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Characterization of locally bounded functions with a
finite number of negative squares

Z. SASVARI

1. Introduction

Throughout the paper G denotes a locally compact commutative group.

Let f be a complex-valued function on G. The function f is called Hermitian
if f(—x)=f(x) holds for every x€G. If k is a nonnegative integer the Hermitian
function f is said to have k negative squares if the Hermitian matrix

m (f (xt_xj))'i',j=1

has at most k negative eigenvalues for any choice of n and x,, ..., x,€G, and for
some choice of xy, ..., x, the matrix (1) has exactly k negative eigenvalues. This
definition reduces to that of a positive definite function in the case k=0. We denote
by F.(G) (B°(G)) the set of all (continuous) functions on G which have k negative
squares.

- For a function f€ F7(G), where G is second countable, an integral representation.
was given in [10]. The bounded functions in £ (G) are exactly the Fourier transforms
of such measures on the character group of G which assigne negative measure to
k points and which are nonnegative outside of these points [9, 10]. A survey and
bibliography about functions with k negative squares can be found in [1, 10, 12].

- It is the aim of this note to characterize those functions f¢F,(G) which are
locally bounded, i.e., bounded on every compact set KCG. As was shown in [11],
every measurable function f with k negative squares on an arbitrary locally com-
pact group is locally bounded. Moreover, f has the decomposition f=f,+p, where
f. is a continuous function with £ negative squares and p is a positive definite func-
tion vanishing almost everywhere on G [10]. .

If f is.not measurable and k=0, then it may be unbounded on every open
set. To see this let / be a nonmeasurable real-valued function on R satisfying the
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equation I(x+y)=I(x)+1(y) (x, y€R). Then the function f=il has one negative
square and f is unbounded on every openset VCR.
The main result of the present paper is the following

Theorem 1. Every locally bounded function f€B(G) has the decomposition

¢)] S=nht..+1futp
where

(i) y; is a bounded (continuous or discontinuous) character of G (j=1, ..., n);
(i) f; is a continuous function with k; negative squares and ky+...+k,=k;
(iii) p is a positive definite function.

Recall that a complex-valued Hermitian function defined on G is said to be
conditionally positive definite if

Z"' Sxi—x))e;c; =0

, ij=1"
holds for every choice of x,, ..., x,6G and for every choice of complex numbers
€15 ...y ¢, Such that ¢;+...+¢,=0. It is easy to see that a conditionally positive
definite function has at most one negative square. For a bibliography about condi-
tionally positive definite functions we refer to [2, 4].

The above theorem has the following

Corollary 1. Let f be a conditionally positive definite function on G which is
bounded on a set of positive Haar measure. Then f has the decomposition

f=sf+p
where f, is a continuous conditionally positive definite function and p is positive defi-
nite.
‘ .We remark that a conditionally positive definite function f is bounded if and
only if f=p+m, where m€R and p is a positive definite function [2]. The function
S=il 1ntroduced above is a condltlonally positive definite function which is un-
bounded on every set ¥CR of positive Haar measure.

2. Notation and preliminaries

(2.1) Let k£ be a nonnegative integer. Throughout the paper the symbol IT,
denotes a m,-space with rank of negativity k. We shall assume famlhanty with basic
information about m,-spaces as found in [3, 5].

Let
€)) I, =Hn,eII_
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be a fixed decomposition of IT, where I1, is a positive subspace and IT._ is a negative
k-dimensional subspace. Representing each vector v€Il, in the form v=v,+v_
(v4€11,, v_€Il_) we introduce a new scalar product [, ] in IT; by

@ Wl =@ w)—-, W), wwel,. .

This scalar product is positive definite and II, can be regarded as a Hllbcrt space
with scalar product [, ] and with the norm

©) loll = Vlv, 2]
The scalar product (v, w) is continuous with respect to the norm (5) in both vanables
vand w.

Let {e, ..., &} be a basis of IT_ such that [e;, e;]=—(e;, ¢;)=3,;. Then we
have for any v€lIl, , .

©) ol = [o, o] = (v, 0)+2 2" s O

Recall that a linear operator U in IT, is called unitary if it maps IT, onto 1Y

and preserves the scalar product (, ) of I1,, i.e.,
Uv,Uw) = (v,w) for all », well,.

By a unitary representation of G in IT, there is meant a mapping x—U, of G

satisfying the following conditions:
(i) U,=I where I is the identity operator in IT;;

(i) U,4,=U,U, forany x, y€G;

(iti) U, is a unitary operator in II, for all x€G.
We shall need the following correspondence between cyclic unitary representations
of G in 7, -spaces and functions of the class £, (G) [10, Satz 9.2]. :

Theorem 2. For an arbitrary function f¢B(G) there exists a m-space H,(f)
with the following properties: '
(1) the elements of II,(f) are complex-valued funcnons on G, fell.(f), and
10,(f) is invariant under translations;
(ii) the linear manifold T(f) spanned by all translations of f is dense in II,(f);
(iii) x—~U, is a cyclic unitary representation of G in II,(f), where U, is defined by
(Ux g)(y) g(y_x)’ gEHk(f)s X5 }’€G

(iv) g(x)=(g, U, f), gell(f), x€G;
) if f is locally bounded then every functton gEH,‘(f) is IocaIIy baunded

 We now.prove a further assertion.
) If f is locally bounded then the function x-»llU I is IocaIIy bounded.?.

