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Fourier—Stieltjes transforms of vector-valued 
measures on compact groups 

V. s. K. ASSIAMOUA and A. OLUBUMMO 

1. Introduction. In recent years, various studies have shown the growing im-
portance of vector-valued measures as can be seen for instance from [1], [3], [4] and 
many others as well as the numerous references contained in them. To give just one 
specific example: the Fourier transforms of the distributions studied by BONNET [2] 
in generalizing the Bochner theorem to noncommutative Lie groups turn out to be 
vector-valued measures. 

In the present paper, we study the Fourier—Stieltjes transforms of vector-valued 
measures defined on an infinite compact group. Let G be an infinite compact group 
with I as its dual object. We consider measures m on G with values in a Banach 
space E. Following ASSIAMOUA [1], we define the Fourier—Stieltjes transforms of 
such measures and obtain analogues of the results in § 2 8 of HEWITT and Ross [6]. 

Among other results, we prove the celebrated Lebesgue theorem and the Parseval— 
Plancherel—Riesz—Fischer theorem. 

2. Preliminaries 

2.1. Defini t ion. Let S be a locally compact Hausdorff space and J f ( S ) the 
real (resp. complex) vector space of all continuous real (resp. complex) valued func-
tions on S with compact supports. A vector measure on S with values in a real (resp. 
complex) normed linear space E is any linear mapping m: Jf(S)-*-E with the 
following property: for every compact set K<zS, there exists a positive constant aK 
such that if / € Jf (S) and supp fczK, then ([3], 2, no. 1) 

I I « ( / ) I I E sup {|/(0I: *€*}• 

We note that if S is compact, then J f ( S ) is equal to the vector space ^(S, R) (resp. 
Q) of all continuous functions on S into R (resp. Q and a vector measure 
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on S is a linear mapping m: JiT(S) — E which is continuous in the uniform norm 
topology since in this case, there exists a constant a=as such that 

\\m(f)\\E^a\\f\\, f£jr(S), 

where | | / | |=sup {| /( i) | : is the uniform norm on R). If m: JT(S)^E 
is a vector measure, we shall write 

m { f ) = //(t)dm(t) or Jfdm. 
s 

2.2. Defini t ion. An £-valued vector measure is said to be dominated if there 
exists a positive (real-valued) measure fi such that 

\\jfdm\\E == f |/| dn, /€JT(S). 

If m is dominated, then there exists a smallest positive measure |m| called the variation 
or the modulus of m that dominates it. 

A positive measure is said to be bounded if it is continuous in the uniform norm 
topology of J f ( S ) and a dominated vector measure is said to be bounded if it is 
dominated by a bounded positive measure. 

Thus every dominated vector measure on a compact space is bounded. (For 
these properties of vector measure and the general theory of vector integration, the 
reader is referred to [3] or [4].) We note also that if E is a Banach space and S=G 
is a group, then the space M1(G,E) of all bounded ¿"-valued measures on G is a 
Banach space with the norm 

\\m\\=fxad\m\, 

where XG is the characteristic function of G. 
3. The Fourier—Stieltjes transform. We shall now define the Fourier—Stieltjes 

transform of a vector-valued measure on a. compact group G and obtain some of the 
properties of such transforms. 

3.1. Defini t ion. Let G be a compact infinite group and I its dual object! 
For each o£Z, we choose once and for all, an element £/(<7) in a, denote its re-
presentation space by Ha, fix a conjugation Da on H„ and put U(a)=Da Uia)Da, ([6], 
27.28. C). ' 

As in [1], we define the Fourier—-Stieltjes transform of a vector-valued measure 
m: G—E by 

7h(<7)(£, ti) = /(U<'>{, r\)dm(t), ({, t])£HaXHa. 
Q 

Let E be a Banach space. Then the mapping (£, ? / ) — r j ) from HaXHa into 
the space Sf(Ha,XH„, E) of the £-valued continuous sesquilinear mappings on 
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HaXHa, equipped withthe norm 

||<P((7)[| = sup-{B<P(a)«, n)h- HWh, 35 1, Mb, ^ 1} 

is continuous ([1], 4.1). 
Following HEWITT and Ross [6], 2 8 . 2 4 , we shall write 

S?(Z,E) = J] y(HaXH„, E). 

