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Characterization of locally bounded functions with a 
finite number of negative squares 

z. SASVARI 

1. Introduction 

Throughout the paper G denotes a locally compact commutative group. 
Let / be a complex-valued function on G. The function / is called Hermitian 

if f(—x)=f(x) holds for every x£G. If k is a nonnegative integer the Hermitian 
function / is said to have k negative squares if the Hermitian matrix 

(1) (/(xi-xjitj-1 
has at most k negative eigenvalues for any choice of n and xu ..., x„£G, and for 
some choice of jcl5 ..., xn the matrix (1) has exactly k negative eigenvalues. This 
definition reduces to that of a positive definite function in the case ¿=0. We denote 
by Pk(G) (Pk(G)) the set of all (continuous) functions on G which have k negative 
squares. 

For a function f^Pk(G), where G is second countable, an integral representation 
was given in [10]. The bounded functions in Pk(G) are exactly the Fourier transforms 
of such measures on the character group of G which assigne negative measure to 
k points and which are nonnegative outside of these points [9, 10]. A survey and 
bibliography about functions with k negative squares can be found in [1, 10, 12]. 

It is the aim of this note to characterize those functions f€Pk(G) which are 
locally bounded, i.e., bounded on every compact set Kc:G. As was shown in [11], 
every measurable function / with k negative squares on an arbitrary locally com-
pact group is locally bounded. Moreover, / has the decomposition f=fc+p, where 
fc is a continuous function with k negative squares and p is a positive definite func-
tion vanishing almost everywhere on G [10]. 

If / is not measurable and 0, then it may be unbounded on every open 
set. To see this let I be a nonmeasurable real-valued function on R satisfying the 
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equation /(x+j>)=/(*)+/(y) (x, R). Then the function f=il has one negative 
square and / is unbounded on every open set Fez R. 

The main result of the present paper is the following 

Theorem 1. Every locally bounded function fÇ.Pk(G) has the decomposition 

(2) f = y i f i + - + ynfn+P 
where 

(i) yj is a bounded (continuous or discontinuous) character of G (7=1, ..., n); 
(ii) f is a continuous function with k} negative squares and kx + ...+kn=k; 

(iii) p is a positive definite function. 
Recall that a complex-valued Hermitian function defined on G is said to be 

conditionally positive definite if 

2 fiXi-xJCiCj s 0 
Ui=1 

holds for every choice of ..., x„£G and for every choice of complex numbers 
cl5 ..., c„ such that c1+... + cn=0. It is easy to see that a conditionally positive 
definite function has at most one negative square. For a bibliography about condi-
tionally positive definite functions we refer to [2, 4]. 

The above theorem has the following 

Corol lary 1. Let f be a conditionally positive definite function on G which is 
bounded on a set of positive Haar measure. Then f has the decomposition 

f=fc+P 
where fc is a continuous conditionally positive definite function and p is positive defi-
nite. 

We remark that a conditionally positive definite function f is bounded if and 
only if f=p+m, where R and p is a positive definite function [2]. The function 
f=il introduced above is a conditionally positive definite function which is un-
bounded on every set Va R of positive Haar measure. 

2. Notation and preliminaries 

(2.1) Let k be a nonnegative integer. Throughout the paper the symbol Tlk 
dénotés a rc*-space with rank of negativity k. We shall assume familiarity with basic 
information about 7t*-spaces as found in [3, 5]. 

Let 
(3) n k = i l + ©i l_ 
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be a fixed decomposition of J7t where 77 + is a positive subspace and J7_ is a negative 
^-dimensional subspace. Representing each vector v£IIk in the form P=D++I>_ 
(v+£II+, i?_£J7_) we introduce a new scalar product [ , ] in J7t by 
(4) [v,w] =(v+, w+)-(t>_, w_), v,w£llk. 
This scalar product is positive definite and 27* can be regarded as a Hilbert space 
with scalar product [, ] and with the norm 

(5) |M| = i K v \ . 

The scalar product (v, w) is continuous with respect to the norm (5) in both variables 
v and w. 

