On the convergence of the differentiated trigonometric projection operators

P. O. RUNCK, J. SZABADOS and P. VERTESI*)

Let $C_{2 \pi}$ be the set of 2π-periodic continuous functions and \mathscr{T}_{n} the set of trigonometric polynomials of order at most n. We will consider projection operators $P_{n} \in$ $\in C_{2 \pi} \rightarrow \mathscr{T}_{n}$, i.e. linear operators $P_{n}(f, t)$ with the properties
(i) $P_{n}(f, t) \in \mathscr{T}_{n}$ if $f \in C_{2 \pi}$
(ii) $P_{n}(f, t) \equiv f(t)$ if $f \in \mathscr{T}_{n}$.

Let r be a nonnegative integer, and consider the r times differentiated operator $P_{n}^{(r)}(f, t)$. One may ask: under what conditions will this operator uniformly converge to $f^{(r)}(t)$? To state a result in the positive direction, we need some definitions. Let

$$
\begin{equation*}
\left\|P_{n}^{(r)}\right\|:=\sup _{0 \neq f \in c_{2 \pi}} \frac{\left\|P_{n}^{(r)}(f, t)\right\|}{\|f\|} \tag{1}
\end{equation*}
$$

be the norm of the r times differentiated operator $(\|\cdot\|$ denotes supremum norm over the real line), and let $E_{n}(g)$ be the best (uniform) trigonometric approximation of order n of $g \in C_{2 \pi}$.

Theorem 1. If $f^{(r)}(t)$ is continuous and $P_{n} \in C_{2 \pi} \rightarrow \mathscr{T}_{n}$,
then

$$
\left\|f^{(r)}(t)-P_{n}^{(r)}(f, t)\right\|=O\left(E_{n}\left(f^{(r)}\right)+E_{n}(f)\left\|P_{n}^{(r)}\right\|\right) .
$$

Here the O-sign refers to $n \rightarrow \infty$. while r is fixed. Hence a sufficient condition of the uniform conrorgence is

$$
\lim _{n \rightarrow \infty} E_{n}(f)\left\|P_{n}^{(r)}\right\|=0
$$

[^0]Proof of Theorem 1. Let $T_{n}(t)$ be the best approximating polynomial of $f(t)$. Then according to a result of CzIPSzer and Freud [2] on simultaneous approximation

$$
\left\|f^{(k)}(t)-T_{n}^{(k)}(t)\right\| \leqq c_{0} E_{n}\left(f^{(k)}\right) \quad(k=0,1, \ldots, r) .^{1)}
$$

Using this result, as well as property (ii) of the projection operator P_{n} we get

$$
\begin{gathered}
\left\|f^{(r)}(t)-\dot{P}_{n}^{(r)}(f, t)\right\| \leqq\left\|f^{(r)}(t)-T_{n}^{(r)}(t)\right\|+\left\|\left\{T_{n}(t)-P_{n}\left(T_{n}, t\right)\right\}^{(r)}\right\|+ \\
\quad+\left\|P_{n}^{(r)}\left(T_{n}-f, t\right)\right\| \leqq c_{0} E_{n}\left(f^{(r)}\right)+c_{0} E_{n}(f)\left\|P_{n}^{(r)}\right\|
\end{gathered}
$$

Now we turn to the divergence phenomena of the operator $P_{n}^{(r)}(f, t)$. Let $\omega(t)$ be an arbitrary modulus of continuity, and define

$$
\begin{equation*}
C_{r}(\omega)=\left\{f(t) \mid f^{(r)}(t) \in C_{2 \pi}, \sup _{t>0} \frac{\omega\left(f^{(r)}, t\right)}{\omega(t)}<\infty\right\} \tag{2}
\end{equation*}
$$

Theorem 2. Given $r \geqq 0$ and a modulus of continuity $\omega(t)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{t}{\omega(t)}=0 \tag{3}
\end{equation*}
$$

further a sequence of projection operators $P_{n} \in C_{2 \pi} \rightarrow \mathscr{T}_{n}$, there exists an $f_{r}(t) \in C_{r}(\omega)$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|f_{r}^{(r)}(t)-P_{n}^{(r)}(f, t)\right\|}{\omega\left(\frac{1}{n}\right) \log n}>0 \tag{4}
\end{equation*}
$$

For the proof of Theorem 2 we need the following
Lemma. Given r and n, there exists a function $g_{n r}(t) \in C_{2 \pi}$ such that

$$
\begin{equation*}
\left\|g_{n r}^{(j)}(t)\right\| \leqq c_{1} n^{j} \quad(j=0,1, \ldots, r+1) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\pi}^{\pi} g_{n r}^{(f)}(t) D_{n}(t) d t \geqq c_{2} n^{r} \log n \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n}(t)=\frac{\sin \frac{2 n+1}{2} t}{2 \sin \frac{t}{2}} \tag{7}
\end{equation*}
$$

is the Dirichlet kernel.

