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On the convergence of the differentiated 
trigonometric projection operators 

P. O. RUNCK, J. SZABADOS and P. VÉRTESI*' 

Let Ca,t be the set of 2Tt-periodic continuous functions and the set of trigono-
metric polynomials of order at most n. We will consider projection operators 
£ C 2 l t — i . e . linear operators P„(f, t) with the properties 

(i) Pn(f, if /€C2re 

( i i ) P . ( f , t ) = № if f^n-

Let r be a nonnegative integer, and consider the r times differentiated operator 
P^(f, t). One may ask: under what conditions will this operator uniformly converge 
to / ( r ) (0? To state a result in the positive direction, we need some definitions. Let 

(1) ||Fn
(,)[| := sup nP" ( r ) ( / '011 

OpS/€C„ 11/11 

be the norm of the r times differentiated operator (|| • || denotes supremum norm 
over the real line), and let E„(g) be the best (uniform) trigonometric approximation 
of order it of g€C2!C. ... i 1 

Theorem 1. If f(r)(t) is continuous and 
then 

| | m t ) - P P < J , Oil = 0(Ea(fV)+En(f)\\PttMII). 

Here the 0-sign refers to while r is fixed. Hence a sufficient condition of 
the uniform com-vrgence is 

lim E n { f ) \ m = 0. 
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Proof of Theorem 1. Let Tn(t) be the best approximating polynomial of 
f(t). Then according to a result of CZIPSZER and F R E U D [2] on simultaneous appro-
ximation 

ll/WiO-Tf'Mli S c0Ea(f&) (k = 0 , 1 , r ) . 1 ) 

Using this result, as well as property (ii) of the projection operator Pa we get 

U / ( r ) ( 0 - W , OB ^ | | /«(0-T„w(0ll +\\{Tn(t)-Pn(T„, 0}(r)ll + 
+ №r)(Tn-f, OH ^ caEn{f^)+c0En{f)\m\. 

Now we turn to the divergence phenomena of the operator t). Let 
<a(<) be an arbitrary modulus of continuity, and define 

(2) C(a ) )={ / (0 l /W(0€C 2 n , sup 0 < 4 

Theorem 2. Given r s 0 and a modulus of continuity co(t) such that 

(3) lim - 4 v = 0, v J co(t) 

further a sequence of projection operators ij€C2„—there exists an fr(t)£Cr(co) 
such that 

( 4 ) - L I M S U P ' ^ - W ' ^ ^ 0 . 

(0 ( I ) log n 

For the proof of Theorem 2 we need the following 

Lemma. Given r and n, there exists a function g„r(t)£CiK such that 

( 5 ) FLGI^OLL^C^ ( J = 0 , 1 , . . . , R + 1 ) 

and 

(6) j J g$(t)D„(t) dt S c%if log n, 

•where 

sin-
(7) Da(t) =-

2 s i n y 

is the Dirichlet kernel. 

1 In what follows c0, et, ... will denote constants depending on r but independent of n. 
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Proof. We distinguish two cases. 

Case 1. r is odd. Then let 

(8) g„r(t) = ( - l)(,+1)/2(sgn t) cos - ^ - î - 1 if 

To extend the definition of gm(t) for |i|<27t/(2/2+1), let hm(t) be that uniquely 
determined algebraic polynomial of degree at most 2r+3 which satisfies the condi-
tions 

( 9 ) h"r) ( " l ï ï + r ) = "2ÏÏ+T) ' ( l ï ï + r ) = (2,1+1 ) 

C/ = 0 , l , . . . , r + l ) . 

Then let 

(10) gm{t) = hm(i) if 1̂1 — 

Assume 2r+8 ( 2n+1 V 
(11) M 0 = J i ^ [ ^ - t j > 

then by (9) and (8) 

( j = 0,1,..., /"+1), 
i.e. 

2r+8 
(12) 2 ( - l ) * * ( * - l ) . . . ( f t - J + l ) « t e = 0 ( l ) O = o , i , . . . , r+1) . 

t=/ 

Similarly, from the second group of conditions in (9), 

2R+3 
(13) 2 * . ( * . - = 0 0 ) O = o , i , . . . , r+1) . 

(12) and (13) together can be considered as a system of linear equations for the un-
knowns a t a . Since7i„(f)is uniquely determined, this system is uniquely solvable and 

]a t o | â ca (k = 0 , 1 , 2 r + 3 ) . 
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Thus by (10) and (11) we get for y=0, 1, ..., r + 1 

1 ^ ( 0 1 = 1^ (01 S 

(2 n + l V 2 , + 3 2n 

- = ^ ] - 2 k(k-i)...(k-J+l)\aka\s_eln'. if l i l s — ^ 
Now g„.(t) is defined on \t\^2n/(2n+l), and extending the definition by 

( 2nn 2(n + l)n S 
translations of length 2n, the only missing interval is — , — — (and 

\2n + l 2n + l ) 
its translates). In this interval the construction is similar: let Hnr(t) be that 
uniquely determined algebraic polynomial of degree at most 2r+3 for which 

U) ( 2nn \ U) ( 2nn \ ( 2(n+l)n 'j (J, ( 2(n + l)n "j 
nr\2n+\) gn,{2n+l)' " ' I 2 n + l ) g~ I 2n+l ) 