Let {el5 ...,ek} be a basis of IJ_ such that fo, e;] = — (et, =<50-. Then we 
have for any v£Ilk 

(6) \W = [v,v] = {v,v)+2 2\(ei,v)\\ 
i=l 

Recall that a linear operator U in IIk is called unitary if it maps IIk onto IIk 
and preserves the scalar product ( , ) of IIk, i.e., 

(Uv, Uw) = (v, H>) for all v,w£llk. 
By a unitary representation of G in nk there is meant a mapping x—Ux of G 

satisfying the following conditions: 
(i) U0=I where I is the identity operator in nk ; 

(ii) Ux+y=UxUv for any x,y£G; 
(iii) Ux is a unitary operator in IIk for all x(i G. 

We shall need the following correspondence between cyclic unitary representations 
of G in 7rt-spaces and functions of the class Pk(G) [10, Satz 9.2]. 

Theorem 2. For an arbitrary function f€Pk(G) there exists a nk-space I I k ( f ) 
with the following properties: 

(i) the elements of I I k ( f ) are complex-valued functions on G, f € I I k ( f ) , and 
nk(J) is invariant under translations; 

(ii) the linear manifold T ( f ) spanned by all translations of f is dense in IIk(f ); 
(iii) x-*Ux is a cyclic unitary representation of G in n k ( f ) , where Ux is defined by 

(Uxg)(y) = g(y-x), g€llk(f), x, yiG; 
(iv) g(x)=(g, U x f ) , gtnk(f), x£G; 
(v) if f is locally bounded then every function g£Hk(f) is locally bounded. i 

We now prove a further assertion. 

(vi) If f is locally bounded then the function x-H|t/J is locally bounded A 

The operator norm is induced by the vector norm (5). 

8* 
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Proof of (vi). It follows from the proof of Satz 9.2 in [10] that 

n k ( f ) = P@N 

where P is a positive subspace and N is a negative ^-dimensional subspace such 
that every function h£N is a finite linear combination of translations of f , i.e., 
h£T(f). Let {e1;..., ek} be an orthonormal basis of N. By (6) we have 

ll^sll2 = (g, g)+2 2 \(Uxg, ed\\ g€nk(f). i=i 
From e&T(f) and (iv) it follows easily that the function hi{—x)—(U-xg, e;) = 
=(g, Uxe,) is a finite linear combination of translations of g ( i= l , . . . , n). By (v), 
g is locally bounded, so the function x^\\Uxg\\2 is locally bounded for every g£ J7„ (J). 
The local boundedness of x—1| Ux\\ follows now from the Banach—Steinhaus 
Theorem. 

(2.2) Let x—Ux be a representation of G by invertible bounded linear operators 
on a Hilbert space We say that the representation x—Ux is locally bounded if 
the function x-HI Ux\\ is locally bounded. Denote by § c the subspace of continuously 
translating elements of i.e., the set of all for which x ^ U x h is continuous 
from G into § in its weak topology. Let f denote the set of all neighbourhoods V 
of the zero of G, UV—{UX: x£V}, and # (U v h ) the closed convex hull of the 
"partial orbit" Uvh={Uxh:x£V}. The subspace § 0 of elements averaging to 
0€ Sj is the set of all § for which 

0<E n V(P rh). 
vtr 

K . DELEEUW and I . GLICKSBERG [ 6 , Th. 2 . 7 ] proved the following 

T h e o r e m 3. Let x-*Ux be a locally bounded representation of G in a Hilbert 
space Then §>c and §0 are closed (Ux)-invariant subspaces and § is the orthogonal 
direct sum of §c and §0. 

Let now fZPk(G) be a locally bounded function and consider the unitary rep-
resentation x-*Ux of G in n k ( f ) . By (vi) this représentation is locally bounded 
with respect to the positive definite scalar product (4). (Note that local boundedness 
of x-"Ux does not depend on the special decomposition (3).) It follows from the 
definition of pc and from (iv) that every h£ ¡Fjc is a continuous function. When 
h£$o then /i hàs thé following property : for e > 0 ànd any VÇ for which sup || Ux\\ < 

< ° ° there exist x l s ...,x„€V and positive numbers pt, ...,p„ summing to 1 such 
that 

