Fourier—Stieltjes transforms of vector-valued measures on compact groups

V. S. K. ASSIAMOUA and A. OLUBUMMO

1. Introduction. In recent years, various studies have shown the growing importance of vector-valued measures as can be seen for instance from [1], [3], [4] and many others as well as the numerous references contained in them. To give just one specific example: the Fourier transforms of the distributions studied by BONNET [2] in generalizing the Bochner theorem to noncommutative Lie groups turn out to be vector-valued measures.

In the present paper, we study the Fourier—Stieltjes transforms of vector-valued measures defined on an infinite compact group. Let G be an infinite compact group with Σ as its dual object. We consider measures m on G with values in a Banach space E. Following ASSIAMOUA [1], we define the Fourier—Stieltjes transforms of such measures and obtain analogues of the results in § 28 of HEWITT and Ross [6]. Among other results, we prove the celebrated Lebesgue theorem and the Parseval—Plancherel—Riesz—Fischer theorem.

2. Preliminaries

2.1. Definition. Let S be a locally compact Hausdorff space and $\mathscr{K}(S)$ the real (resp. complex) vector space of all continuous real (resp. complex) valued functions on S with compact supports. A vector measure on S with values in a real (resp. complex) normed linear space E is any linear mapping $m: \mathscr{K}(S) \to E$ with the following property: for every compact set $K \subset S$, there exists a positive constant a_K such that if $f \in \mathscr{K}(S)$ and supp $f \subset K$, then ([3], 2, no. 1)

$$||m(f)||_E \leq a_k \sup \{|f(t)|: t \in K\}.$$

We note that if S is compact, then $\mathscr{K}(S)$ is equal to the vector space $\mathscr{C}(S, \mathbb{R})$ (resp. $\mathscr{C}(S, \mathbb{C})$) of all continuous functions on S into \mathbb{R} (resp. \mathbb{C}) and a vector measure

Received September 16, 1986.

on S is a linear mapping $m: \mathscr{K}(S) \rightarrow E$ which is continuous in the uniform norm topology since in this case, there exists a constant $a=a_S$ such that

$$\|m(f)\|_E \leq a \|f\|, \quad f \in \mathscr{K}(S),$$

where $||f|| = \sup \{|f(t)|: t \in S\}$ is the uniform norm on $\mathscr{C}(S, \mathbb{R})$. If $m: \mathscr{K}(S) \to E$ is a vector measure, we shall write

$$m(f) = \int_{S} f(t) dm(t)$$
 or $\int f dm$.

2.2. Definition. An *E*-valued vector measure is said to be *dominated* if there exists a positive (real-valued) measure μ such that

$$\left\|\int f\,dm\right\|_{E} \leq \int |f|\,d\mu, \quad f\in\mathscr{K}(S).$$

If *m* is dominated, then there exists a smallest positive measure |m| called the *variation* or the *modulus* of *m* that dominates it.

A positive measure is said to be *bounded* if it is continuous in the uniform norm topology of $\mathscr{K}(S)$ and a dominated vector measure is said to be bounded if it is dominated by a bounded positive measure.

Thus every dominated vector measure on a compact space is bounded. (For these properties of vector measure and the general theory of vector integration, the reader is referred to [3] or [4].) We note also that if E is a Banach space and S=Gis a group, then the space $M^1(G, E)$ of all bounded E-valued measures on G is a Banach space with the norm

$$||m|| = \int \chi_G \, d|m|,$$

where χ_G is the characteristic function of G.

3. The Fourier—Stieltjes transform. We shall now define the Fourier—Stieltjes transform of a vector-valued measure on a compact group G and obtain some of the properties of such transforms.

3.1. Definition. Let G be a compact infinite group and Σ its dual object. For each $\sigma \in \Sigma$, we choose once and for all, an element $U^{(\sigma)}$ in σ , denote its representation space by H_{σ} , fix a conjugation D_{σ} on H_{σ} and put $\overline{U}^{(\sigma)} = D_{\sigma} U^{(\sigma)} D_{\sigma}$, ([6], 27.28. C).

