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Notes on approximation by Riesz-means 

L. LEINDLER 

To my dear colleague L. Pintér on his 60th birthday 

1. Let f=f(x) be a continuous 27r-periodic function i.e./6C2„, and let 

(1) f(x) + 2 (an cos nx+bn sin nx) 
^ n = l 

be its Fourier series. Denote s„=s„(x)=s„(f; x) and CT®=«7®(X)=O-^(/; x) the 
w-th partial sum and the H-th (C, a)-mean of (1), respectively, i.e. 

<(x) = -L' J A£l\sy{x), ^ = + An v=0 \ n J 

furthermore / denotes the conjugate function of / , and / ( r ) is the r-th derivative of / . 
Let E n ( f ) denote the best approximation of / by trigonometric polynomials 

of order at most n in the space C2„, and let || • || denote the usual supremum norm. 
We define two important strong means: 

hn(f, P,p; x) ^ f ^ j y T kÉ(k+iy-1\sk(x)-f(x)\jVP (f},p > 0), 

ol\f,p\x\:=[-^2/l-l\sÁx)-fíx)\^'' (y,p >0). 

The first result on strong approximation by Fourier series has been connected 
with the following classical theorem of S. N. BERNSTEIN [3]: 

If /€Lip a then 

(2) K - / [ | = 0(»-«) for 0 < a < 1 
and 
(3) K - / | | =0(« -Mog«) for a = l. 
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Namely G . ALEXITS and D . KRALIK [2] sharpened this theorem by proving 
that the order of approximation given in estimates (2) and (3) can be achieved for 
the strong means h„(f, 1,1; x), too; i.e. 

/ € L i p a implies that 
[0(n-') if 0<a<l, 

•«/•'••^W-Mog-O </ —1. 
Improving further the result of Alexits and Kr&lik we ([4], [5]) proved, among 

others, the following theorems: 

Theorem A. / f / ( r ) £ L i p a , 0 < a ^ l , / » 0 and P>(r+a)p 

then 

h„(f, P, P) := IIha(f, p, p; x)\\ = 0{n"-% 

Theorem B. If Lip a, 0 < a ^ 1, />>0 and ( r+a) / i< l then for arbitrary 
7 > 0 

°l\f,p\ := №\f,P\ *IB =0{n-'~% 

It is clear that these estimations are best possible, namely, by the well-known 
result of Jackson / ( r ) £Lipa implies that E n ( f ) = 0{n~r~a). 

The following theorems show that the conditions j?>(r+a)/> and (r+x)p<l 
are very essential with respect to the order of approximation. If they are not fulfilled 
then the strong means do not approximate in the order of best approximation. 

Theorem C. If f(r)£Lip a, 0 < a ^ l , 0 and P=(r+x)p then we have only 

hn(fP,P) =0(n—°(log H)1/p). 

Furthermore there exists a function f such thatf^^lAp a, 0<a^l, but 

K(fi, P,p\ 0) s cn~'-*(log n)1/p (c > 0), 

holds if n is large enough. 

Theorem D. If / ( r ) €Lipa , 0 < a ^ l , />>0, y>0 and (r+<x)p=l then we 
have only 

cl\fp\=0{n-r-%\ognfl"). 

Moreover, there exists a function f2 such that Lip a, 0 < a S l , and 

< \fz,P\ 0| k ¿«- '" ' ( log nf" (d> 0) 

holds for sufficiently large n. 
Analogous estimations for the conjugate functions have been proved, but now 

we do not treat them. 
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Analysing these results we can see that the strong means <rJ | / , p; x| behave like 
<rj| f,p; x\=hn(f, \,p\x), i.e. the strong means hn(f p,p; x) are more sensible of 
parameter P regarding the order of approximation. 

This phenomenon raises the following problems: If we consider the following 
regular ordinary Riesz-means 

Rn(f, P, X) := 7 - ^ r 2 (k+iy-^ix) 0?-1 := (n+l)-' J (k+1)'"1) 
( n + l r * = o k=o 

and take the difference \\Rn(f,Pl x)-f(x)\\ 

i.e. if we consider the ordinary approximation instead of strong one for the Riesz-
means, then at which value of the parameter /? will a jump in the order of approxi-
mation appear, also at the parameter p=r+<x {p=1) as in the strong case? If 
r=0, then will the jump be at p=a independently of the value of a, regardless 
whether a < 1 or a = 1? The answer is affermative if r=0, and this shows that the 
analogue of Bernstein's theorem holds for the Riesz-means, but the jump of the 
order of approximation can appear at any value p ^ l if the Lipschitz class has the 
same parameter. But if r^O then a curious phenomenon appears, namely if r is 
odd then the case a=l will be exceptional. The reason of this exception has its 
roots in the following classical result of M . ZAMANSKY [ 1 0 ] : / ( r )£Lip 1 if and only if 

\\f-Rn{f,r+\)\\ =0(n"^) for an odd r, and 
||/-i?n(/,r+l)|| =0(n-'-x) for an even r. 

