Characterization of locally bounded functions with a finite number of negative squares

Z. SASVÁRI

1. Introduction

Throughout the paper G denotes a locally compact commutative group.

Let f be a complex-valued function on G. The function f is called Hermitian if $f(-x) = \overline{f(x)}$ holds for every $x \in G$. If k is a nonnegative integer the Hermitian function f is said to have k negative squares if the Hermitian matrix

$$(1) \qquad (f(x_i-x_j))_{i,j=1}^n$$

has at most k negative eigenvalues for any choice of n and $x_1, ..., x_n \in G$, and for some choice of $x_1, ..., x_n$ the matrix (1) has exactly k negative eigenvalues. This definition reduces to that of a positive definite function in the case k=0. We denote by $P_k(G)$ ($P_k^c(G)$) the set of all (continuous) functions on G which have k negative squares.

For a function $f \in P_k^c(G)$, where G is second countable, an integral representation was given in [10]. The bounded functions in $P_k^c(G)$ are exactly the Fourier transforms of such measures on the character group of G which assign negative measure to k points and which are nonnegative outside of these points [9, 10]. A survey and bibliography about functions with k negative squares can be found in [1, 10, 12].

It is the aim of this note to characterize those functions $f \in P_k(G)$ which are locally bounded, i.e., bounded on every compact set $K \subset G$. As was shown in [11], every measurable function f with k negative squares on an arbitrary locally compact group is locally bounded. Moreover, f has the decomposition $f = f_c + p$, where f_c is a continuous function with k negative squares and p is a positive definite function vanishing almost everywhere on G [10].

If f is not measurable and k>0, then it may be unbounded on every open set. To see this let l be a nonmeasurable real-valued function on R satisfying the

equation l(x+y)=l(x)+l(y) $(x, y \in \mathbb{R})$. Then the function f=il has one negative square and f is unbounded on every open set $V \subset \mathbb{R}$.

The main result of the present paper is the following

Theorem 1. Every locally bounded function $f \in P_k(G)$ has the decomposition

(2)
$$f = \gamma_1 f_1 + \dots + \gamma_n f_n + p$$
 where

- where
 - (i) γ_j is a bounded (continuous or discontinuous) character of G (j=1, ..., n); (ii) f_i is a continuous function with k_i negative squares and $k_1+...+k_n=k$;
 - (iii) p is a positive definite function.

Recall that a complex-valued Hermitian function defined on G is said to be conditionally positive definite if

$$\sum_{i,j=1}^n f(x_i - x_j) c_i \bar{c}_j \ge 0$$

holds for every choice of $x_1, ..., x_n \in G$ and for every choice of complex numbers $c_1, ..., c_n$ such that $c_1 + ... + c_n = 0$. It is easy to see that a conditionally positive definite function has at most one negative square. For a bibliography about conditionally positive definite functions we refer to [2, 4].

The above theorem has the following

Corollary 1. Let f be a conditionally positive definite function on G which is bounded on a set of positive Haar measure. Then f has the decomposition

$$f = f_c + p$$

where f_c is a continuous conditionally positive definite function and p is positive definite.

We remark that a conditionally positive definite function f is bounded if and only if f=p+m, where $m \in \mathbb{R}$ and p is a positive definite function [2]. The function f=il introduced above is a conditionally positive definite function which is unbounded on every set $V \subset \mathbb{R}$ of positive Haar measure.

2. Notation and preliminaries

(2.1) Let k be a nonnegative integer. Throughout the paper the symbol Π_k denotes a π_k -space with rank of negativity k. We shall assume familiarity with basic information about π_k -spaces as found in [3, 5].

Let

$$\Pi_{\mathbf{k}} = \Pi_{+} \oplus \Pi_{-}$$

be a fixed decomposition of Π_k where Π_+ is a positive subspace and Π_- is a negative k-dimensional subspace. Representing each vector $v \in \Pi_k$ in the form $v = v_+ + v_ (v_+ \in \Pi_+, v_- \in \Pi_-)$ we introduce a new scalar product [,] in Π_k by

(4)
$$[v, w] = (v_+, w_+) - (v_-, w_-), \quad v, w \in \Pi_k.$$

This scalar product is positive definite and Π_k can be regarded as a Hilbert space with scalar product [,] and with the norm

$$||v|| = \sqrt{\overline{[v,v]}}.$$

The scalar product (v, w) is continuous with respect to the norm (5) in both variables v and w.