As in [1], we define the Fourier-Stieltjes transform of a vector-valued measure $m: G \rightarrow E$ by

$$\hat{m}(\sigma)(\xi,\eta) = \int_{G} \langle \overline{U}_{t}^{(\sigma)}\xi,\eta\rangle dm(t), \quad (\xi,\eta)\in H_{\sigma}\times H_{\sigma}.$$

Let E be a Banach space. Then the mapping $(\xi, \eta) \rightarrow \hat{m}(\sigma)(\xi, \eta)$ from $H_{\sigma} \times H_{\sigma}$ into the space $\mathscr{S}(H_{\sigma}, \times H_{\sigma}, E)$ of the E-valued continuous sesquilinear mappings on

 $H_{\sigma} \times H_{\sigma}$, equipped with the norm

$$\|\Phi(\sigma)\| = \sup \{ \|\Phi(\sigma)(\xi,\eta)\|_{E} \colon \|\xi\|_{H_{\sigma}} \leq 1, \, \|\eta\|_{H_{\sigma}} \leq 1 \}$$

is continuous ([1], 4.1).

Following HEWITT and Ross [6], 28.24, we shall write

$$\mathscr{G}(\Sigma, E) = \prod_{\sigma \in \Sigma} \mathscr{G}(H_{\sigma} \times H_{\sigma}, E).$$

It is easy to see that, with addition and scalar multiplication defined coordinatewise, $\mathscr{G}(\Sigma, E)$ is a vector space. For $\Phi \in \mathscr{G}(\Sigma, E)$, we put

$$\|\Phi\|_{\infty} = \sup \{\|\Phi(\sigma)\| \colon \sigma \in \Sigma\}$$

and denote by $\mathscr{G}_{\infty}(\Sigma, E)$ the space $\{\Phi \in \mathscr{G}(\Sigma, E) : \|\Phi\|_{\infty} < \infty\}$. Also we denote by $\mathscr{G}_{00}(\Sigma, E)$ the space

 $\{\Phi \in \mathscr{S}_{\infty}(\Sigma, E) \colon \{\sigma \in \Sigma \colon \Phi(\sigma) \neq 0\}$ is finite $\}$

and by $\mathscr{S}_0(\Sigma, E)$ the space

$$\{\Phi \in \mathscr{G}_{\infty}(\Sigma, E): \text{ for every } \varepsilon > 0, \ \{\sigma \in \Sigma: \|\Phi(\sigma)\| > \varepsilon\} \text{ is finite}\}.$$

The next theorem is an analogue of HEWITT and Ross [6], 28.25.

3.2. Theorem.

7

(i) The mapping $\Phi \to ||\Phi||_{\infty}$ is a norm on $\mathscr{G}_{\infty}(\Sigma, E)$ and $\mathscr{G}_{\infty}(\Sigma, E)$ is a Banach space with respect to this norm.

(ii) $\mathscr{G}_{00}(\Sigma, E)$ is dense in $\mathscr{G}_0(\Sigma, E)$.

Proof. (i) It is clear that $\Phi \to ||\Phi||_{\infty}$ is a norm. Let $\{\Phi_n\}$ be a Cauchy sequence in $\mathscr{S}_{\infty}(\Sigma, E)$. Then for every $\sigma \in \Sigma$, $\{\Phi_n(\sigma)\}$ is a Cauchy sequence in $\mathscr{S}(H_{\sigma} \times H_{\sigma}, E)$. Since $\mathscr{S}(H_{\sigma} \times H_{\sigma}, E)$ is a Banach space, $\{\Phi_n(\sigma)\}$ converges to an element $\Phi(\sigma)$ in $\mathscr{S}(H_{\sigma} \times H_{\sigma}, E)$. An argument similar to [6], 28.25 shows that $\Phi = (\Phi(\sigma))$ belongs to $\mathscr{S}_{\infty}(\Sigma, E)$ and that $\{\Phi_n\}$ tends to Φ .

(ii) Let Φ be an element of $\mathscr{G}_0(\Sigma, E)$. For n=1, 2, ..., define the element Φ_n of $\mathscr{G}_{00}(\Sigma, E)$ by

$$\Phi_n(\sigma) = \begin{cases} \Phi(\sigma) & \text{if } \|\Phi(\sigma)\| \ge 1/n, \\ 0 & \text{if } \|\Phi(\sigma)\| < 1/n. \end{cases}$$

Then plainly $\{\Phi_n\}$ converges to Φ in $\mathscr{S}_0(\Sigma, E)$.