1) The operator norm is ihduced by the vector norm;(s).
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Proof of-(vi). It follows from the proof of Satz 9.2 in [10] that

where P is a positive subspace and N is a negative k-dimensional subspace such
that every function €N is a finite linear combination of translations of f, ie.,
hReT(Y). Let {e;, ...; &} be an orthonormal basis of N. By (6) we have

U gl = (g g)+2£"1 U.g, e’ geIL(f)

From e,c T(f) and (iv) it follows easily that the function h(—x)=(U_.g, €)=
=(g, U,e) is a finite linear combination of translations of g (i=1, ..., n). By (v),
gis locally bounded, so the function x—[|U,gl|? is locally bounded for every g€ I, (f).
The local boundedness of x—| U, follows now from the Banach—Steinhaus
Theorem.

(2.2) Let x—~U, be a representation of G by invertible bounded linear operators
on a Hilbert space $. We say that the representation x—U, is locally bounded if
the function x—~||U,.]| is locally bounded. Denote by $, the subspace of continuously
translating elements of §, i.e., the set of all h€ $ for which x—~U,h is continuous
from G into $ in its weak topology. Let ¥ denote the set of all neighbourhoods ¥
of the zero of G, Uy={U,: x€V}, and ¥(Uyh) the closed convex hull of the
“partial orbit” U, h={U,h: x€V}. The subspace §, of elements averaging to
0< $ is the set of all h¢ § for which

0¢ N €Uy k).
Vey .

K. pELEeuw and 1. ‘GLICKSBERG [6, Th. 2.7] proved the following

Theorem 3. Let x—~U, be a locally bounded representation of G in a Hilbert
space $. Then . and $, are closed (U,)- mvanant subspaces and $) is the orthogonal
direct sum of 9. and 9,-

Let now f€R.(G) be a locally bounded function and consider the umtary&r%';i
resentation x—~U, of G in IT;(f). By (vi) this représentation is locally bounded
with respect to the pos:tlve deﬁmte scalar product (4). (Note that local boundedness
of x—+U, does not depend on the special decomposmon (3)) It follows from the
definition of $. and from (iv) that every he 9. is a continuous functlon When
he $, then A has ‘the following property: for ¢>0" and any Ve for which sup MUl <

<o there exist x;, ...; x,€V and positive numbers pl, ens p,, summmg to 1 such
that . . oo

¢ |3 ph(x—x)| <& for all xcV. |
=1 . . RERT R



Characterization of locally bounded functions 323

Indeed, by the definition of £, there are x;, ...,.x;,€ V" and positive numbers p,, ..., Pa
summing to 1 such that : '

|2 71U hl| < efsup 10 71,
By (iv) we have

12 pibx=| = (2 U0 = (2 10, U2 1) =
= ”é;PiUx'h”"Uxfll <¢ for xeV.

(2.3) Let G be the discrete version of G. The character group of G? is denoted
by I'. We introduce the notation I'! for the set of unbounded characters of G%
i.e., the set of complex-valued unbounded functions y on G* for which y(0)=1 and
Y(x+y)=y(x)7(y) hold. Let '
4 =rayrs,

In the proof of Theorem 1 we shall need the following result which is the dis-
crete version of Folgerung 11.7 in [10] (see also Theorem 3.1 in [8]).

Theorem 4. For every fcP(G) there exist positive integers k;, functions
Si€R (G) and y€ I’ (i=1, ..., n): with the following properties: :

@) f=H+...+f

(b) k=k,+...+k,;

(© fiell, () (=1,...,n);

(d) the only common nonpositive eigenvector of the translation operators -U, in
1, (f) are y; and ;1.2

When f is locally bounded then by (c) and (v) in Theorem 2 the functions
J; are locally bounded as well. ‘

3. Proof of Theorem 1 and Corollary 1: .

(3.1) Let feP(G) be a locally bounded function and consider the locally
bounded unitary representation x—U, of G in II,(f). By Theorem 4 we can restrict
ourselves to the case where the only.common nonpositive eigenvectors of the opera-

tors U, are y, y—1¢€ "%, Since I—ﬂ— 'is a bounded character of _G,- the (locally bounded)

1) Note that y,=%;* if and only if p €T,
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function f'= u f hask negauve squares. Moreover, the only common nonpositive
14

eigenvectors of the translation operators U, in IT,(f") are |y| and |y| ™2 (see for this

(11.5)(a) and (3.2)(c) in [10]). Thus, the proof of Theorem 1 will be complete if we

verify the following.

Proposition 1. Let f¢ B(G) be a locally bounded function. If the only common
nonpositive eigenvectors of the operators U, in II.(f) are y and y™*, and if they are
positive then

f=r+p,
where f.€PS(G) and p€Fy(G).