Let $\{e_1, ..., e_k\}$ be a basis of Π_- such that $[e_i, e_j] = -(e_i, e_j) = \delta_{ij}$. Then we have for any $v \in \Pi_k$

(6)
$$||v||^2 = [v, v] = (v, v) + 2 \sum_{i=1}^k |(e_i, v)|^2.$$

Recall that a linear operator U in Π_k is called unitary if it maps Π_k onto Π_k and preserves the scalar product (,) of Π_k , i.e.,

$$(Uv, Uw) = (v, w)$$
 for all $v, w \in \Pi_{k}$.

By a unitary representation of G in Π_k there is meant a mapping $x \to U_x$ of G satisfying the following conditions:

- (i) $U_0 = I$ where I is the identity operator in Π_k ;
- (ii) $U_{x+y} = U_x U_y$ for any $x, y \in G$;
- (iii) U_x is a unitary operator in Π_k for all $x \in G$.

We shall need the following correspondence between cyclic unitary representations of G in π_k -spaces and functions of the class $P_k(G)$ [10, Satz 9.2].

Theorem 2. For an arbitrary function $f \in P_k(G)$ there exists a π_k -space $\Pi_k(f)$ with the following properties:

- (i) the elements of $\Pi_k(f)$ are complex-valued functions on G, $f \in \Pi_k(f)$, and $\Pi_k(f)$ is invariant under translations;
 - (ii) the linear manifold T(f) spanned by all translations of f is dense in $\Pi_k(f)$;
 - (iii) $x \rightarrow U_x$ is a cyclic unitary representation of G in $\Pi_k(f)$, where U_x is defined by

$$(U_x g)(y) = g(y-x), g \in \Pi_k(f), x, y \in G;$$

- (iv) $g(x)=(g, U_x f), g \in \Pi_k(f), x \in G$;
- (v) if f is locally bounded then every function $g \in \Pi_k(f)$ is locally bounded. We now prove a further assertion.
- (vi) If f is locally bounded then the function $x \rightarrow ||U_x||$ is locally bounded.¹⁾

¹⁾ The operator norm is induced by the vector norm (5).

322 Z. Sasvári

Proof of (vi). It follows from the proof of Satz 9.2 in [10] that

$$\Pi_{\mathbf{k}}(f) = P \oplus N$$

where P is a positive subspace and N is a negative k-dimensional subspace such that every function $h \in N$ is a finite linear combination of translations of f, i.e., $h \in T(f)$. Let $\{e_1, ..., e_k\}$ be an orthonormal basis of N. By (6) we have

$$||U_x g||^2 = (g, g) + 2 \sum_{i=1}^k |(U_x g, e_i)|^2, g \in \Pi_k(f).$$

From $e_i \in T(f)$ and (iv) it follows easily that the function $h_i(-x) = (U_{-x}g, e_i) = g(g, U_x e_i)$ is a finite linear combination of translations of g(i=1, ..., n). By (v), g is locally bounded, so the function $x \to ||U_x g||^2$ is locally bounded for every $g \in \Pi_n(f)$. The local boundedness of $x \to ||U_x||$ follows now from the Banach—Steinhaus Theorem.

(2.2) Let $x \to U_x$ be a representation of G by invertible bounded linear operators on a Hilbert space \mathfrak{H} . We say that the representation $x \to U_x$ is locally bounded if the function $x \to ||U_x||$ is locally bounded. Denote by \mathfrak{H}_c the subspace of continuously translating elements of \mathfrak{H} , i.e., the set of all $h \in \mathfrak{H}$ for which $x \to U_x h$ is continuous from G into \mathfrak{H} in its weak topology. Let \mathscr{V} denote the set of all neighbourhoods V of the zero of G, $U_V = \{U_x \colon x \in V\}$, and $\mathscr{C}(U_V h)$ the closed convex hull of the "partial orbit" $U_V h = \{U_x h \colon x \in V\}$. The subspace \mathfrak{H}_0 of elements averaging to $0 \in \mathfrak{H}$ is the set of all $h \in \mathfrak{H}$ for which

$$0 \in \bigcap_{V \in \mathscr{X}} \mathscr{C}(U_V h).$$

K. DELEEUW and I. GLICKSBERG [6, Th. 2.7] proved the following

Theorem 3. Let $x \to U_x$ be a locally bounded representation of G in a Hilbert space \mathfrak{H} . Then \mathfrak{H}_c and \mathfrak{H}_0 are closed (U_x) -invariant subspaces and \mathfrak{H} is the orthogonal direct sum of \mathfrak{H}_c and \mathfrak{H}_0 .