[^1]Proof. We distinguish two cases.
Case 1. r is odd. Then let

$$
\begin{equation*}
g_{n r}(t)=(-1)^{(r+1) / 2}(\operatorname{sgn} t) \cos \frac{2 n+1}{2} t \text { if } \frac{2 \pi}{2 n+1} \leqq|t| \leqq \frac{2 n \pi}{2 n+1} \tag{8}
\end{equation*}
$$

To extend the definition of $g_{n r}(t)$ for $|t|<2 \pi /(2 n+1)$, let $h_{n r}(t)$ be that uniquely determined algebraic polynomial of degree at most $2 r+3$ which satisfies the conditions

$$
\begin{gather*}
h_{n r}^{(j)}\left(-\frac{2 \pi}{2 n+1}\right)=g_{n r}^{(j)}\left(-\frac{2 \pi}{2 n+1}\right), h_{n r}^{(j)}\left(\frac{2 \pi}{2 n+1}\right)=g_{n r}^{(j)}\left(\frac{2 \pi}{2 n+1}\right) \tag{9}\\
(j=0,1, \ldots, r+1) .
\end{gather*}
$$

Then let

$$
\begin{equation*}
g_{n r}(t)=h_{n r}(t) \quad \text { if } \quad|t|<\frac{2 \pi}{2 n+1} \tag{10}
\end{equation*}
$$

Assume

$$
\begin{equation*}
h_{n r}(t)=\sum_{k=0}^{2 r+3} a_{k n}\left(\frac{2 n+1}{2 \pi} t\right)^{k}, \tag{11}
\end{equation*}
$$

then by (9) and (8)

$$
\begin{gathered}
h_{n r}^{(j)}\left(-\frac{2 \pi}{2 n+1}\right)=\left(-\frac{2 n+1}{2 \pi}\right)^{j} \sum_{k=j}^{2 r+3} a_{k n} k(k-1) \ldots(k-j+1)(-1)^{k}= \\
=g_{n r}^{(j)}\left(-\frac{2 \pi}{2 n+1}\right)=O\left(n^{J}\right) \\
(j=0,1, \ldots, r+1)
\end{gathered}
$$

i.e.

$$
\begin{equation*}
\sum_{k=j}^{2 r+8}(-1)^{k} k(k-1) \ldots(k-j+1) a_{k n}=O(1) \quad(j=0,1, \ldots, r+1) \tag{12}
\end{equation*}
$$

Similarly, from the second group of conditions in (9),

$$
\begin{equation*}
\sum_{k=j}^{2+3} k(k-1) \ldots(k-j+1) a_{k n}=O(1) \quad(j=0,1, \ldots, r+1) \tag{13}
\end{equation*}
$$

(12) and (13) together can be considered as a system of linear equations for the unknowns $a_{k n}$. Since $h_{n f}(t)$ is uniquely determined, this system is uniquely solvable and

$$
\left|a_{k n}\right| \leqq c_{\mathrm{g}} \quad(k=0,1, \ldots, 2 r+3)
$$

Thus by (10) and (11) we get for $j=0,1, \ldots, r+1$

$$
\begin{gathered}
\left|g_{n r}^{(j)}(t)\right|=\left|h_{n r}^{(j)}(t)\right| \leqq \\
\leqq\left(\frac{2 n+1}{2 \pi}\right)^{j} \sum_{k=j}^{2 r+3} k(k-1) \ldots(k-j+1)\left|a_{k n}\right| \leqq c_{1} n^{j} \quad \text { if }|t| \leqq \frac{2 \pi}{2 n+1}
\end{gathered}
$$

Now $g_{n r}(t)$ is defined on $|t| \leqq 2 \pi /(2 n+1)$, and extending the definition by translations of length 2π, the only missing interval is $\left(\frac{2 n \pi}{2 n+1}, \frac{2(n+1) \pi}{2 n+1}\right)$ (and its translates). In this interval the construction is similar: let $H_{n r}(t)$ be that uniquely determined algebraic polynomial of degree at most $2 r+3$ for which

$$
\begin{gathered}
H_{n r}^{(j)}\left(\frac{2 n \pi}{2 n+1}\right)=g_{n r}^{(j)}\left(\frac{2 n \pi}{2 n+1}\right), \quad H_{n r}^{(j)}\left(\frac{2(n+1) \pi}{2 n+1}\right)=g_{n r}^{(j)}\left(\frac{2(n+1) \pi}{2 n+1}\right) \\
(j=0,1, \ldots, r+1)
\end{gathered}
$$

and let

$$
g_{n r}(t)=H_{n r}(t) \quad \text { if } \quad \frac{2 n \pi}{2 n+1}<t<\frac{2(n+1) \pi}{2 n+1}
$$