3.3 Lemma. Every $\Phi(\sigma) \in \mathscr{S}(H_{\sigma} \times H_{\sigma}, E)$ is determined by the $d_{\sigma}^{\mathfrak{d}}$ elements $a_{ij}^{\sigma} = \Phi(\sigma)(\xi_j, \xi_i)$ of E where d_{σ} is the finite dimension of H_{σ} and $(\xi_1, \xi_2, ..., \xi_{d_{\sigma}})$ is an orthonormal basis of H_{σ} . More precisely, we have $\Phi(\sigma) = \sum_{i,j=1}^{d_{\sigma}} d_{\sigma} a_{ij}^{\sigma} \hat{u}_{ij}^{\sigma}(\sigma)$ where $u_{ij}^{\sigma}(t) = \langle U_i^{(\sigma)} \xi_j, \xi_i \rangle$.

(Note that for a complex function u, \hat{u} is the Fourier transform that is the Fourier—Stieltjes transform of the measure $u\lambda$, λ being the normalized Haar measure on G.)

Proof. We have

$$\Phi(\sigma)(\xi,\eta) = \sum_{i,j=1}^{d_{\sigma}} \alpha_j \bar{\beta}_i a_{ij}^{\sigma}$$

on putting

$$\xi = \sum_{j=1}^{d_{\sigma}} \alpha_j \xi_j$$
 and $\eta = \sum_{i=1}^{d_{\sigma}} \beta_i \xi_i$.

Now for a coordinate function u_{ij}^{σ} : $t \rightarrow \langle U_i^{(\sigma)}, \xi_j, \xi_i \rangle$, we have (by [6], 27.19)

$$\hat{u}_{ij}^{\sigma}(\sigma)(\xi,\eta) = \int_{G} \langle \overline{U}_{i}^{(\sigma)}\xi,\eta\rangle u_{ij}^{\sigma}(t) d\lambda(t) = \sum_{k,l} \int_{G} \alpha_{1} \overline{\beta}_{k} \overline{u}_{kl}^{\sigma}(t) u_{ij}^{\sigma}(t) d\lambda(t) = 1/d_{\sigma} \alpha_{j} \overline{\beta}_{i}.$$

Thus

$$\Phi(\sigma)(\xi,\eta) = \sum \alpha_j \overline{\beta}_i a_{ij}^{\sigma} = \sum d_{\sigma} \hat{u}_{ij}^{\sigma}(\sigma)(\xi,\eta) a_{ij}^{\sigma}$$

Hence

$$\Phi(\sigma) = \sum_{i,j=1}^{d_{\sigma}} d_{\sigma} a_{ij}^{(\sigma)} \hat{u}_{ij}^{\sigma}(\sigma).$$

3.4. Definition. We shall write $\mathscr{S}_2(\Sigma, E)$ for the vector space

$$\left\{ \Phi \in \mathscr{S}(\Sigma, E) \colon \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i,j} \| \Phi(\sigma)(\xi_i, \xi_i) \|_E^2 < \infty \right\}.$$

3.5. Lemma. Suppose that E is a Hilbert space. Then the mapping

$$(\Phi, \Psi) \to \langle \Phi, \Psi \rangle = \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i, j=1}^{d_{\sigma}} \langle \Phi(\sigma)(\xi_j, \xi_i), \Psi(\sigma)(\xi_j, \xi_i) \rangle$$

is an inner product on $\mathscr{S}_2(\Sigma, E)$.

Proof.

$$\begin{split} \sum \sum d_{\sigma} |\langle \Phi(\sigma)(\xi_j, \xi_i), \Psi(\sigma)(\xi_j, \xi_i) \rangle| &\leq \sum \sum d_{\sigma}^{1/2} \|\Phi(\sigma)(\xi_j, \xi_i)\|_E d_{\sigma}^{1/2} \|\Psi(\sigma)(\xi_j, \xi_i)\|_E \leq \\ &\leq \sum \sum \left(d_{\sigma} \|\Phi(\sigma)(\xi_j, \xi_i)\|_2^2 \right)^{1/2} \sum \sum \left(d_{\sigma} \|\Psi(\sigma)(\xi_j, \xi_i)\|^2 \right)^{1/2} < \infty. \end{split}$$

This shows that the mapping is well defined and the proof can be easily completed.

4. Properties of Fourier—Stieltjes transforms. Throughout this section, we adopt the following notation: if X is a subset of $M^1(G, E)$, we shall denote by \hat{X} the set $\{a: u \in X\}$. In the next two theorems we obtain analogues of Theorems 28.36 and 28.39 (i, ii) of [6], respectively.

