Injection of shifts into contractions

L. KÉRCHY

The structure of unilateral shifts is well understood. Hence any relation between a contraction and a unilateral shift can be very useful. Here we only quote a recent result of H. BERCOVICI and K. TAKAHASHI (cf. [1]) claiming that a contraction T is reflexive whenever the set $\mathscr{I}(T, S) = \{A: AT = SA\}$ of intertwining operators contains a nonzero element, where S denotes the simple unilateral shift. In 1974 B. Sz.-NAGY and C. FOIAS proved the following (cf. [7, Corollary 2]):

Theorem 0. If T is a contraction of class C_{10} with finite defect indices d_T and d_{T^*} , then

$$S^{(k)} \stackrel{\text{c.i.}}{\prec} T \prec S^{(k)}$$
, where $k = d_{T^*} - d_T$.

Here $S^{(k)}$ stands for the unilateral shift of multiplicity k, i.e. for the orthogonal sum of k copies of the simple unilateral shift $S = S^{(1)}$. $T \prec S^{(k)}$ denotes that T is a quasiaffine transform of $S^{(k)}$, i.e. $\mathscr{I}(T, S^{(k)})$ contains a quasiaffinity (an operator with trivial kernel and dense range). The meaning of the notation $S^{(k)} \prec T$ is that $S^{(k)}$ can be completely injected into T, i.e. $\mathscr{I}(S^{(k)}, T)$ contains a subsystem Φ consisting of injections such that $\forall \{\operatorname{ran} A : A \in \Phi\} = \operatorname{dom} T$. In connection with other notions concerning contractions readers are referred to the monograph [9].

We remark that, as it was illustrated by an example in [7], the relation $S^{(k)} \stackrel{c.i.}{\prec} T$ in Theorem 0 can not be generally replaced by $S^{(k)} \prec T$.

Definition. Let T be a completely non-unitary (c.n.u.) contraction. If the space of T is separable then the number

$$\mu_{*,T} = \operatorname{ess\,sup}_{\zeta \in \operatorname{AD}} \operatorname{rank} \Delta_{*,T}(\zeta) \in [0,\infty]$$

will be called the *-multiplicity of T. In the general case $\mu_{*,T}$ is defined as the least upper bound of the *-multiplicities of the restrictions of T to its separable reducing subspaces.

Received July 28, 1986.

Here $\Delta_{*,T}(\zeta) = [I - \Theta_T(\zeta)\Theta_T(\zeta)^*]^{1/2}$ is the defect function of the adjoint of the characteristic function Θ_T of T, and the essential upper bound is taken with respect to the normalized Lebesgue measure m on the boundary $\partial \mathbf{D}$ of the open unit disc \mathbf{D} .

The *-multiplicity $\mu_{*,T}$ of *T* coincides with the usual multiplicity of the unitary operator $R_{*,T}$ of multiplication by the identical function $\chi(\zeta) = \zeta$ on the Hilbert space $(\Delta_{*,T}L^2(\mathfrak{D}_{T^*}))^-$. (Cf. [3].) Furthermore, we can observe that if *T* is of class $C_{\cdot 0}$ with $d_T < \infty$, then rank $\Delta_{*,T}(\zeta) = d_{T^*} - d_T$ a.e., whence $\mu_{*,T} = d_{T^*} - d_T$. Now, it is natural to ask how the statement of Theorem 0 alters if $\mu_{*,T} < \infty$ is assumed instead of $d_{T^*} < \infty$.

First we note that by a result of Takahashi (cf. [10, Proposition 2]) $S^{(k)} \leq T$ is already a consequence of the relation $T \leq S^{(k)}$. However $T \leq S^{(k)}$ does not hold in general. This is shown by the following.

Example. Let us consider a contraction T of class C_{10} such that rank $\Delta_{*,T} = \chi_{\alpha}$ a.e., where χ_{α} denotes the characteristic function of a Borel set $\alpha \subset \partial \mathbf{D}$ of measure $0 < m(\alpha) < 1$. (The existence of such a contraction was proved in [4].) Now the *-multiplicity of T is 1.