(7 = 0, 1, . . . , r + l ) , 
and let 

,, ' 2nn 2(n+l)7r 
2k+1 2 n + l 

Thus the definition of gnr(t) is complete. Property (5) on the interval 

— l ) n 1 c a n easiiy established. 
2« +1 2n +1 J 

The only thing remained to prove is (6). Since by (7) ||JDn(i)i| =« + 1/2, we get 
from (8) and (5) 

• 2 2n + 1 

2" 2 sin — 
.. 2 

(4 t+3)n 

2 n + 1 71 K 2 ' («+!)* 1 
2(2n+l ) 

Case 2. r is even. Now the definition of g„r(t) starts with 

instead of (8). The rest of the proof is very similar to J, and we omit the details. 
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Proof of Theorem 2. Since 0 is a projection operator, according to 
the Berman—Faber—Marcinkiewicz relation we have 

jPnifi • + «), x-u) du = S„if, x) 
—it 

where 

S„(f,x) = ± [f(x+t)Dn(t)dt n J 
— n 

is the wth partial sum of the Fourier series of f(x) (see e.g. Lorentz [3], p. 97). Apply-
ing this for f(x)=g„r(x), differentiating r times and setting x = 0 we get 

-¿- / Ptr)(gnr( • + «), ~u)du = ± /g£>(t)Dn(t) dt. 
—a —it 

Let u„ be a point where |i*r)(gnr(- +«), — h)| attains its maximum, then by (6) we 
get 

(14) I l i ^ M • + u„), i)|| s | P f \ g m ( • + u„), - «„)| £ c2rf log n. 
Now define a sequence of integers n ^ ... with the following properties: let 

and assume that Mx, «2, ..., Mj-i has been already defined. 
If there exists a k, l^k^j—l, such that for infinitely many n's we have 

+ « 0 , Oil S Cl(«(l/»)l0g n 
then this g„kT(t) will satisfy the requirements of the theorem. If this is not the case, 
then for sufficiently large n's ^ 

K u o - ^ M • +«J> Oil< cMmlog n (/c = i , . . . , j—i). 
Now choose itj in this case such that 

(16) H ^ u o - ^ i w i - + 0 > O l h ^«( l /n^ iog nj (k = i , . . : , / - ! ) 
and 

(17) 2 ^ c o ( l / n j - i ) ^ co(l/rij) s m i n f l c o d / « ^ , ) , ^ ¡ ^ j ) 

hold. (The left hand side inequality is possible because of (3).) 
We may assume that we can construct an infinite sequence of indices this way. 

Define 

- fM= 2 0>(i/nk). , 
*=1 nk 
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Here the right hand side series, even after differentiating r times, uniformly converges 
by (5) and (17). Moreover, if O^S^h then 

t=l "t 

Let 0<A<1/«! and j be that index for which 

l/«J+I S h < 1 / M J . 
Then by (5) and (17) 

«511^(011 . - 2[|^>(/)[1 
\mt+s)-f?m ^ Z ; ; < P ( W + ^ / B ¿ » O K ) G 

* = i "i t t = i + x "it 

i 
^ Ci8 2 n M V n k ) + 2 c 1 2 cö(l/nt+1)s2c1/inyto(l/wJ)+4c1c»(l/ny+1)^8c1co(/i), 

*=1 k=j+l 

i.e. / r(0€C,(®) (cf. (2)). 
Finally, to show (4) we obtain by (14), (16), (5), (17) and (15) 

w / m - W r , Oil = $ +«o. o 
k=l "Í * 

Hffifen.rO+»„,), Oil mfi/n ) J g + « 0 , 0 1 _ 
" y . i i i iki J fc=l « Ï * 

§ no oo 

S c2oj(l/ri/)log nJ—c1a>(l/nJ) log tij 2 /»*)- 2 a>(\lnk)-

- f t l f l ^ H 2 Û)(l/«*) S C2Cl)(l/«j)log /ly —2c1co(l/«1)û)(l//jy)log 

-2a»Cl/«j)^2cJiÇ>Bû»(l/nJ+i) s caû>(l/n,.) log n y — l o g 

- - j - 0 ) ( l / r i j ) l o g « y — j - m ( l / r i j ) l o g = - j -0) ( l /n j ) l ogn s ( j = 1,2, ...). 
a>(t)=o(t) is excluded in Theorem 2, by condition (3). With a slight modifica-

tion of the proof we can easily get the following statement in this case. 
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Theorem 3. Given r s 0 , a sequence of projection operators ДбС2я— 
and a sequence lim e„=0, there exists an f,(t)dC2K such that f}r){t)£ 
€Lip 1 and 

(18) lim sup e„ log njn 

We do not give the details of the proof of this theorem. We only mention that 
now 

fr(') = 2^kgnkr(t + unk) fc=l "k 

will be the function satisfying (18), where n 1<n 2<. . . is a properly chosen sequence 
of indices. 

An obvious consequence of Theorem 1 is that if f(t)£Cr(m) then 

(19) ||/<г>(0-Рп
(г)(/, Oil = 0(n-ra>(l/ri)\\Pir4\). 

Since here ||/*r)|| ^c3rf log n for any projection operator P„ (cf. BERMAN [1]), the 
best estimate one can obtain from (19) is 

| | / M ( 0 - w , Oil = O(co(l/n) log n) (f(t)£Cr(m)). 
This shows that the results of Theorems 2 and 3 are sharp. 

In particular, our theorems can be applied to the differentiated partial sums of 
the Fourier series and to the differentiated interpolating polynomials based on arbit-
rary systems of nodes. 
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