4.1. Theorem. The mapping $m \rightarrow \hat{m}$ from $M^1(G, E)$ into $\mathscr{G}_{\infty}(\Sigma, E)$ is linear, injective and continuous.

Proof. That $m \rightarrow \hat{m}$ is linear is clear. We know that it is one-to-one by [1]; Lemma 4.1.5. Now,

$$\|\hat{m}(\sigma)\| = \sup \{\|\hat{m}(\sigma)(\xi,\eta)\|_{E} : \|\xi\|_{H_{\sigma}} \le 1 \text{ and } \|\eta\|_{H_{\sigma}} \le 1\} =$$

$$= \sup\left\{\left\|\int \langle \overline{U}_i^{(\sigma)}\xi, \eta \rangle dm(t)\right\|_E \colon \|\xi\|_{H_{\sigma}} \leq 1, \ \|\eta\|_{H_{\sigma}} \leq 1\right\} \leq \int \chi_G d|m|,$$

since $\overline{U}_t^{(\sigma)}$ is unitary. Thus $\|\hat{m}(\sigma)\| \leq \|m\|$, $\sigma \in \Sigma$ and $\|\hat{m}\|_{\infty} \leq \|m\|$. Hence $\hat{m} \in \mathscr{S}_{\infty}(\Sigma, E)$ and the mapping is continuous.

4.2. Definition. Let $\mathscr{C}(G, E)$ denote complex Banach space of all continuous *E*-valued functions on *G* with pointwise operations and norm given by $||f|| = \sup \{||f(t)||_E: t \in G\}$. For $\sigma \in \Sigma$ and a fixed orthonormal basis $(\xi_1, \xi_2, ..., \xi_{d_\sigma})$ in $H_{\sigma}, \mathscr{I}^{\sigma}(G)$ will denote the subspace of $\mathscr{C}(G, C)$ generated by the coordinate functions u_{ij}^{σ} . We set $\mathscr{I}^{\sigma}(G, E) = \{x\varphi: x \in E \text{ and } \varphi \in \mathscr{I}^{\sigma}(G)\}$ and define $\mathscr{I}(G, E)$ to be subspace of $\mathscr{C}(G, E)$ generated by the union $\bigcup_{\sigma \in \mathcal{I}} \mathscr{I}^{\sigma}(G, E)$.

4.3. Theorem.

(i) For each $\sigma \in \Sigma$, we have $\widehat{\mathscr{I}^{\sigma}(G, E)} = \mathscr{G}(H_{\sigma} \times H_{\sigma}, E)$.

(ii)
$$\mathscr{I}(G, E) = \mathscr{S}_{00}(\Sigma, E)$$
.

Proof. (i) The result readily follows from Lemma 3.3 since $\Phi(\sigma) \in \mathscr{G}(H_{\sigma} \times H_{\sigma}, E) \Leftrightarrow$

 $\Leftrightarrow a_{ij}^{\sigma's} \text{ in } E \text{ and } u_{ij}^{\sigma's} \text{ in } \mathscr{I}(G, \mathbb{C}) \text{ such that } \Phi(\sigma) = \sum d_{\sigma} a_{ij}^{\sigma} \hat{u}_{ij}^{\sigma}(\sigma) \Leftrightarrow$ $\Leftrightarrow \Phi(\sigma) \in \mathscr{I}^{\sigma}(\widehat{G, E}).$

(ii) Suppose that $f \in \mathscr{I}(G, E)$. Then f may be written $f = \sum_{i=1}^{n} \alpha_i f_{\sigma_i}, \alpha_i \in \mathbb{C}$, $\sigma_i \in \Sigma$ and $f_{\sigma_i} = \sum_{j=1}^{n} x_j u_j^{\sigma_j}, x_j \in E, u_{ji}^{\sigma_i} \in \mathscr{I}^{\sigma_i}(G, \mathbb{C})$. Thus

 $\hat{f}(\sigma)(\xi_1, \xi_m) = \sum_i \alpha_i \sum_j x_j \hat{u}_j^{\sigma_i}(\sigma)(\xi_1, \xi_m) \neq 0 \text{ only if } \sigma = \sigma_i, \ i = 1, 2, ..., n.$ Hence $\hat{f} \in \mathscr{G}_{00}(\Sigma, E)$.