Let us assume that T is the quasi-affine transform of $S^{(k)}$, for some $1 \le k \le \infty$, and let $C \in \mathscr{I}(T, S^{(k)})$ be a quasi-affinity. Let $U^{(k)}$ denote the minimal unitary extension of $S^{(k)}$. The operator C can be considered as an element of $\mathscr{I}(T, U^k)$. In view of [5, Proposition 4] there exists an operator $D \in \mathscr{I}(R_{*,T}, U^{(k)})$ such that C=DX, where $X \in \mathscr{I}(T, R_{*,T})$ is a canonical intertwining operator. Since $R_{*,T}^* | (\operatorname{ran} X)^{\perp}$ is always of class C_{10} (cf. [,5 Proposition 4]) and since $R_{*,T}$ is now reductive, it follows that X has dense range. We infer that $(\operatorname{ran} D)^- = (\operatorname{ran} C)^- =$ $= \operatorname{dom} S^{(k)}$, so D can be considered as a quasi-surjective operator from $\mathscr{I}(R_{*,T}, S^{(k)})$, whence $D^* \in \mathscr{I}(S^{*(k)}, R_{*,T}^*)$ is an injection. This yields that $\{0\} = \ker R_{*,T}^* \supset$ $\supset D^* \ker S^{*(k)} \neq \{0\}$, what is a contradiction.

Therefore $T \prec S^{(k)}$ is not true, for any $1 \leq k \leq \infty$.

In [10] K. TAKAHASHI characterized, in terms of the characteristic function, contractions which are quasi-affine transforms of unilateral shifts of finite multiplicity. While in [11] P. Y. WU gave a characterization for contractions which are quasi-similar to unilateral shifts of finite multiplicity.

Though, as we have seen, $T \prec S^{(k)}$ $(k = \mu_*, T)$ loses validity in Theorem 0 if $d_{T^*} = \infty$, we shall prove that the relation $S^{(k)} \stackrel{c.i.}{\prec} T$ $(k = \mu_*, T)$ does remain true in a very general setting. This is expressed in the following theorem, the main result of our paper.

Theorem. If T is a c.n.u. contraction with *-multiplicity $1 \le \mu_{*,T} < \infty$, then

$$S^{(k)} \stackrel{\text{c.i.i.}}{\prec} T$$
, where $k = \mu_{*,T}$.

We remark that injection of shifts into strict contractions was investigated in [8] and [12]. A contraction T is called strict if ||T|| < 1, in which case $\mu_{*,T} = 0$.

In proving our theorem we can assume that T acts on a separable Hilbert space \mathfrak{H} . In fact, in the opposite case \mathfrak{H} can be decomposed into the orthogonal sum of separable subspaces reducing for T, and then the characteristic function of T will be the orthogonal sum of the characteristic functions of the restrictions of T. Hence in the sequel every Hilbert space will be supposed to be separable.

Since T is c.n.u. it can be given as a model operator (cf. [9, Chapter VI]). So let $\{\Theta, \mathfrak{E}, \mathfrak{E}_*\}$ be a purely contractive analytic function, its defect function is $\Delta = [I - \Theta^* \Theta]^{1/2}$. Let U_+ denote the operator of multiplication by the identical function $\chi(\zeta) = \zeta$ on the Hilbert space $\mathfrak{R}_+ = H^2(\mathfrak{E}_*) \oplus (\Delta L^2(\mathfrak{E}))^-$. The c.n.u. contraction T is defined on the Hilbert space $\mathfrak{H} = \mathfrak{R}_+ \oplus \{\Theta w \oplus \Delta w: w \in H^2(\mathfrak{E})\}$ as T = $= PU_+ |\mathfrak{H}$, where P denotes the orthogonal projection onto \mathfrak{H} in \mathfrak{R}_+ . The *-multiplicity of T is $\mu_{*,T} = \operatorname{ess}$, sup rank $\Delta_*(\zeta)$, where $\Delta_* = [I - \Theta \Theta^*]^{1/2}$.

The proof of the Theorem is based on the following.