It is easy to see that, with addition and scalar multiplication defined coordinatewise, 
£f(Z, E) is a vector space. For 4>££f(Z, E), we put 

0*H»=sup{ | |*(a) | | :aer} 

and denote by Sf,(E,E) the space {<¡>£¥(1, E): H ÎU<<*>}. Also we denote by 
S^oo (Z,E) the space 

(Z,E): <P(a) ^ 0} is finite} 

and by S^(Z, E) the space 

{<P£#L(Z,E): for every e > 0 , {<¡£1: ||$(<r)|| >8} is finite}. 

The next theorem is an analogue of HEWITT and Ross [6], 28.25. 

3.2. Theorem. 
(i) The mapping |l is a norm on £?L(Z, E) and E) is a Banach 

space with respect to this norm. 
(ii) SPW(Z, E) is dense in (I, E). 

Proof, (i) It is clear that II^IU is a norm. Let {$„} be a Cauchy sequence 
in E). Then for every o£Z, {#„(»} is a Cauchy sequence in S?(HaXHa, E). 
Since £f(HaXHa, E) is a Banach space, {#n(ff)} converges to an element <P(o) in 
y(H„XHa,E). An argument similar to [6], 28.25 shows that <P=($(<T)) belongs 
to 9L{Z, E) and that {$„} tends to 

(ii) Let 4> be an element of S%(Z,E). For «=1,2 , . . . , define the element 
4>„ of y00(Z, E) by 

_ i f 11^)11 S l / n , 
n(<7) 1 0 if ||$(<r)|| < 1 fn. 

Then plainly {$„} converges to $ in S$(Z, E). 

3.3 Lemma. Every $(p)€£f(HaXHa,E) is determined by the d* elements 
(%]= <P(a)(£j, of E where da is the finite dimension of Ha and (£i, £2> ••;» & 

an orthonormal basis of Ha. More precisely, we have $(<x)= 2 daCf^u'ftj) where 
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(Note that for a complex function u, u is the Fourier transform that is the 
Fourier—Stieltjes transform of the measure «A, X being the normalized Haar measure 
on G.) 

Proof . We have 

l) = 2 ocjfrafj 1 
on putting 

= 2«jtj and t, = 2 Mi-
i i = I 

Now for a coordinate function t^(U\a), Q, we have (by [6], 27.19) 

J(W°^,rl)ufj(t)dA(t)=2 j*ihai(t)uij(t)dX(t)= \/daajpt. 
G G 

Thus 
*(*)(& n) = 2 = 2 dauij(o)(f, f ] ) a f j . 

Hence 

*(*) = 2 daa\?Ui№)-
i 

3.4. Def in i t ion . We shall write E) for the vector space 

{<PiSr(Z, E): 2 d , 2 II Oil! <-}• 
o€X i.j 

3.5. Lemma. Suppose that E is a HUbert space. Then, the mapping 

( * , V) <4», V)= 2 d , 2 <*(<№, a &)> 
o€i 1,7=1 

fa on inner product on E). 

Proof. 

2 2 dcm<r)(Z}, Q> *(<>)(£J,m ^ 2 2 w & ) l l * # / i ! l l «11 £ s 

^ № m o x t j , ob i)1/a K ii y m 2 ) 1 ' 2 

This shows that the mapping is well defined and the proof can be easily completed. 

4. Properties of Fourier—Stieltjes transforms. Throughout this section, we adopt 
the following notation: if X is a subset of MX(J3, E), we shall denote by % the set 
{&: In the next two theorems we obtain analogues of Theorems 28.36 and 
28.39 (ij ii) of-[6], respectively. 

4.1. Theorem. 7%« mapping m^m from E) into &L(Z,E) is linear, 
injective and continuous. 
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Proof. That m—m is linear is clear. We know that it is one-to-one by [1]; 
Lemma 4.1.5. Now, 

! ||m(<r)|| =sup { | |w(aj(^) | | £ : U K ^ 1 and Itob. S 1} = 

= sup{ | | /{m'H,n)drn( t ) \ E : mBa £ 1, ||r,\\Ha s l j s / X a d \ m \ , 

since C7[ff) is unitary. Thus \\m(a)\\^\\m\\, a£Z and ||w|U^||w||. Hence m££?L(Z, E) 
and the mapping is continuous. 

4.2. Defini t ion. Let G, E) denote complex Banach space of all continuous 
£-valued functions on G with pointwise operations and norm given by | | / | | = 
='sup {||/(i)||E: *€<?}. For o£Z and a fixed orthonormal basis ..., ¿;d) in 
H„, J"(G) will denote the subspace of %>(G, C) generated by the coordinate functions 
u'ir We set E) = {xcp: x£E and <peJ"(G)} and define J(G,E) to be sub-
space of E) generated by the union (J J°(G, E). ffg2 

4.3. Theorem. 

(i) For each a£Z, we have J"(G, E)=Sf(HaXHa, E). 
,(ii) S(G^E) = y00(Z,E). 

