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On the convergence of the differentiated
trigonometric projection operators

P. O. RUNCK, J. SZABADOS and P. VERTESI¥

Let Cy, be the set of 2zn-periodic continuous functions and J, the set of trigono-
metric polynomials of order at most n. We will consider projection operators Pec
€Cs—~T,, 1.€. linear operators P,(f, t) with the properties

() E(f,9€T, if feCo
@) B(fi)=f(1) if fed,.

Let r be a nonnegative intéger, and consider the 7 times differentiated operator
PO)(f, 1). One may ask: under what conditions will this operator uniformly converge
to f®(t)? To state a result in the positive direction, we need some definitions. Let

A 1P®
Y B9 := - 1B Dl

sup
Coxrec,, IS

be the norm of the r times differentiated operator (] -| denotes supremum norm
over the real line), and let E,(g) be the best (umform) tngonometnc approximation
of order n of g€C,,. i _

Theorem 1. If f®(¢) is continuous and BECyy— T,
then

I/ ()~ P")(f )l = O(E (f"’)+E AOIEDL).

Here the O-sign refers to n—e, wh11e r is fixed. Hence a sufficient condltlon of
" the uniform conv~rgence is

Lo

lim E, ({)IIR,"’II =o.
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Proof of Theorem 1. Let T,(¢) be the best approximating polynomial of
S(t). Then according to a result of Czipszer and FREUD [2] on simultaneous appro-
ximation

IfPO-THO| = 6E,(f®) (k=0,1,....,r).
Using this result, as well as property (ii) of the projection operator P, we get
1fOO=-EOF DI = 1 OO-TOOI+ IO~ BT, O]+
+HIEOT £, )l = G EL(f)+ 6 Ey(N)IPD.

Now we turn to the divergence phenomena of the operator P®(f, f). Let
() be an arbitrary modulus of continuity, and define

(r) (.f " t)
@ Cr(@) = f DS WECs., SUP— .
- Theorem 2. Given r=0 and a modulus of continuity w(t) such that
. t
@ 2hem =%

Sfurther a sequence of projection operators BcCyr—~T,, there exists an f,()€C,(w)
such that

() — P®
@ - tmsup VPO=EOG O
? w[—;}logn

For the proof of Theorem 2 we need the following

- Lemma. Given r and n, there exists a function g, (1)€Cy, such that

(5) ug(j)(t)" = cln" (j: 0, 1’ cees ’.+1)
and
@ ,1, f g9(1) D, () dt = cyn” log n,
’where' o o
| C 241
s ) t
0] A D)) =—F—
' s 2sin-2—

is the Dirichlet kernel.

2 In what follows ¢,, €,, ... will denote constants depending on » but independent of .-
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Proof. We distinguish two cases."
Case 1. ris odd. Then let

X 2n+1 . 2n 2nxw
— (— 1) +1)2 : o
®) g = (-Dsgnheos——1 if S ==

To extend the definition of g (?) for [t|<2m/(2n+1), let h,(t) be that uniquely
determined algebraic polynomial of degree at most 2r+3 which satisfies the condi-
tions '

2z ) 2r ) ; ( 2 ) ( 2n )
L)} = o] () = o)
(9) hnr ( 2n+l gm‘ 2n+1 b hnr 2n+1 gnr 2n+1

(=0,1,...,r+1).

Then let
. 27
(10) () = hy() if 1 <5
Assume .
2r4-8 k
(11) hnr(t) = 2 akn(2?12+1 t] ,
k=0 T
then by (9) and (8) —~
2r . 2n+l)12r+s. .
)] _f{_#Antl _ _ L
2n
= g |- -
L 2n+l] o)

(j= 0, 1, ey I+ 1),
ie.
2r+8
(12) 2 D=1 ... (k—j+Da, =0(1) (j=0,1,..,r+1).
k=J _ '
Similarly, from the second group of conditions in (9),

13 2" k(k=1)...(k—j+1)ap =0(1) (j=0,1, ..., r+1).

(12) and (13) togethercan be considered as a system of linear- equations for the un-
knowns a,,. Since h,,(?) is uniquely determined, this system is uniquely solvable and

el = (k=0,1,..,2r+3).
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Thus by (10) and (11) we get for j=0,1, ...,r+1
- gL = KD =

- l 2n+1 2n '

TN\ 2nm n+1
- Now g,,,(t) is defined. on [f|=2n/(2n+1), and extending the definition by
' 2nn 2(n+1)1r.

] (and

‘ 2n+1° 2n+1
its translates). In this interval the construction is similar: let H,(¢) be that
uniquely determined algebraic polynomial of degree at most 2r+3 for which

HU)( 2nn ) (J){ 2nn ), H,‘,{)(,2(n+l)ﬂ]=g§,{)(2(n+l)n]
2n4-1 2n+1 © 2n+1 2n+1

J 5 ke e Dl = e i 1=

ftanslat;qns of length 2z, the only missing mterval is. (

(G=0,1,..,r+1),
and let -

N .. 2nmm 2(n+1)=
&n() = H,. (1) lf n+1 <t<_5;1_-}T-'

Thus the definition of g, (f) is complete. Preperty (5) on the interval
2nn 2(n+D)= .
2n4+1" 2n+1
The only thing remamed to prove is (6). : Slnce by (7) IID (t)|| —n+1/2 we get
from (8) and (5)

] can be easily established.