Lemma. Let h be a function in $L^2(\mathfrak{E}_*)$ such that $||h(\zeta)||_{\mathfrak{E}_*}=1$ a.e. Then for any non-zero function $f \in H^2(\mathfrak{E}_*)$ and for any number 0 < c < 1, there exists an analytic function $u \in H^2(\mathfrak{E}_*)$ such that

(1)
$$\|u(\zeta)\|_{\mathfrak{G}_*} \leq 1 \quad a.e.,$$

(2)
$$|\langle u(\zeta), h(\zeta) \rangle_{\mathfrak{G}_{\ast}}| \geq c$$
 a.e., and

(3)
$$\langle u, f \rangle_{H^2(\mathfrak{E}_*)} \neq 0.$$

Proof. First we show that a function $u \in H^2(\mathfrak{E}_*)$ can be found with the properties (1) and (2). The proof of this is essentially the same as the proof of the Lemma in [6]. For the sake of easy reference we give the details.

Let $\{x_j\}_{j=1}^{\infty}$ be a dense sequence on the unit sphere of \mathfrak{E}_* , and for every *j* let us consider the function $h_j(\zeta) = \langle x_j, h(\zeta) \rangle_{\mathfrak{E}_*}$ ($\zeta \in \partial \mathbf{D}$), $h_j \in L^2$. Then we have

(4)
$$1 = \|h(\zeta)\|_{\mathfrak{E}_*} = \sup_j |h_j(\zeta)|, \text{ for a.e. } \zeta \in \partial \mathbf{D}.$$

Let 0 < v < 1 be arbitrary, and define $\{\alpha_j\}_{j=1}^{\infty}$ as $\alpha_1 = \alpha_1^{(0)}, \alpha_j = \alpha_j^{(0)} \setminus (\bigcup_{i=1}^{j-1} \alpha_i)$ $(j \ge 2)$, where $\alpha_j^{(0)} = \{\zeta \in \partial \mathbf{D} : |h_j(\zeta)| > v\}$. The sequence $\{\alpha_j\}_{j=1}^{\infty}$ consists of pairwise disjoint Borel sets, and by (4) we have

(5)
$$m(\partial \mathbf{D} \setminus (\bigcup_j \alpha_j)) = 0.$$

Let $\{\mu_j\}_{j=1}^{\infty}$ be a sequence of positive numbers such that $0 < \mu = \sum_{j=1}^{\infty} \mu_j < 1$. For every *j*, let us consider an outer function $\hat{u}_j \in H^{\infty}$ with absolute value $|\hat{u}_j| = (1-\mu)\chi_{a_i} + \mu_j\chi_{\partial D\setminus \alpha_i}$ a.e. on ∂D , and let us define $u_j = \hat{u}_j x_j \in H^2(\mathfrak{E}_*)$.

For every j and for a.e. $\zeta \in \alpha_j$ we can write $\sum_{i=1}^{\infty} \|u_i(\zeta)\|_{\mathfrak{E}_*} = 1 - \mu + \sum_{\substack{i=1\\i\neq j}}^{\infty} \mu_i \leq 1 - \mu + \mu = 1$. Hence in view of (5) $\sum_{j=1}^{\infty} \|u_j(\zeta)\|_{\mathfrak{E}_*} \leq 1$ and so $\sum_{j=1}^{\infty} u_j(\zeta)$ strongly converges in \mathfrak{E}_* a.e. on $\partial \mathbf{D}$. The limit function $u(\zeta) = \sum_{j=1}^{\infty} u_j(\zeta)$ satisfies (1), therefore, $u \in L^2(\mathfrak{E}_*)$. Furthermore, Lebesgue's dominated theorem ensures that $\lim_{n \to \infty} \|\sum_{j=1}^n u_j - u_j\|_{L^2(\mathfrak{E}_*)} = 0$, whence $u \in H^2(\mathfrak{E}_*)$.

For every j and for a.e. $\zeta \in \alpha_j$ we have

(6)
$$|\langle u(\zeta), h(\zeta) \rangle_{\mathfrak{E}_*}| = \Big| \sum_{i=1}^{\infty} \langle u_i(\zeta), h(\zeta) \rangle_{\mathfrak{E}_*} \Big| = \Big| \sum_{i=1}^{\infty} \hat{u}_i(\zeta) h_i(\zeta) \Big| \ge$$
$$\ge |\hat{u}_j(\zeta)| |h_j(\zeta)| - \sum_{i=1}^{\infty} |\hat{u}_i(\zeta)| |h_i(\zeta)| \ge (1-\mu)\nu - \sum_{i=1}^{\infty} \mu_i = (1-\mu)\nu - \mu$$

If μ and ν are chosen sufficiently close to 0 and 1, respectively, then $(1-\mu)\nu - \mu \ge c$, and so (2) is implied by (5) and (6).