(7) 1 2 P i H x - x , ) \ < e for all x£V. 
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Indeed, by the definition of §„ there are Xj, ..,,,jt„£F and positive numbersp l t ...,p„ 
summing to 1 such that 

¡=1 xiV 
By (iv) we have 

I i Pih(x-x,)\ = \(2 Pi UXI h)(*)| = K ( i p,UXl h), Ux f ) \ ^ 1=1 ¡=i >=i 

^W2PiUXth\\\\Uxf\\^e for x€V. 
¡=1 

(2.3) Let Gd be the discrete version of G. The character group of Gd is denoted 
by ri. We introduce the notation rd for the set of unbounded characters of Gd, 
i.e., the set of complex-valued unbounded functions y on Gd for which y (0)=1 and 
7(-*+y)=y(*)v(y) hold. Let 

r* = r*\jri. 

In the proof of Theorem 1 we shall need the following result which is the dis-
crete version of Folgerung 11.7 in [10] (see also Theorem 3.1 in [8]). 

Theorem 4. For every f£Pk(G) there exist positive integers ku functions 
fcPk (G) and y^r'd (i— 1, ...,«) with the following properties: 

(a) /= / i+-••+/„ ; 
(b) k=ki + ...+kn; 
(c) fcnk(f) ( i=l , . . . ,«) ; 
(d) the only common nonpositive eigenvector of the translation operators Ux in 

nkt(fd are y( and yf1.21 

When / is locally bounded then by (c) and (v) in Theorem 2 the functions 
f are locally bounded as well. 

3. Proof of Theorem 1 and Corollary 1 . 

(3.1) Let f£Pk(G) be a locally bounded function and consider the locally 
bounded unitary representation x-*Ux of G in n k ( f ) . By Theorem 4 we can restrict 
ourselves to the case where the only common nonpositive eigenvectors of the opera-|y| 
tors Ux are y, y~1^T'd. Since — is a bounded character of G, the (locally bounded) y ' . 

Note that y,=yrl if and only if y,€ J"-. 
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function f=— / has k negative squares. Moreover, the only common nonpositive 
y 

eigenvectors of the translation operators Ux in n k ( f ) are |y| and |y | - 1 (see for this 
(11.5) (a) and (3.2) (c) in [10]). Thus, the proof of Theorem 1 will be complete if we 
verify the following. 

P ropos i t i on 1. Let f£Pk(G) be a locally bounded function. If the only common 
nonpositive eigenvectors of the operators Ux in I I k ( f ) are y and y-1, and if they are 
positive then 

f = fc+P, 
where fc<LPc

k(G) and p£P0(G). 

Proof . We consider the 7tk-space n k ( f ) as a Hilbert space with the scalar 
product [ , ] in (4). By Theorem 3 n k ( f ) is the [ , ]-orthogonal direct sum of the 
closed (i/x)-invariant subspaces Xc and X0. Considering X0 as subspace of the nk-
space n k ( f ) there are three possibilities: 

(i) Xq is a it,-space ( / s i ) ; 
(ii) X0 is degenerate: 

(iii) X0 is a Hilbert space. 

In the first case the commuting unitary operators Ux have a common non-
positive eigenvector in X0\T\ which by our assumption must be y or y_1 . In the 
second case the isotropic part N of X0 is ({/^-invariant and finite dimensional. 
Hence the commuting operators Ux have a common eigenvector in N which must 
be again y or y - 1 . Thus, in both cases we have y^^o ory - 16X0 . Suppose for example 

and let V be an open symmetric neighbourhood of zero such that y is bounded 
on V: 

y(x)^K (xiV). 
As y(-x)y(*) = l, we get 

l/K < y(x) < K (x€V). 

