DyCO)(Z)TX]-

~[g(TY, Z)DXW-g(TX,Z)DYW]-(l/2)o)(TZ)[a(Y)TX-oj(X)TY] + 

+ 0 /2) CO (Z) [CO (Y) T2X— (o(X)TY] - (1/2) [a>(Y)g(TX,Z)-a>(X)g(TY, Z)]TW-

—CO (Z) [2co(X) U2Y— 2a> (F) U2X+2co (X)U*2 Y— 2a>(Y) U*2X+ 

+co(X)U* TY- a (F) U* TX- (o (X) TU*Y+co (Y)TU*X] -

— ( 1 / 2 ) CO ( Z ) [ O (TY) TX—o) (TX) TY— a> ( F ) T2X+a>(X)T2Y]+ 

+[2xo(X)g(U2Y, Z)-2oj(Y)g(U2X, Z)+ 

+2(o(X)g(U*2Y, Z)—2(o(Y)g(U*2X, Z)+co(Y)g(TU*X, Z)-

-co(X)g(TU*Y, Z)-co(Y)g(U*TX, Z)+co(X)g(U*TY, Z)]W+ 

+(1/2)[<o(TY)g(TX, Z)-co(TX)g(TY, Z)]W}. 
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The following equation follows from (5.4) and (5.12). 

(DxS)(Y,Z)-(DrS)(X,Z) + S(X, S(Y,Z))-S(Y, S(X,Z)) = 

= dœ(X, Y)TZ+( 1/2){[(Dx co) (Z)TY-(D Y œ) (Z)TX] -

~[g(TY, Z)DxW—g(TX, Z)DrW]}-(\l4){\<ong{TY, Z)TX-g(TX, Z)TY] + 

+m(X)co(Z)[4U2Y+4U*2Y+2U*TY-2TU*Y+T2Y]-

-(o(Y)co(Z) [4U2X+4U*2X+2 U* TX-2 TU*X+T2X] -

-a)(X)g(4U2Y+4U*2Y+2U*TY-2TU*Y+T2Y, Z)W+ 

+œ(Y)g(4U2X+4U*2X+2U*TX-2TU*X+ T2X, Z) W. 

Therefore, we obtain the following theorem: 

Theorem 5.1. Let (V, P) be a torsion free regular metric general connection 
of recurrent type on TM, D the product eV and D the Levi—Civita connection with 
respect to G. Then the curvature tensor fields R(D) and R(D) satisfy the following 
equation. 
(5.13) R(D)X,YZ = R(D)XT YZ+ dco(X, Y)TZ+ 

+(1/2){[(Dxa>)(Z)TY-(DyCo)(Z)TX]-lg(TY, Z)DxW-g(TX, Z)DrW]}-

-(l/4){M2[g(7T, Z)TX-g(TX, Z)TY] + 

+œ(X)co(Z)AY— £0(7)co(Z)AX—(o(X)g(AY, Z)W+œ(Y)g(AX, Z)W]}, 

where we put 
A = 4U2+4U*2+2U*T-2TU*+T2. 

6. Regular metric general connections of recurrent type 
whose principal endomorphism is symmetric 

In this section, we study the case that the principal endomorphism P is sym-
metric with respect to g, that is, 

(6.1) g(PX, Y) = g(X, PY). 

As a consequence of this, we easily get the following: 

(6.2) Q* = Q and U = U*, 

(6.3) T = 2U, 

(6.4) . A = 12U2. 
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Then the equation (5.13) is rewritten as 
(6.5) R(D)XtYZ = R(D)x<YZ+2dco(X, Y)UZ+ 

+ [(Dxœ)(Z)UY-(Dyœ)(Z)UX)-[g(UY, Z)DxW-g(UX, Z)DYW]~ 
-\w\2[g(UY, Z)UX-g(UX, Z)UY] +3[(a(Y)œ(Z^U2X—œ(X)œ(Z)U2Y+ 

+(û(X)g(U2Y, Z)W— oj(Y)g(U2X, Z)W], 
Propos i t ion 6.1. Let (V, P) be a torsion free regular metric general connection 

• of recurrent type on TM. If the general connection (V, P) satisfies g(PX, F) =g(X, PY), 
then the l-form œ is closed. 

Proof . Let {e,} be a local orthonormal frame field with respect to g and {/ '} 
the dual frame of {e,}. Then, from (6.5), we have 
(6.6) f(R(D)ei,YZ)=f(R(D)ei,YZ) + 2dœ(ei, Y)f'(UZ) + 

+[(Deio>)(Z)f(UY)-(Dy<o)(Z)fi(Uei)]-
-[g(UY, Z)f(DetW)-g(Uei, Z)f(DrW)]-
- M2[g(C/F, Z)f(Uei)-g(Uei, Z)f'(UY)] + 
+ 3 [a> (F) co (Z) / ' (U2ei)—o)(ei)co (Z)f (UZY)+ 

+ co(ei)g(U2Y, Z)fi(W)—a>(Y)g(U2ei, Z)f(W)], 
where we used the summation convention. Thus we get 

(6.7) K(D)(Y, Z) = K(D)(Y, Z)+2dco(UZ, Y)+(DVïa>)(Z)-(DyCo)(Z) Tr U-
-g(UY, Z)f(DeiW)+g(UDyW,Z)-\co\2(g(UY, Z) Tr U-g(U2Y, Z))+ 

+3(œ(Y)a>(Z) Tr U2-œ(U2Y)œ(Z)+œ(W)g(U2Y, Z)-to(Y)g(U2W, Z)) 
where K(D)(Y, Z), K(D)(Y, Z) denote the Ricci curvature tensor fields with respect 
to G and g respectively. Changing F and Z in (6.7) and subtracting this from (6.7), 
we obtain 
(6.8) 2dco(Y, Z) Tr £/ = 0, 

since K(D)(Y,Z) and K(D)(Y,Z) are symmetric. As Tr £/=Tr Q2=\Q\2^0, we 
have 

do = 0. 
This proves our proposition. 

In this case, (6.5) reduces to 
(6.9) K(D)XtyZ = K(D)XiyZ+[(Dx0))(Z)UY-(Dy0))(Z)UX]-

-[g(UY,Z)DxW-g(UX, Z)DyW] — \<a\2[g(UY, Z)UX-g{UX, Z)UY] + 
+3[a)(Y)a>(Z)U2X-o)(X)co(Z)U2Y+co(X)g(U2Y, Z)W-œ(Y)g(U2X, Z)W]-' 

Remark. Excepting Proposition 6.1, our results are true in the case that the 
metrics are pseudo-Riemannian. 
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