- Proof. We consider the m,-space IT,(f) as a Hilbert space with the scalar
product [,] in (4). By Theorem 3 II.(f) is the [, ]-orthogonal direct sum of the
closed (U,)-invariant subspaces X, and X;. Considering X, as subspace of the m;-
space II,(f) there are three possibilities:

(i) X, is a m;-space (I=1);
(ii) X, is degenerate;
(iii) X, is a Hilbert space.

In the first case the commuting unitary operators U, have a common non-
‘positive eigenvector in X, [7] which by our assumption must be y or y~L In the
second case the isotropic part N of X, is (U,)-invariant and finite dimensional.
Hence the commuting operators U, have a common eigenvector in N which must
- be again y or y~L Thus, in both cases we have yEXo ory ~¢ X,. Suppose for example

Y€ X, and let V be an open symmetnc nelghbourhood of zero such that y is bounded
on/V: :
r(x) <K (x€V).
As y(—x)y(x)=1, we get

1/K<y(x)<K (x€V)."
Consequently, for any x, x,€¥ (i=1, ..., n) and arbitrary positive numbers p,; ..., p,

summing to 1 we have:

| g yx— x.)p;—v(x)Zv(— .)p..>?(X)/K>1/K*'

in contradlctlon to (7). Hence (1) and (ii) are not poss1ble and so Xo isa Hllbert space.
Let X denote the- (, )-orthogonal complement “of Xo “Then X! is a closed
(U,)-invariant =, -space and

® n(N=XX. ... ..
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(the symbol @ denotes (, )-orthogonal direct sum). On the other hand, X is a
Hilbert space with respect to the scalar product [,], and the restriction x—U, of
x—U, to X/ is a locally bounded representation of G in X/. If h'¢X_ averages to
zero with respect to the representation x— U, then it averages to zero with respect
to x—U, as well. Since X, consists of all h€ IT,(f) averaging to zero we necessarily
have h’=0. Applying Theorem 3 to the representation x—~U, in X we see that
every h€ X/ is continuously translating. Hence the function x—[g, U, h]is continuous,
from which the continuity of x—»(g, U.h) follows (g, he X7). :

Let now f=f.+p (f.€X., p€X,) be the decomposition of f correspondlng
to (8). We have .

f(X) = (.f’ Uxf) = (f::+p7 Uxf;:+pr) = (f;:’ Uxfc)+(p9 pr)

Moreover,

® f;:(x) = (f;:’ Uxf) = (f;:s Uxf;:)+(f;’ pr) = (f;:a Uxf;:)

and analogously
p(x) =(p, Usp)-

It follows from (9) that f, is continuous. The function f is a cyclic vector for x—U,
and so f is cyclic for x—~U,. Thus, f has & negatnve squares [10, Satz 11.1]. Since
X, is a Hilbert space (w1th respect to (,)) the function p is positive definite,
completing the proof of Proposition 1.

(3.2) Let now f be a conditionally positive definite function which is bounded
on a set ACG -of positive Haar measure. By a well known property of the Haar
measure, 4— A contains an open set V'=@. It follows from the inequality

(10) VIfFG=M = VIfGI+VIO), x y€G,

that f is bounded on V. Moreover, (10) implies that f is bounded on y+V for
every y€G. Since compact sets can be covered by finitely many sets V of the form
Vi=y;+V, f is locally bounded.

Let us consider the (locally bounded) unitary representation x—U, in IT,(f)
(we neglect the trivial case where f is positive. definite). By [10, (11.5)] the only
.common nonpositive eigenvector of the operators U, is y=1. Therefore, we can
apply Proposition 1 to obtain the decomposition

f= fc+p,

where fCEP"(G) and pER,(G) All what remains-to prove is that f,_. is condltlonally
.positive definite. Since T'(f) is dense in IT,(f), there is a sequence.w,.of ﬁmtely sup-
ported complex measures on G such that

f. = lim f*w,,.‘

B+
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(the symbol * denotes convolution). By (9) and (iv) in Theorem 2 we have
Jo(®) = (fe» Uy f) = lim (frw,, Us(fxwy) =
= lim (f*w,*W,, U, f) = lim fxw,*W,(x),

where W, is defined by W,({-x})=w,({x}). It follows immediately from the defini-
tion of conditional positive definiteness that the functions f«w,*Ww, and so f. are
conditionally positive definite. The proof of Corollary 1 is complete.

Remark 1. As we have seen, boundedness on a set of positive Haar measure
of a conditionally positive definite function implies local boundedness. It would
be interesting to know whether a similar assertion holds for functions with a finite
number of negative squares.

Remark 2. Corollary 1 probably holds even for noncommutative groups while
the problem of characterization of locally bounded functions f¢F.(G) seems to be
very difficult if G is not commutative.

Remark 3. Let G be an arbitrary commutative topological group. We say
that a complex-valued function g on G is locally bounded if there exists an open set
VG such that g is bounded on y+V for every y€G. Let now f€F.(G) be a
locally bounded function and consider the representation x—U, in IT.(f). It
follows by the same arguments as in the proof of property (vi) that the function
x—| U, is locally bounded. Since Theorem 3 holds for an arbitrary commutative
topological group G [6, Th. 2.7] we can repeat the proof of Theorem 1 to get the
decomposition (2) of f.
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