Let now $f \in P_k(G)$ be a locally bounded function and consider the unitary representation $x \to U_x$ of G in $\Pi_k(f)$. By (vi) this representation is locally bounded with respect to the positive definite scalar product (4). (Note that local boundedness of $x \to U_x$ does not depend on the special decomposition (3).) It follows from the definition of \mathfrak{H}_c and from (iv) that every $h \in \mathfrak{H}_c$ is a continuous function. When $h \in \mathfrak{H}_0$ then h has the following property: for $\varepsilon > 0$ and any $V \in \mathscr{V}$ for which $\sup_{x \in V} \|U_x\| < \infty$ there exist $x_1, ..., x_n \in V$ and positive numbers $p_1, ..., p_n$ summing to 1 such that

(7)
$$\left|\sum_{i=1}^{n} p_{i} h(x-x_{i})\right| < \varepsilon \quad \text{for all} \quad x \in V.$$

Indeed, by the definition of \mathfrak{H}_0 there are $x_1, ..., x_n \in V$ and positive numbers $p_1, ..., p_n$ summing to 1 such that

$$\left\|\sum_{i=1}^n p_i U_{x_i} h\right\| < \varepsilon / \sup_{x \in V} \|U_x f\|.$$

By (iv) we have

$$\left|\sum_{i=1}^{n} p_{i}h(x-x_{i})\right| = \left|\left(\sum_{i=1}^{n} p_{i}U_{x_{i}}h\right)(x)\right| = \left|\left(\left(\sum_{i=1}^{n} p_{i}U_{x_{i}}h\right), U_{x}f\right)\right| \le$$

$$\leq \left\|\sum_{i=1}^{n} p_{i}U_{x_{i}}h\right\| \|U_{x}f\| < \varepsilon \quad \text{for} \quad x \in V.$$

(2.3) Let G^d be the discrete version of G. The character group of G^d is denoted by Γ^d . We introduce the notation Γ^d_u for the set of unbounded characters of G^d , i.e., the set of complex-valued unbounded functions γ on G^d for which $\gamma(0)=1$ and $\gamma(x+y)=\gamma(x)\gamma(y)$ hold. Let

$$\Gamma'^d = \Gamma^d \cup \Gamma^d_u$$
.

In the proof of Theorem 1 we shall need the following result which is the discrete version of Folgerung 11.7 in [10] (see also Theorem 3.1 in [8]).

Theorem 4. For every $f \in P_k(G)$ there exist positive integers k_i , functions $f_i \in P_k(G)$ and $\gamma_i \in \Gamma'^d$ (i=1, ..., n) with the following properties:

- (a) $f=f_1+...+f_n$;
- (b) $k = k_1 + ... + k_n$;
- (c) $f_i \in \Pi_k(f)$ (i=1, ..., n);
- (d) the only common nonpositive eigenvector of the translation operators U_x in $\Pi_{k_i}(f_i)$ are γ_i and $\overline{\gamma_i^{-1}}$. (2)

When f is locally bounded then by (c) and (v) in Theorem 2 the functions f_i are locally bounded as well.

3. Proof of Theorem 1 and Corollary 1

(3.1) Let $f \in P_k(G)$ be a locally bounded function and consider the locally bounded unitary representation $x \to U_x$ of G in $\Pi_k(f)$. By Theorem 4 we can restrict ourselves to the case where the only common nonpositive eigenvectors of the operators U_x are γ , $\overline{\gamma^{-1}} \in \Gamma'^d$. Since $\frac{|\gamma|}{\gamma}$ is a bounded character of G, the (locally bounded)

a) Note that $\gamma_i = \overline{\gamma_i^{-1}}$ if and only if $\gamma_i \in \Gamma^d$.

324 Z. Sasvári

function $f' = \frac{|\gamma|}{\gamma} f$ has k negative squares. Moreover, the only common nonpositive eigenvectors of the translation operators U_x in $\Pi_k(f')$ are $|\gamma|$ and $|\gamma|^{-1}$ (see for this (11.5)(a) and (3.2)(c) in [10]). Thus, the proof of Theorem 1 will be complete if we verify the following.