Thus the definition of $g_{n r}(t)$ is complete. Property (5) on the interval $\left[\frac{2 n \pi}{2 n+1}, \frac{2(n+1) \pi}{2 n+1}\right]$ can be easily established.

The only thing remained to prove is (6). Since by (7) $\left\|D_{n}(t)\right\|=n+1 / 2$, we get from (8) and (5)

$$
\begin{gathered}
\frac{1}{\pi} \int_{-\pi}^{\pi} g_{n r}^{(r)}(t) D_{n}(t) d t \geqq \frac{2}{\pi}\left(\frac{2 n+1}{2}\right)^{r} \int_{2 \pi}^{\frac{2 n \pi}{2 n+1}} \frac{\sin ^{2} \frac{2 n+1}{2} t}{2 \sin \frac{t}{2}} d t- \\
\therefore \frac{6}{2 n+1}\left\|g_{n r}^{(r)}(t) D_{n}(t)\right\|: \geqq \frac{1}{\pi}\left(\frac{2 n+1}{2}\right)^{r} \sum_{k=1}^{n-1} \int_{\frac{(4 k+3) \pi}{2(2 n+1)}}^{2(2 n+1)} \frac{d t}{t}+3 c_{1} n^{r} \geqq \\
\quad \geqq \frac{1}{\pi}\left(\frac{2 n+1}{2}\right)^{r} 2 \sum_{k=1}^{n-1} \frac{1}{4 k+3}-3 c_{1} n^{r} \geqq c_{2} n^{r} \log n .
\end{gathered}
$$

Case 2. r is even. Now the definition of $g_{n r}(t)$ starts with

$$
g_{n r}(t)=(-1)^{r / 2}\left(g_{g n} t\right) \sin \frac{2 n+1}{2} t \quad \text { if } \frac{2 \pi}{2 n+1}|t|=\frac{2 n \pi}{2 n+1}
$$

instead of (8). The rest of the proof is very similar to Case, 1 , and we omit the details.

Proof of Theorem 2. Since $P_{n}(f, t)$ is a projection operator, according to the Berman-Faber-Marcinkiewicz relation we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{n}(f(\cdot+u), x-u) d u=S_{n}(f, x)
$$

where

$$
S_{n}(f, x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+t) D_{n}(t) d t
$$

is the $n^{\text {th }}$ partial sum of the Fourier series of $f(x)$ (see e.g. Lorentz [3], p. 97). Applying this for $f(x)=g_{n r}(x)$, differentiating r times and setting $x=0$ we get

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{(r)}\left(g_{n r}(\cdot+u),-u\right) d u=\frac{1}{\pi} \int_{-\pi}^{\pi} g_{n r}^{(r)}(t) D_{n}(t) d t
$$

Let u_{n} be a point where $\left|\dot{P}_{n}^{(r)}\left(g_{n r}(\cdot+u),-u\right)\right|$ attains its maximum, then by (6) we get

$$
\begin{equation*}
\left\|P_{n}^{(r)}\left(g_{n r}\left(\cdot+u_{n}\right), t\right)\right\| \geqq\left|P_{n}^{(r)}\left(g_{n r}\left(\cdot+u_{n}\right),-u_{n}\right)\right| \geqq c_{2} n^{r} \log n \tag{14}
\end{equation*}
$$

Now define a sequence of integers $n_{1}<n_{2}<\ldots$ with the following properties: let

$$
\begin{equation*}
\omega\left(\frac{1}{n_{1}}\right) \leqq \frac{c_{2}}{8 c_{1}}, \quad n_{1}>e^{8 / c_{2}} \tag{15}
\end{equation*}
$$

and assume that $n_{1}, n_{2}, \ldots, n_{j-1}$ has been already defined.
If there exists a $k, 1 \leqq k \leqq j-1$, such that for infinitely many n 's we have

$$
\left\|g_{n_{k}{ }^{r}}^{(r)}(t)-P_{n}^{(r)}\left(g_{n_{k} r}\left(\cdot+u_{n_{k}}\right), t\right)\right\| \geqq c_{1} \omega(1 / n) \log n
$$

then this $g_{n_{k} r}(t)$ will satisfy the requirements of the theorem. If this is not the case, then for sufficiently large n 's