Conversely, if $\Phi \in \mathscr{G}_{00}(\Sigma, E)$, then the set $P = \{\sigma \in \Sigma : \Phi(\sigma) \neq 0\}$ is finite. Moreover, each $\Phi(\sigma) = \sum_{i,j=1}^{d_{\sigma}} d_{\sigma} a_{ij}^{\sigma} \hat{u}_{ij}^{\sigma}(\sigma)$. Putting $f = \sum d_{\sigma} \sum_{i,j=1}^{d_{\sigma}} a_{ij}^{\sigma} u_{ij}^{\sigma}$, we get $f = \Phi$ and so $\mathscr{I}(\widehat{G, E}) = \mathscr{G}_{00}(\Sigma, E)$.

4.4. Lemma. The space $\mathscr{I}(G, E)$ is dense in $\mathscr{C}(G, E)$.

Proof. We identify $\mathscr{I}(G, E)$ with $\mathscr{I}(G, C) \otimes_{\varepsilon} E$, the injective tensor product of $\mathscr{I}(G, C)$ and E, i.e. the tensor product carrying the norm

$$\left\|\sum_{1\leq i\leq n} x_i \varphi_i\right\|_{\ell} = \left\|\sum_{1\leq i\leq n} \varphi_i \otimes x_i\right\|_{\ell} = \sup\left\{\left|\sum_{1\leq i\leq n} u(x_i) v(\varphi_i)\right|: \|u\| \leq 1, \|v\| \leq 1\right\},\$$

7*

2

 $u \in E', v \in \mathcal{I}(G, \mathbb{C})'$ where E' and $\mathcal{I}(G, \mathbb{C})'$ are the topological duals of E and $\mathcal{I}(G, \mathbb{C})$, respectively ([7], 44.2 (3)). Since $\mathcal{I}(G, \mathbb{C})$ is dense in $\mathscr{C}(G, E)$, ([6], 27.39), it follows that $\mathcal{I}(G, E)$ is dense in $\mathscr{C}(G, E)$, because $\mathscr{C}(G, E)$ is norm isomorphic to $\mathscr{C}(G, \mathbb{C}) \otimes_{\epsilon} E$, the completion of $\mathscr{C}(G, \mathbb{C}) \otimes_{\epsilon} E$, ([7], 44.7 (2)).

4.5. Theorem. The space $\hat{L}_1(G, E)$ of the Fourier transforms of Haar-integrable functions $f: G \to E$ is dense in $\mathcal{S}_0(\Sigma, E)$.

Proof. The space $\mathscr{I}(G, E)$ is dense in $L_1(G, E)$ because $\mathscr{I}(G, E)$ is dense in $\mathscr{C}(G, E)$ and $\mathscr{C}(G, E)$ is dense in $L_1(G, E)$ ([4], 7.16). Since $\mathscr{I}(\widehat{G, E}) = \mathscr{S}_{00}(\Sigma, E)$ is dense in $\mathscr{S}_0(\Sigma, E)$, $\hat{L}_1(G, E)$ which contains $\mathscr{I}(\widehat{G, E})$, is dense in $\mathscr{S}_0(\Sigma, E)$.

4.6. Corollary. If $f \in L_1(G, E)$, then the set $\{\sigma \in \Sigma : f(\sigma) \neq 0\}$ is countable.

4.7. Lemma. Let $L_2(G, E)$ denote the Banach space of the Haar-square integrable functions on G into E. If $f \in L_2(G, E)$, then

$$f = \sum_{\sigma} \sum_{i,j} d_{\sigma} \hat{f}(\sigma)(\xi_j, \xi_i) u_{ij}^{\sigma}.$$

Proof. If f=xh, $x \in E$ and $h \in L_2(G, \mathbb{C})$, then

$$f = \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i, j=1}^{d_{\sigma}} \left(\int xh(t) \bar{u}_{ij}^{\sigma}(t) d\lambda(t) \right) u_{ij}^{\sigma}$$

(use [6], 27.40 for h). Hence $f = \sum_{\sigma} d_{\sigma} \sum_{i,j=1} \left(\int f(t) \bar{u}_{ij}^{\sigma}(t) d\lambda(t) \right) u_{ij}^{\sigma}$. Since $L_2(G, \mathbb{C}) \otimes E$ is dense in $L_2(G, E)$ it is clear that the last equality holds for $f \in L_2(G, E)$. Now,

$$\int f(t)\bar{u}_{ij}^{\sigma}(t)\,d\lambda(t)=\int \langle \overline{U}_i^{(\sigma)}\xi_j,\,\xi_i\rangle f(t)\,d\lambda(t)=\hat{f}(\sigma)(\xi_j,\,\xi_i).$$

Hence $f = \sum_{\sigma} d_{\sigma} \sum_{i,j} \hat{f}(\sigma)(\xi_j, \xi_i) u_{ij}^{\sigma}$.