Proposition 1. Let $f \in P_k(G)$ be a locally bounded function. If the only common nonpositive eigenvectors of the operators U_x in $\Pi_k(f)$ are γ and γ^{-1} , and if they are positive then

$$f=f_c+p,$$

where $f_c \in P_k^c(G)$ and $p \in P_0(G)$.

Proof. We consider the π_k -space $\Pi_k(f)$ as a Hilbert space with the scalar product [,] in (4). By Theorem 3 $\Pi_k(f)$ is the [,]-orthogonal direct sum of the closed (U_x) -invariant subspaces X_c and X_0 . Considering X_0 as subspace of the π_k -space $\Pi_k(f)$ there are three possibilities:

- (i) X_0 is a π_l -space $(l \ge 1)$;
- (ii) X_0 is degenerate;
- (iii) X_0 is a Hilbert space.

In the first case the commuting unitary operators U_x have a common non-positive eigenvector in X_0 [7] which by our assumption must be γ or γ^{-1} . In the second case the isotropic part N of X_0 is (U_x) -invariant and finite dimensional. Hence the commuting operators U_x have a common eigenvector in N which must be again γ or γ^{-1} . Thus, in both cases we have $\gamma \in X_0$ or $\gamma^{-1} \in X_0$. Suppose for example $\gamma \in X_0$ and let V be an open symmetric neighbourhood of zero such that γ is bounded on V:

$$\gamma(x) < K \quad (x \in V).$$

As $\gamma(-x)\gamma(x)=1$, we get

$$1/K < \gamma(x) < K \quad (x \in V).$$

Consequently, for any $x, x_i \in V$ (i=1, ..., n) and arbitrary positive numbers $p_1, ..., p_n$ summing to 1 we have:

$$\sum_{i=1}^{n} \gamma(x-x_i) p_i = \gamma(x) \sum_{i=1}^{n} \gamma(-x_i) p_i > \gamma(x)/K > 1/K^2,$$

in contradiction to (7). Hence (i) and (ii) are not possible and so X_0 is a Hilbert space. Let X'_c denote the (,)-orthogonal complement of X_0 . Then X'_c is a closed (U_x) -invariant π_k -space and

(8)
$$\Pi_k(f) = X_c' \oplus X_0 \oplus X_$$

(the symbol \oplus denotes (,)-orthogonal direct sum). On the other hand, X'_c is a Hilbert space with respect to the scalar product [,], and the restriction $x \to U'_x$ of $x \to U_x$ to X'_c is a locally bounded representation of G in X'_c . If $h' \in X'_c$ averages to zero with respect to the representation $x \to U'_x$ then it averages to zero with respect to $x \to U_x$ as well. Since X_0 consists of all $h \in \Pi_k(f)$ averaging to zero we necessarily have h' = 0. Applying Theorem 3 to the representation $x \to U'_x$ in X'_c we see that every $h \in X'_c$ is continuously translating. Hence the function $x \to [g, U_x h]$ is continuous, from which the continuity of $x \to (g, U_x h)$ follows $(g, h \in X'_c)$.

Let now $f=f_c+p$ $(f_c\in X'_c,\ p\in X_0)$ be the decomposition of f corresponding to (8). We have

$$f(x) = (f, U_x f) = (f_c + p, U_x f_c + U_x p) = (f_c, U_x f_c) + (p, U_x p).$$

Moreover,

(9)
$$f_c(x) = (f_c, U_x f) = (f_c, U_x f_c) + (f_c, U_x p) = (f_c, U_x f_c)$$

and analogously

$$p(x) = (p, U_x p).$$

It follows from (9) that f_c is continuous. The function f is a cyclic vector for $x \to U_x$ and so f_c is cyclic for $x \to U_x'$. Thus, f_c has k negative squares [10, Satz 11.1]. Since X_0 is a Hilbert space (with respect to (,)) the function p is positive definite, completing the proof of Proposition 1.

(3.2) Let now f be a conditionally positive definite function which is bounded on a set $A \subset G$ of positive Haar measure. By a well known property of the Haar measure, A - A contains an open set $V \neq \emptyset$. It follows from the inequality

(10)
$$\sqrt{|f(x-y)|} \le \sqrt{|f(x)|} + \sqrt{|f(y)|}, \quad x, y \in G,$$

that f is bounded on V. Moreover, (10) implies that f is bounded on y+V for every $y \in G$. Since compact sets can be covered by finitely many sets V_i of the form $V_i = y_i + V$, f is locally bounded.