Consequently, for any x, x^V ( i= 1, . . . , n) and arbitrary positive numbers px, ...,pn 

summing to 1 we have: 

: . 1 yCx-xJpi = y(x) 2 y(-x()Pi > y(x)/K > l/K2, 
i=i i=i 

in contradiction to (7). Hence (i) and (ii) are not possible and so X0 is a Hilbert space. 
Let X'c denote the ( , )-orthogorial cbniplement of X0. Then X'c is a closed 

({/•^-invariant nk-space and 

( 8 ) = , , , . 

t 
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(the symbol © denotes ( , )-orthogonal direct sum). Gn the other hand, X'c is a 
Hilbert space with respect to the scalar product [ , ] , and the restriction x-+U'x of 
x—Ux to X'c is a locally bounded representation of G in X'c. If h'£X'c averages to 
zero with respect to the representation x--U'x then it averages to zero with respect 
to x->-Ux as well. Since X0 consists of all h£IIk(f) averaging to zero we necessarily 
have h'=0. Applying Theorem 3 to the representation x—U'x in X'c we see that 
every h£X'c is continuously translating. Hence the function x—[g, Uxh] is continuous, 
from which the continuity of x—(g, Uxh) follows (g, h£X'c). 

Let now f=fc+p (fc£X'c, p€X0) be the decomposition of / corresponding 
to (8). We have 

f ( x ) = ( / , U x f ) = (fc+p, Uxfc+UxP) = ( f c , Uxfc)+(p, Uxp). 

Moreover, 

(9) fc(x) = ( f c , U x f ) = ( f c , Uxfc)+(fc, Uxp) = ( f c , U x f c ) 

and analogously 
p(x) = (p,Uxp). 

It follows from (9) that fc is continuous. The function / is a cyclic vector for x-*Ux 

and so fc is cyclic for x-+U'x. Thus, fc has k negative squares [10, Satz 11.1]. Since 
X0 is a Hilbert space (with respect to ( , ) ) the function p is positive definite, 
completing the proof of Proposition 1. 

(3.2) Let now / be a conditionally positive definite function which is bounded 
on a set AczG of positive Haar measure. By a well known property of the Haar 
measure, A—A contains an open set It follows from the inequality 

(10) li\f(x-y)\ S i\m\+i\7U)l x,ydG, 

that / is bounded on V. Moreover, (10) implies that / is bounded on y+V for 
every y£G. Since compact sets can be covered by finitely many sets V, of the form 
V—yi+V, f is locally bounded. 

Let us consider the (locally bounded) unitary representation x-*UX in i l i ( / ) 
(we neglect the trivial case where f is positive, definite). By [10, (11.5)] the only 
common nonpositive eigenvector of the operators Ux is y=1. Therefore, we can 
apply Proposition 1 to obtain the decomposition 

f=fc+P, 
where fc£P£(G) and p£P0(G). All what remains to prove is that / c is conditionally 
positive definite. Since T ( f ) is dense in i7i(/), there is a sequence of finitely sup-
ported complex measures on G such that 

fc = lim f*wn . H — co 
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(the symbol * denotes convolution). By (9) and (iv) in Theorem 2 we have 

fc(x) = ( f c , U x f c ) = lim {f*w„, Ux(f*wn)) = 
n-^-oo 

= \]m(f*wa*w„, U x f ) = \xmf*wn*wn(x), 
f|-*oo fl-*>oo 

where w„ is defined by wn ({— x})=H>„ ({x}). It follows immediately from the defini-
tion of conditional positive definiteness that the functions f*w„*w„ and so fc are 
conditionally positive definite. The proof of Corollary 1 is complete. 

Remark 1. As we have seen, boundedness on a set of positive Haar measure 
of a conditionally positive definite function implies local boundedness. It would 
be interesting to know whether a similar assertion holds for functions with a finite 
number of negative squares. 

Remark 2. Corollary 1 probably holds even for noncommutative groups while 
the problem of characterization of locally bounded functions f£Pk(G) seems to be 
very difficult if G is not commutative. 

Remark 3. Let G be an arbitrary commutative topological group. We say 
that a complex-valued function g on G is locally bounded if there exists an open set 
VczG such that g is bounded on y+V for every y£G. Let now f£Pk(G) be a 
locally bounded function and consider the representation x^-ZJx in n k ( f ) . It 
follows by the same arguments as in the proof of property (vi) that the function 
JC-017J is locally bounded. Since Theorem 3 holds for an arbitrary commutative 
topological group G [6, Th. 2.7] we can repeat the proof of Theorem 1 to get the 
decomposition (2) of f . 
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