Finally, we obtain the analogue of [6], 28.43.

4.8. Theorem. Assume that E is a Hilbert space. Then the mapping $f \rightarrow \hat{f}$ is an isometry from $L_2(G, E)$ onto $\mathscr{G}_2(\Sigma, E)$ and so $\mathscr{G}_2(\Sigma, E)$ is a Hilbert space.

Proof. If E is a Hilbert space, than $L_2(G, E)$ is a Hilbert space so that $f \in L_2(G, E)$ if and only if

$$\|f\|_{2}^{2} = \left\langle \sum_{\sigma} \sum_{i,j} d_{\sigma} a_{ij}^{\sigma} u_{ij}^{\sigma}, \sum_{\sigma} \sum_{i,j} d_{\sigma} a_{ij}^{\sigma} u_{ij}^{\sigma} \right\rangle,$$

where $a_{ij}^{\sigma} = \hat{f}(\sigma)(\xi_j, \xi_i), \ 1 \leq i, \ j \leq d_{\sigma}$. Hence

$$\|f\|_{2}^{2} = \sum_{\sigma} \sum_{i,j} d_{\sigma}^{2} \|a_{ij}^{\sigma}\|_{E}^{2} \|u_{ij}^{\sigma}\|_{2}^{2} = \sum_{\sigma} \sum_{i,j} d_{\sigma} \|\hat{f}(\sigma)(\xi_{j},\xi_{i})\|_{2}^{2},$$

since $d_{\sigma} \|u_{ij}^{\sigma}\|_{2}^{2} = 1$ ([6], 27.40). Thus $f \in \mathscr{S}_{2}(\Sigma, E)$ and

$$\|\hat{f}\|_{2}^{2} = \sum_{\sigma} \sum_{i,j} d_{\sigma} \|\hat{f}(\sigma)(\xi_{j}, \xi_{i})\|_{E}^{2} = \|f\|_{2}^{2}.$$

Conversely, let $\Phi \in \mathscr{G}_2(\Sigma, E)$. Then $\sum_{\sigma} \sum_{i,j} d_{\sigma} \| \Phi(\sigma)(\xi_j, \xi_i) \|_E^2 < \infty$ and hence the set $\{\Phi(\sigma)(\xi_j, \xi_i) \neq 0\}$ is countable, say $\{a_k\}_{k \in \mathbb{N}}$. Put $f_n = \sum_{k=1}^n d_{\sigma_n} a_k u_k$, where u_k replaces u_{ij}^{σ} whenever $a_{ij}^{\sigma} = a_k$ is different from zero. Then the functions f_n form a Cauchy sequence in $L_2(G, E)$ whose limit f satisfies $\hat{f} = \Phi$ and the proof is complete.

References

- [1] V. S. K. ASSIAMOUA, L₁(G, A)-multipliers, Acta Sci. Math., 53 (1989), 309-318.
- [2] P. BONNET, Transformation de Fourier des distributions de type positif sur un groupe de Lie unimodulaire, J. Funct. Anal., 55 (1984), 220-246.
- [3] N. BOURBAKI, Integration, Chap. 6, Hermann (Paris, 1966).
- [4] N. DINCULFANU, Integration in locally compact spaces, Noordhoff Internat. Publishing (Leyden, 1974).
- [5] N. DUNFORD, J. T. SCHWARTZ, Linear Operators, Vol. I, Interscience (New York, 1957).
- [6] E. HEWITT and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer-Verlag (New York-Heidelberg-Berlin, 1970).
- [7] G. KÖTHE, Topological Vector Spaces, Vol. II, Springer-Verlag, (New York—Heidelberg— Berlin, 1979).

(V. S. K. A.) ECOLE DES SCIENCES (U. B.) B. P. LOME, TOGO

8 Jul 17

(A. O.) ONDO STATE UNIVERSITY ADO-EKITI, NIGERIA