Now, let us take real numbers c_1 and c_2 satisfying $c < c_1 < c_2 < 1$. By the previous part of the proof we can find a function $u_1 \in H^2(\mathfrak{E}_*)$ such that (1) and (2) hold with c_1/c_2 in place of c. Then for the function $u_2 = c_2 u_1 \in H^2(\mathfrak{E}_*)$ we have

(7)
$$\|u_2(\zeta)\|_{\mathfrak{S}_*} \leq c_2 \quad \text{a.e., and}$$

i≠j

(8)
$$|\langle u_2(\zeta), h(\zeta) \rangle_{\mathfrak{E}_*}| \geq c_1$$
 a.e..

Let δ denote the positive number $\delta = \min \{c_1 - c, 1 - c_2\}$, and for any integer $n \ge 0$ and for any vector $a \in \mathfrak{E}_*$, $||a|| \le \delta$ let us define the function $u_{n,a} \in H^2(\mathfrak{E}_*)$ as $u_{n,a} = u_2 + \chi^n a$. By (7) and (8) it easily follows that $u_{n,a}$ has the properties (1) and (2). Let us assume that (3) is not true, for any choice of n and a. Then taking a=0 we obtain $\langle u_2, f \rangle_{H^2(\mathfrak{E}_*)} = 0$, whence $\langle \chi^n a, f \rangle = \langle u_{n,a}, f \rangle = 0$ for every $n \ge 0$ and $a \in \mathfrak{E}_*$, $||a|| \le \delta$. But the set $\{\chi^n a: n \ge 0, a \in \mathfrak{E}_*, ||a|| \le \delta\}$ is total in $H^2(\mathfrak{E}_*)$ and $f \in H^2(\mathfrak{E}_*)$, so f must be zero, which is a contradiction.

Therefore, the function $u=u_{n,a} \in H^2(\mathfrak{E}_*)$ possesses the properties (1)—(3) for an appropriate choice of $n \ge 0$ and $a \in \mathfrak{E}_*$, $||a|| \le \delta$.

Now we turn to the

Proof of the Theorem. Let k denote the *-multiplicity of $T: 1 \le k = = \mu_{*,T} < \infty$.

1) First we show that there exists an injection A in $\mathcal{I}(S^{(k)}, T)$.

The operator $X_+: \mathfrak{K}_+ \to (\mathcal{A}_*(L^2(\mathfrak{E}_*))^-, X_+(u \oplus v) = (-\mathcal{A}_*u + \Theta v)$ intertwines U_+ with the operator R_* of multiplication by χ on the space $(\mathcal{A}_*L^2(\mathfrak{E}_*))^-, X_+ \in \mathcal{S}(U_+, R_*)$. In view of the commuting relation $\mathcal{A}_* \Theta = \Theta \mathcal{A}$ it is immediate that $X_+(\mathfrak{K}_+ \oplus \mathfrak{H}) = \{0\}$, and so the operator $X = X_+ | \mathfrak{H}$ belongs to $\mathcal{I}(T, R_*)$ and the relation

holds. (A detailed study of the operator X can be found in [5].)

Since $\Delta_*(\zeta)$ is a positive operator of finite rank a.e. and ess sup rank $\Delta_*(\zeta) = k$, we conclude that $\Delta_*(\zeta)$ is of the form

(10)
$$\Delta_*(\zeta) = \sum_{j=1}^k \delta_j(\zeta) h_j(\zeta) \otimes h_j(\zeta),$$

where

 $h_j \in L^2(\mathfrak{E}_*)$ for every $1 \leq j \leq k$,

 ${h_j(\zeta)}_{j=1}^k$ is an orthonormal system in \mathfrak{E}_* a. e. on $\partial \mathbf{D}$,