Proof, (i) The result readily follows from Lemma 3.3 since 

oaf/ s in E and uf/s in J{G, C) such that $(<x) = 2 d„a°jU?j(a) <=> 

<=> <P(<JW(GJZ). 

(ii) Suppose that f£J(G,E). Then / may be written / = 2 <*./*,> a £ c > 

c£Z and / = 2xjWj, x£E, u^J'^G, C). Thus 
j=i 

U = 2 «¡2 Xjti'MiZi, U only if a = au / = 1 , 2 , ..., n. 

Hence fiSrw(Z,E). 

Conversely, if then the set P={o£Z: <P(o)9±0} is finite. More-

over, each <P((T)= 2 daaljufj(<r)> Putting f=2d
0 2 <XJ> we 8 e t /= & 

and so J (G^E)=¥ W (S ,E) . 
4.4. Lemma. Thespace J{G, E) is dense in E). 

Proof. We identify J(G, E) with J(G, C)<S>eE, the injective tensor product of 
J(G, C) and E, i.e. the tensor product carrying the norm 

|| 2 ^ i l l ^ || 2 «¡»¡®*i||e = SUP {| u{*M<Pd\- II«« I M S l } , 
15(2=1! l S J S n I S i S n 

T 
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u£E\ v£J(G, C)' where E' and J (G, C)' are the topological duals of E and J (G, C), 
respectively ([7], 44.2 (3)). Since J(G, C) is dense in #(G, E), ([6], 27.39), it follows 
that J(G, E) is dense in #(G, E), because #(G, E) is norm isomorphic to 
<Z(G, C)®eE, the completion of #(G, C)®tE, ([7], 44.7 (2)). 

4.5. Theorem. The space L^G, E) of the Fourier transforms of Haar-integrable 
functions f : G—E is dense in E). 

Proof. The space S(G,E) is dense in Ly(G, E) because <f(G, E) is dense in 
<íf (G, E) and <i?(G, E) is dense in Lt(G, E) ([4], 7.16). Since S(G~E)=$'m(Z, E) 
is dense in Sf0(E, E), Li(G, E) which contains y(G, E), is dense in E). 

4.6. Corollary. If feLiiG, E), then the set {o£Z: / ( a )^0} is countable. 

4.7. Lemma. Let L2(G, E) denote the Banach space of the Haar-square integ-
rable functions on G into E. If f£Lz(G, E), then 

(use [6], 27.40 for h). Hence f = 2 d . 2 i / / ( O " f ; ( 0 ^ ( 0 R r Since L2(G, C)®E 
a i j a l w ' 

is dense in L2(G, E) it is clear that the last equality holds for f£L2(G, E). Now, 

f f ( t ) u f j ( t ) dx(t) = / (u<t°Hj, QfO) dk{t)=?(o)(Zj, a 

Hence f = Z d a 2 / W K j . ^ K -a i.J 
Finally, we obtain the analogue of [6], 28.43. 

4.8. Theorem. Assume that E is a Hilbert space. Then the mapping /—/ is 
an isometry from L2(G, E) onto E) and so E) is a Hilbert space. 

Proof. If E is a Hilbert space, than L2(G,E) is a Hilbert space so that 
/<EZ,2(G,£) if and only if 

Proof. If f=xh, XÍE and h£Ls(G, C), then 

/= 2 d„ 2 {f xh(t)ü?j{t) dk{t)) ulj 
<r€I i»J—1 

11/111 = ( 2 2 daa¡jU¡j, 2 2 daa?ju!j), a I, J a i.J <r i.J 

where <fi}=f(a)%, Q, I s / , j^da. Hence 'u 

mi-,2 2 dl K U I W J Í = 2 2d, B / (a)«i , m a i,J a i.J H: 
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since da\\u1^\= \ ( [ 6 ] , 2 7 . 4 0 ) . Thus and 

I I / I I I = 2 2 d . I I & I I S = I I / I I I -ff ¡,j 

Conversely, let $dSr2(Z,E). Then 2 2 dJ*(<r)(.Zj, and hence 
ff i,j n 

the set 0 } is countable, say { A J T € N . Put /„= 2d„akuk, where 
uk replaces u°j whenever a°j=ak is different from zero. Then the functions f„ form 
a Cauchy sequence in L2(G, E) whose limit / satisfies / = <P and the proof is com-
plete. 
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