Now choose n_{j} in this case such that

$$
\begin{equation*}
\left\|g_{n_{k r}}^{(r)}(t)-P_{n_{j}}^{(r)}\left(g_{n_{k r}}\left(\cdot+u_{n_{k}}\right), t\right)\right\|<c_{1} \omega\left(1 / n_{j}\right) \log n_{j} \quad(k=1, \ldots, j-1) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 n_{j-1}}{n_{j}} \omega\left(1 / n_{j-1}\right) \leqq \omega\left(1 / n_{j}\right) \leqq \min \left(\frac{1}{2} \omega\left(1 / n_{j-1}\right), \frac{c_{2}}{4 c_{1}\left\|P_{n_{j-1}}^{(r)}\right\|}\right) \tag{17}
\end{equation*}
$$

hold. (The left hand side inequality is possible because of (3).)
We may assume that we can construct an infinite sequence of indices this way. Define

$$
f_{r}(t)=\sum_{k=1}^{\infty} \frac{g_{n_{k} r}\left(t+u_{n_{k}}\right)}{n_{k}^{F}} \omega\left(1 / n_{k}\right)
$$

Here the-right hand side series, even after differentiating r times, uniformly converges by (5) and (17). Moreover, if $0<\delta \leqq h$ then

$$
\left|f_{r}^{(r)}(t+\delta)-f_{r}^{(r)}(t)\right| \leqq \sum_{k=1}^{\infty} \frac{\left|g_{n_{k}}^{(r)}\left(t+\delta+u_{n_{k}}\right)-g_{n_{k}}^{(r)}\left(t+u_{n_{k}}\right)\right|}{n_{k}^{r}} \omega\left(1 / n_{k}\right) .
$$

Let $0<h<1 / n_{1}$ and j be that index for which

Then by (5) and (17)

$$
1 / n_{j+1} \leqq h<1 / n_{j}
$$

$$
\begin{aligned}
&\left|f_{r}^{(r)}(t+\delta)-f_{r}^{(r)}(t)\right| \leqq \\
& \sum \sum_{k=1}^{j} \frac{\delta\left\|g_{n_{k} r^{r}}^{(r)}(t)\right\|}{n_{k}^{r}} \omega\left(1 / n_{k}\right)+\sum_{k=j+1}^{\infty} \frac{2\left\|g_{n_{k}}^{(r)}(t)\right\|}{n_{k}^{r}} \omega\left(1 / n_{k}\right) \leqq \\
& \leqq c_{1} \delta \sum_{k=1}^{j} n_{k} \omega\left(1 / n_{k}\right)+2 c_{1} \sum_{k=j+1}^{\infty} \omega\left(1 / n_{k+1}\right) \leqq 2 c_{1} h n_{j} \omega\left(1 / n_{j}\right)+4 c_{1} \omega\left(1 / n_{j+1}\right) \leqq 8 c_{1} \omega(h),
\end{aligned}
$$

i.e. $f_{r}(t) \in C_{r}(\omega)(c f .(2))$.

Finally, to show (4) we obtain by (14), (16), (5), (17) and (15)