(11)

$$0 \leq \delta_j \in L^{\infty} \text{ for every } 1 \leq j \leq k,$$

$$1 \geq \delta_1(\zeta) \geq \delta_2(\zeta) \geq \dots \geq \delta_k(\zeta) \text{ a.e. on } \partial \mathbf{D}, \text{ and}$$

$$m(\alpha_k) > 0, \text{ where } \alpha_k = \{\zeta \in \partial \mathbf{D} \colon \delta_k(\zeta) \neq 0\}.$$

(Indeed, the function $\delta_1(\zeta) = \|\Delta_*(\zeta)\|_{\mathfrak{E}_*}$ is measurable, and an easy application of [2, Lemma II.1.1] guarantees the existence of a function $h_1 \in L^2(\mathfrak{E}_*)$ such that $\|h_1(\zeta)\|_{\mathfrak{E}^*} = 1$ a.e. and $h_1(\zeta) \in \ker(\Delta_*(\zeta) - \delta_1(\zeta)I)$, whenever $\ker(\Delta_*(\zeta) - \delta_1(\zeta)I) \neq \{0\}$. The functions $\delta_2 \in L^{\infty}$ and $h_2 \in L^2(\mathfrak{E}_*)$ can be obtained from $\Delta_* - \delta_1 h_1$ in place of Δ_* in an analogous way; and so on.)

Let 0 < c < 1 be arbitrary. In virtue of our Lemma, for every $1 \le j \le k$, we can find a function $u_j \in H^2(\mathfrak{E}_*)$ such that

(12)
$$\|u_i(\zeta)\|_{\mathfrak{S}_*} \leq 1 \quad \text{a.e., and}$$

(13)
$$|\langle u_i(\zeta), h_i(\zeta) \rangle_{\mathfrak{S}_*}| \geq c$$
 a.e..

Let $\{e_j\}_{j=1}^k$ be an orthonormal basis on a Hilbert space \mathfrak{G} . The operator of multiplication by χ on the space $H^2(\mathfrak{G})$ is a unilateral shift of multiplicity k, which will be denoted by $S^{(k)}$. Since on account of (12), for any sequence $\{\xi_j\}_{j=1}^k \subset H^2$, we have

$$\begin{split} \left\|\sum_{j=1}^{k} \zeta_{j} u_{j}\right\|_{H^{2}(\mathfrak{G}_{*})} &\leq \sum_{j=1}^{k} \|\zeta_{j} u_{j}\|_{H^{2}(\mathfrak{G}_{*})} = \sum_{j=1}^{k} \left(\int_{\partial D} |\zeta_{j}|^{2} \|u_{j}\|_{\mathfrak{G}_{*}}^{2} dm\right)^{1/2} \leq \\ &\leq \sum_{j=1}^{k} \|\zeta_{j}\|_{H^{2}} \leq k^{1/2} \left\|\sum_{j=1}^{k} \zeta_{j} e_{j}\right\|_{H^{2}(\mathfrak{G})}, \end{split}$$

it follows that by the definition

$$W(\sum_{j=1}^{k} \xi_{j} e_{j}) = \sum_{j=1}^{k} \xi_{j} u_{j}, \quad \{\xi_{j}\}_{j=1}^{k} \subset H^{2},$$

we obtain a bounded, linear operator, belonging to $\mathscr{I}(S^{(k)}, U_+)$. Now, in virtue of [9, Theorem I.4.1] the operator

(14) A = PW

belongs to $\mathscr{I}(S^{(k)}, T)$.

We are going to prove that A is *injective* if c is sufficiently close to 1. First of all we observe that by (9) and (14)

holds, hence the injectivity of A is a consequence of the injectivity of X_+W .