2nn sin? 2n+l
2n+1
— f £9()D, (t)artz—(z";r ‘] T : L
2z 2sin ~
Lo 2n-{-1x 2
‘ (8k+3)n
r n—1 2(2n+1)
—rleponor=E £ (F5) 5 Fesar=
n+ T k=1 (4k+1)1r .
2(2n+1)

'~\,:"

3c1n' = can’log n.

_1 2n+1] 1
[ Z W+3 |
R w t' Pooovy

Case 2. ris even Now the deﬁmtlon of g,,,(t) starts w1th

2n+4t Qg n;"- D Dpgsin
= (— I2
gu,(t) ( )’ (sgnt)sm _2,.;t lf P el I ey W

instead of (8). The rest of the proof is very similar to Case, |, and we omit the details.
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Proof of Theorem:2. Since- B,(f, ) is a projection- operator accordmg to
the Berman—Faber—Marcinkiewicz relation we have

% f 2(f(- +1), x—u)du = S,(f, x)
where -

s0=2 [ reton,wa

is the n'® partial sum of the Fourier series of f(x) (see e.g. Lorentz [3], p. 97). Apply-
ing this for f(x)=g,(x), differentiating » times and setting x=0 we get

U o /- 1 F :
7 | Ben(+, —du=2 [ g2OD(D .

Let u, be a point whete |P"(g, (- +u), —u)| attains its maximum, then by (6) we
get

(14) (1B (gne (- +14,), |l = IP"’(g,.r( +u,), —uy)| = ¢y log n. _
Now define a sequence of integers n;<n,<... with the following propertles let
. ) ) i ‘ 1] - cz 8/c
(15) ()] [7]’ = 8_6‘1 Py nl > e/

and assume that ny, n, :.., n; j—1 -has been already defined. .
If there exists a k, 1=k=j—1, such that for infinitely many n’s we have

llesD)— BN g (- +ut), 1)]| = ere0(1/m)log m -
then this g, ,(7) will satisfy the requirements -of the theorem. If this is not the case,
then for suﬂiaently large n’s

(18428 — B g (- +210), ]| < y(1/n)log <k—1 L j=1).
Now choose n; in this case such that
a6  |le2m- m;’(gn,‘,( +u,k), | < ecxo(1/n;) log n; *=1,..751)
and : -

an

hold. (The left hand side mequahty is possible because of (3).)
We may assume that we can construct an infinite' sequence of mdlces this way.
Define . :

2"} -1

(0(1/"1 1) = a)(l/nj) = mm( w(l/nj 1)9 &lllP(r) "

n,,

gllk'(t + unk)
n;

f.(t) =. Z’ o(Un): |
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Here the right hand side series, even after differentiating r times, uniformly converges
by (5) and (17). Moreover, if 0<d=h then

If+8)—fO()) = Z

nr t+ 5 + u’lg '(l:)r t+ unk)
LGRS CGTN I

Let O<h<1/n, and j be that index for which
l/nj+1 = h< l/nj
Then by (5) and (17)

518 5 20g2)
s = 52O oy, 5 HOL oy,

=60 2 "kw(l/"k)'*‘zclk:%_l o(1/n41) = 2c.hnyo(1/n)) +4c,0(1n; ) = 8c,0(h),
ie. f,gt)EC,(w) (cf. (2)).

Finally, to show (4) we obtain by (14), (16), (5), (17) and (15)

(r) . Pn(’) e »Y
"f'(")(t)—P(r)(/” Ol = ”2 gnk,(t+uk) !(g (- +u,), )

L w(1/n)| =
A +un,) Wty 2 ! et tn) = B e O
nj. s n
o g . dq
_ 5t Ilg,k,ll o(ln) .. , 3 || (8 (- + 12, )|

- o(l/n) =

= cu(1/ny)log n,—clw(l/n,) log n; kg o(l/n) 5‘ o(l/n)—
—elBI

2;1 o(l/n) = c;0(l/ny)log ny—2c, w(1/n)w(1/n)) log n,

—zw(l("j) 2, IlP‘A,"lI'w(.l_'/.nm) = cy(1/n;) log ny—— w(1/n;) log n;

—Fa(n) logn,—Z o(l/n)log n, = (i) logn; (=1,2,...)

o(t)=o(t) is excluded in Theorem 2, by condition (3). With a slight modifica-
tion of the proof we can easily get the following statement in this case
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Theorem 3. Given r=0, a sequence of projection operators PECs—~T,,
and a sequence & =¢g,=...; ,HE_}, e,=0, there exists an f,(t)€Cs, such that ()¢
€Lip 1 and

(r) (r)
a8 fim sup Q=BG 0L

s &, log n/n

We do not give the details of the proof of this theorem. We only mention that
now
Eny
f;(t) - Z n,"‘"l gnkr(t+unk)
will be the function satisfying (18), where m<mn,<... is a properly chosen sequence
of indices.
An obvious consequence of Theorem 1 is that if f(#)€C,(w) then

(19) : 1fOO—BI(f, Ol = 0(n=" e (1/m)| EX).

Since here ||P?|=c,n" logn for any projection operator P, (cf. BERMAN [1]), the
best estimate one can obtain from (19) is

1fOO— B, Ol = O(w(l/n)log n) (f(DEC, (w)).

This shows that the results of Theorems 2 and 3 are sharp.

In particular, our theorems can be applied to the differentiated partial sums of
the Fourier series and to the differentiated interpolating polynomials based on arbit-
rary systems of nodes.
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