$$
\begin{gathered}
\left\|f_{r}^{(r)}(t)-P_{n_{j}}^{(r)}\left(f_{r}, t\right)\right\|=\left\|\sum_{k=1}^{\infty} \frac{g_{n_{k} r}^{(r)}\left(t+u_{n_{k}}\right)-P_{n_{j}}^{(r)}\left(g_{n_{k} r}\left(\cdot+u_{n_{k}}\right), t\right)}{n_{k}^{r}} \omega\left(1 / n_{k}\right)\right\| \geqq \\
\geqq \frac{\left\|P_{n_{j}}^{(r)}\left(g_{n_{j} r}\left(\cdot+u_{n_{j}}\right), t\right)\right\|}{n_{j}^{r}} \omega\left(1 / n_{j}\right)-\sum_{k=1}^{j-1} \frac{\left\|g_{n_{k} r}^{(r)}\left(t+u_{n_{k}}\right)-P_{n_{j}}^{(r)}\left(g_{n_{k} r}\left(\cdot+u_{n_{k}}\right), t\right)\right\|}{n_{k}^{r}} \omega\left(1 / n_{k}\right)- \\
-\sum_{k=j}^{\infty} \frac{\left\|g_{n_{k}}^{(r)}\right\|}{n_{k}^{r}} \omega\left(1 / n_{k}\right)-\sum_{k=j+1}^{\infty} \frac{\left\|P_{n_{j}}^{(r)}\left(g_{n_{k} r}\left(\cdot+u_{n_{k}}\right), t\right)\right\|}{n_{k}^{r}} \omega\left(1 / n_{k}\right) \geqq \\
\geqq c_{2} \omega\left(1 / n_{j}\right) \log n_{j}-c_{1} \omega\left(1 / n_{j}\right) \log n_{j} \sum_{k=1}^{\infty} \omega\left(1 / n_{k}\right)-\sum_{k=j}^{\infty} \omega\left(1 / n_{k}\right)- \\
-c_{i}\left\|P_{n_{j}}^{(r)}\right\| \sum_{k=j+1}^{\infty} \omega\left(1 / n_{k}\right) \geqq c_{2} \omega\left(1 / n_{j}\right) \log n_{j}-2 c_{1} \omega\left(1 / n_{1}\right) \omega\left(1 / n_{j}\right) \log n_{j}- \\
-2 \omega\left(1 / n_{j}\right)-2 c_{1}\left\|P_{n_{j}}^{(r)}\right\| \omega\left(1 / n_{j+1}\right) \geqq c_{2} \omega\left(1 / n_{j}\right) \log n_{j}-\frac{c_{2}}{4} \omega\left(1 / n_{j}\right) \log n_{j}- \\
\therefore \\
-\frac{c_{2}}{4} \omega\left(1 / n_{j}\right) \log n_{j}-\frac{c_{2}}{4} \omega\left(1 / n_{j}\right) \log n_{j}=\frac{c_{2}}{4} \omega\left(1 / n_{j}\right) \log n_{j}(j=1 ; 2, \ldots) .
\end{gathered}
$$

$\omega(t)=o(t)$ is excluded in Theorem 2, by condition (3). With a slight modification of the proof we can easily get the following statement in this case.

Theorem 3. Given $r \geqq 0$, a sequence of projection operators $P_{n} \in C_{2 \pi} \rightarrow \mathscr{F}_{n}$, and a sequence $\varepsilon_{1} \geqq \varepsilon_{2} \geqq \ldots, \lim _{n \rightarrow \infty} \varepsilon_{n}=0$, there exists an $f_{r}(t) \in C_{2 \pi}$ such that $f_{r}^{(r)}(t) \in$ $\in \operatorname{Lip} 1$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|f_{r}^{(r)}(t)-P_{n}^{(r)}(f, t)\right\|}{\varepsilon_{n} \log n / n}>0 . \tag{18}
\end{equation*}
$$

We do not give the details of the proof of this theorem. We only mention that now

$$
f_{r}(t)=\sum_{k=1}^{\infty} \frac{\varepsilon_{n_{k}}}{n_{k}^{r+1}} g_{n_{k} r}\left(t+u_{n_{k}}\right)
$$

will be the function satisfying (18), where $n_{1}<n_{2}<\ldots$ is a properly chosen sequence of indices.

An obvious consequence of Theorem 1 is that if $f(t) \in C_{r}(\omega)$ then

$$
\begin{equation*}
\left\|f^{(r)}(t)-P_{n}^{(r)}(f, t)\right\|=O\left(n^{-r} \omega(1 / n)\left\|P_{n}^{(r)}\right\|\right) . \tag{19}
\end{equation*}
$$

Since here $\left\|P_{n}^{(r)}\right\| \geqq c_{3} n^{\prime} \log n$ for any projection operator P_{n} (cf. Berman [1]), the best estimate one can obtain from (19) is

$$
\left\|f^{(r)}(t)-P_{n}^{(r)}(f, t)\right\|=O(\omega(1 / n) \log n) \quad\left(f(t) \in C_{r}(\omega)\right) .
$$

This shows that the results of Theorems 2 and 3 are sharp.
In particular, our theorems can be applied to the differentiated partial sums of the Fourier series and to the differentiated interpolating polynomials based on arbitrary systems of nodes.

References

[1] D. L. Berman, On a class of linear operators, Dokl. Akad. Nauk SSSR, 85 (1952), 13-16 (in Russian).
[2] 1. Czipszer-G. Freud, Sur l'approximation d'une fonction périodique etc., Acta Math., 99 (1958), 33-51.
[3] G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston (New York, 1966).

[^0]: *) The second and third authors were partially supported by The Hungarian Research Fund; Grant No. 1801.

 Received April 9, 1986

[^1]: ${ }^{2}$ In what follows c_{0}, c_{1}, ... will denote constants depending on r but independent of n.