Let us assume that $X_+W(\sum_{j=1}^k \xi_j e_j)=0$, for a sequence $\{\xi_j\}_{j=1}^k \subset H^2$. On account of (10) this means that for a.e. $\zeta \in \partial \mathbf{D}$ we have

$$0 = \left(X_{+}W\sum_{j=1}^{k} \xi_{j}e_{j}\right)(\zeta) = -\Delta_{*}(\zeta)\sum_{j=1}^{k} \xi_{j}(\zeta)u_{j}(\zeta) =$$
$$= -\left[\sum_{i=1}^{k} \delta_{i}(\zeta)h_{i}(\zeta)\otimes h_{i}(\zeta)\right]\sum_{j=1}^{k} \xi_{j}(\zeta)u_{j}(\zeta) = -\sum_{i=1}^{k} \delta_{i}(\zeta)\left(\sum_{j=1}^{k} \xi_{j}(\zeta)\langle u_{j}(\zeta), h_{i}(\zeta)\rangle_{\mathfrak{G}_{*}}\right)h_{i}(\zeta).$$

Making use of (11) we obtain that

(16)
$$\sum_{j=1}^{k} \zeta_{j}(\zeta) \langle u_{j}(\zeta), h_{i}(\zeta) \rangle_{\mathfrak{E}_{*}} = 0, \quad 1 \leq i \leq k,$$

for a.e. $\zeta \in \alpha_k$.

Let us introduce the operators $B(\zeta)$, $C(\zeta)$, $D(\zeta)$ ($\zeta \in \partial \mathbf{D}$) acting on \mathfrak{G} such that their matrices $[b_{ij}(\zeta)]_{i,j=1}^k$, $[c_{ij}(\zeta)]_{i,j=1}^k$, $[d_{ij}(\zeta)]_{i,j=1}^k$, respectively, in the basis $\{e_j\}_{j=1}^k$ are of the following form:

$$b_{ij}(\zeta) = \langle u_j(\zeta), h_i(\zeta) \rangle_{\mathfrak{E}_*}, \quad 1 \leq i, j \leq k,$$

$$c_{ij}(\zeta) = \begin{cases} b_{ij}(\zeta) & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases}$$

$$d_{ij}(\zeta) = \begin{cases} 0 & \text{if } i = j \\ -b_{ij}(\zeta) & \text{otherwise.} \end{cases}$$

By (13) we see that $|c_{jj}(\zeta)| = |b_{jj}(\zeta)| = |\langle u_j(\zeta), h_j(\zeta) \rangle_{\mathfrak{G}_*}| \ge c$ a.e. $(1 \le j \le k)$, hence $C(\zeta)$ is invertible and (17) $\|C(\zeta)^{-1}\| \le c^{-1}$ a.e..

334

On the other hand, if $i \neq j$ then by (12) and (13)

$$\begin{aligned} |d_{ij}(\zeta)| &= |b_{ij}(\zeta)| = |\langle u_j(\zeta), h_i(\zeta)\rangle_{\mathfrak{E}_*}| = |\langle u_j(\zeta) - \langle u_j(\zeta), h_j(\zeta)\rangle_{\mathfrak{E}_*} h_j(\zeta), h_i(\zeta)\rangle_{\mathfrak{E}_*}| \leq \\ &\leq ||u_j(\zeta) - \langle u_j(\zeta), h_j(\zeta)\rangle_{\mathfrak{E}_*} h_j(\zeta)||_{\mathfrak{E}_*} = [||u_j(\zeta)||_{\mathfrak{E}_*}^2 - |\langle u_j(\zeta), h_j(\zeta)\rangle_{\mathfrak{E}_*}|^2]^{1/2} \leq (1 - c^2)^{1/2}, \end{aligned}$$

and so

(18)
$$||D(\zeta)|| \leq \sum_{i=1}^{k} \left(\sum_{j=1}^{k} |d_{ij}(\zeta)|^2\right)^{1/2} \leq (1-c^2)^{1/2} k^{3/2}$$
 a.e.

Consequently, if c satisfies

(19)
$$1 > c > k^{3/2}(k^3+1)^{-1/2},$$

then $k^{3/2}(1-c^2)^{1/2} < c$, and by the inequalities (17), (18) we infer $||D(\zeta)|| < ||C(\zeta)^{-1}||^{-1}$. Then the operator $B(\zeta) = C(\zeta) - D(\zeta) = C(\zeta)[I - C(\zeta)^{-1}D(\zeta)]$ will be invertible and

(20)
$$\|B(\zeta)^{-1}\| \leq \|C(\zeta)^{-1}\| (1 - \|C(\zeta)^{-1}\| \|D(\zeta)\|)^{-1} \leq \\ \leq c^{-1} (1 - k^{3/2} (1 - c^2)^{1/2} c^{-1})^{-1} = (c - k^{3/2} (1 - c^2)^{1/2})^{-1} \quad \text{a.e.}.$$

Since the matrix of $B(\zeta)$ coincides with the matrix of the system of equations (16), it follows that $\xi_j(\zeta)=0$ for every $1 \le j \le k$ and for a.e. $\zeta \in \alpha_k$. But α_k is of positive measure and the functions ξ_j are from the Hardy class H^2 , so we conclude that $\xi_j=0$, for every $1\le j\le k$.