We mention that the case r=0 of this theorem was proved by G. ALEXITS [1]. 
Now we formulate the statements mentioned above precisely, and refer to our 

paper [6] where the statements of Theorem E appear implicitly. 

Theorem E. Let / ( r )£Lipa, 0 < a s l . Then 
(i) if r is even 

f0(n-r~*), if r+oc < p, 
[0(n~r~a log n), if r + a = P; 

(ii) if r is odd 
0(n"-') if r+oc=p 
0(n~r~l) if r+l=p (a = l) 
0(n-r-"log n) if r + a = P and a < 1, 

hold true. 
Furthermore, if whether r is even or a < l , then there exists a function f0 such 

that /0
(r)€Lip a, 0 < a S 1 and 

(4) I W o , r+a; 0)-/0(0)| £ cn~'~*log n 
holds with a positive c=c(r, a) if n is large enough. 

\\Rn(f,P; x)-f(x)\\ = 

\\Rn(f,P; x)-f(x)\\ = 
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We mention that analogous results for the conjugate functions also hold, and 
that the special case a—1 of (4) is not proved in [6], but it is true, and our theorem 
to be proved includes this special case, too. 

The results of Theorem A arid C (B and D also) were generalized by V. TOTIK 
[9] as follows: 

Theorem F. If f£WTH'° then for any £ > 0 and p>0 

(5) h„(f, p, p) = 0(Hf;£J 
holds, where 

Furthermore there exists a function fr such that fr£WrHa, but 

hn(f„p,p; 0)^cH?;ln ( c > 0 ) . 

The aim of our note is to show that Theorem E can be generalized for the class 
W H " , i.e. to prove that the ordinary Riesz-means do not approximate better than 
the strong Riesz-means on the whole class W"H° if r is even or if r is odd but 

2 (o(\lk)=0{na>(\ln)). 
k=l 

Our theorem reads: 

Theorem. IffZW'H" then for any j8>0 

(6) ll*„(/, P\ * ) - /0 ) l l = 0 (H? ; l n ) holds. 
n 

Furthermore, if whether r is even or r is odd but 2 (o(i/k)=0(nco(l/n)) is ful-

filled, then there exists a function f0 such that f0dW Ha and 

(7) I W o , Pi 0)-/O(0)| S cH?:in 

hold with a positive c=c(P, r). 
It is easy to verify that if r is even, fl—r+1 and a>(<5)=<5 (a= l ) then (7) 

reduces to (4) as we stated above. 
2. To prove our theorem we require the following lemmas. 
We may assume, without restriction of generality, that the modulus of conti-

nuity CD is always concave. (See [8, p. 45].) 

Lemma 1. If a is a modulus of continuity, then the function 

f*(x) := 2 CI/») " «(!/(« +1))) cos nx n=i 
belongs to H°. 
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See Lemma 2 . 1 8 of [7] or V . TOTIK [9]. 

Lemma 2. If the modulus of continuity a> satisfies the condition 

(8) ¿®(l /*)=0(na>(l /«)) , 
*=i 

then 

g*(x) := ¿(co(l/k)-co(l/(k + l)))sinkx 
*=l 

belongs to Hm. 

Proof. Since En(g*) S k*-^*)! S ©(!/(«+1)) 
and 

CO 
( n 1 " 1 n+1 [g*, j-\ ^ ZEk(g*) ^ K±. 2 co(m, \ nj n fc=o n k=1 k 

so, by (8), g*€Hm. 
Now we can start the proof of Theorem. 

3. Proof of Theorem. The estimation (6) follows from (5) obviously. 
To prove the lower estimation (7) we define f0 as follows: 

fo(x) •= 2 n~'(co(l/n)-co(l/(n+1))) cos nx. 

Since, by Lemmas 1 and 2, the functions / * and g* belong to H a and 
r*̂  

[±f*(x) if r is odd, 
f±/*(x) if r is even, 

/o(r,W = {. 
so few*H". 
A standard calculation gives that 

Rn(f«, ß; 0)-/o(0) = 2 1)"-1 2 v-'(o>(l/v)-a)(l/(v+1))) (n+ l)1' k=0 v=k+l 
d(8) " » 

2 k ' - 1 2v - ' (o , ( l /v ) - f f l ( l / (v+ l ) ) ) s 
" i = l v=fe 

d(ß) » V 
s ^ 2 v - ' ( < i , ( l / v ) - a ) ( l / ( v + l))) £ 

« v= l *=1 

^ dAß) ¿v/i-r((ü(1/v)_Cü(1/(v + 1))) ^ 
n " v= l 

S d(ß, r)n-» ¿ « ( l / v l v ' - ' ^ d i , r)W;ln, »=i 
what proves (7). 
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Finally, we mention that a comparison of the statements of Theorem F and 
those of Theorem shows that if r is odd and 

2 a>(l/k) *0(rtco(l/n)) 
*=1 

then the ordinary Riesz-means can approximate better than the strong ones, e.g. 
if œ(ô)=6. 

Theorems C and E, in the special case a = l , and ß=r+l, also show this 
phenomenon clearly. 
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