Let us consider the (locally bounded) unitary representation $x \to U_x$ in $\Pi_1(f)$ (we neglect the trivial case where f is positive definite). By [10, (11.5)] the only common nonpositive eigenvector of the operators U_x is $\gamma = 1$. Therefore, we can apply Proposition 1 to obtain the decomposition

$$f=f_c+p,$$

where $f_c \in P_1^c(G)$ and $p \in P_0(G)$. All what remains to prove is that f_c is conditionally positive definite. Since T(f) is dense in $\Pi_1(f)$, there is a sequence w_n of finitely supported complex measures on G such that

$$f_c = \lim_{n \to \infty} f * w_n$$

326 Z. Sasvári

(the symbol * denotes convolution). By (9) and (iv) in Theorem 2 we have

$$f_c(x) = (f_c, U_x f_c) = \lim_{n \to \infty} (f * w_n, U_x (f * w_n)) =$$

$$= \lim_{n \to \infty} (f * w_n * \tilde{w}_n, U_x f) = \lim_{n \to \infty} f * w_n * \tilde{w}_n(x),$$

where \tilde{w}_n is defined by $\tilde{w}_n(\{-x\}) = \overline{w_n(\{x\})}$. It follows immediately from the definition of conditional positive definiteness that the functions $f*w_n*\tilde{w}_n$ and so f_c are conditionally positive definite. The proof of Corollary 1 is complete.

Remark 1. As we have seen, boundedness on a set of positive Haar measure of a conditionally positive definite function implies local boundedness. It would be interesting to know whether a similar assertion holds for functions with a finite number of negative squares.

Remark 2. Corollary 1 probably holds even for noncommutative groups while the problem of characterization of locally bounded functions $f \in P_k(G)$ seems to be very difficult if G is not commutative.

Remark 3. Let G be an arbitrary commutative topological group. We say that a complex-valued function g on G is locally bounded if there exists an open set $V \subset G$ such that g is bounded on g+V for every $g\in G$. Let now $g\in P_k(G)$ be a locally bounded function and consider the representation $g \mapsto U_x$ in $\Pi_k(f)$. It follows by the same arguments as in the proof of property (vi) that the function $g \mapsto \|U_x\|$ is locally bounded. Since Theorem 3 holds for an arbitrary commutative topological group $g \in G$, Th. 2.7] we can repeat the proof of Theorem 1 to get the decomposition (2) of $g \in G$.

References

- T. Ja. Azizov, I. S. Iohvidov, Linear operators in spaces with an indefinite metric and their applications, *Itogi Nauki i Techn.*, Ser. Mat. Anal., 17 (1979), 113—205 (Russian).
- [2] CH. BERG, G. FORST, Potential Theory on Locally Compact Abelian Groups, Springer-Verlag (Berlin-Heidelberg-New York, 1977).
- [3] J. BOGNÁR, Indefinite Inner Product Spaces, Springer-Verlag (Berlin—Heidelberg—New York, 1974).
- [4] H. HEYER, Probability Measures on Locally Compact Groups, Springer-Verlag (Berlin-Heidelberg-New York, 1977).
- [5] I. S. IOHVIDOV, M. G. KREIN and H. LANGER, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, Akademie-Verlag (Berlin, 1982).
- [6] K. DELEEUW, I. GLICKSBERG, The decomposition of certain group representations, J. Anal. Math., 15 (1965), 135—192.
- [7] M. A. NAIMARK, On commuting unitary operators in spaces with an indefinite metric, Acta Sci. Math., 24 (1963), 177—189.

- [8] Z. SASVÁRI, Indefinite functions on commutative groups, Monatshefte Math., 100 (1985), 223—238.
- [9] Z. SASVÁRI, On bounded functions with a finite number of negative squares, Monatshefte Math., 99 (1985), 223—234.
- [10] Z. SASVÁRI, Definisierbare Funktionen auf Gruppen, Dissertationes Math., 281 (1989), 1-83.
- [11] Z. SASVÁRI, On measurable functions with a finite number of negative squares, *Acta Sci. Math.*, 50 (1986), 359—363.
- [12] J. STEWART, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math., 6 (1976), 409—434.

Z. SASVÁRI TECHNISCHE UNIVERSITÄT SEKTION MATHEMATIK 8027 DRESDEN, MOMMSENSTR. 13 GDR