Therefore, taking into consideration (15) we obtain that under the assumption (19) the operator $A \in \mathscr{I}(S^{(k)}, T)$ defined before is injective.

2) To prove that $S^{(k)}$ can be completely injected into T it is enough to show that for any non-zero vector h in \mathfrak{H} the injection $A \in \mathscr{I}(S^{(k)}, T)$ can be chosen in such a way that h is not orthogonal to the range of A.

Let us be given first $0 \neq f \in H^2(\mathfrak{E}_*)$ and $g \in (\Delta L^2(\mathfrak{E}))^-$ such that $f \oplus g \in \mathfrak{H}$. Our Lemma ensures the existence of a function $u_1 \in H^2(\mathfrak{E}_*)$ for which beyond (12) and (13) even the relation $\langle u_1, f \rangle_{H^2(\mathfrak{E}_*)} \neq 0$ holds. In this case $\langle Ae_1, f \oplus g \rangle_{\mathfrak{H}} =$ $= \langle P(u_1 \oplus 0), f \oplus g \rangle_{\mathfrak{H}_+} = \langle u_1 \oplus 0, P(f \oplus g) \rangle_{\mathfrak{H}_+} = \langle u_1 \oplus 0, f \oplus g \rangle_{\mathfrak{H}_+} = \langle u_1, f \rangle_{H^2(\mathfrak{E}_*)} \neq 0$, i.e. $f \oplus g$ is not orthogonal onto ran A.

Let us assume now that $0 \neq g \in \mathfrak{H} \cap (\Delta L^2(\mathfrak{E}))^-$. Let $\lambda > 1$ be a real number such that the set $\alpha = \{\zeta \in \partial \mathbf{D} : \lambda^{-1} < \|g(\zeta)\|_{\mathfrak{E}} < \lambda\}$ is of positive measure. Let $\varrho > 0$ be arbitrary and let us consider the functions $\{u_j\}_{j=1}^t \subset H^2(\mathfrak{E}_*)$ occuring in the first part of the proof. Since for any $\xi_1 \in H^2$ we have

$$\|\xi_1(u_1 \oplus \varrho \chi_a g)\|_{\mathcal{R}_+} = \Big(\int\limits_{\partial D} |\zeta_1|^2 (\|u_1\|_{\mathcal{C}_*}^2 + \varrho^2 \chi_a \|g\|_{\mathcal{C}}^2) \, dm\Big)^{1/2} \leq (1 + \varrho^2 \lambda^2)^{1/2} \|\xi_1\|_{H^4},$$

it follows that the definition

$$W_{\varrho}(\sum_{j=1}^{k} \xi_{j} e_{j}) = \xi_{1}(u_{1} \oplus \varrho \chi_{a} g) + \sum_{j=2}^{k} \xi_{j} u_{j} \quad (\{\xi_{j}\}_{j=1}^{k} \subset H^{2})$$

· , .

gives a bounded linear operator $(||W_e|| \le k^{1/2}(1+\varrho^2\lambda^2)^{1/2})$ belonging to $\mathscr{I}(S^{(k)}, U_+)$. We define $A_e \in \mathscr{I}(S^{(k)}, T)$ by $A_e = PW_e$. Since $XA_e = X_+W_e$, the injectivity of A_e is again implied by the injectivity of X_+W_e .

For any $\{\xi_j\}_{j=1}^k \subset H^2$ we have

$$X_{+}W_{\varrho}\left(\sum_{j=1}^{k}\xi_{j}e_{j}\right)(\zeta) = X_{+}\left(\sum_{j=1}^{k}\zeta_{j}u_{j}\oplus\xi_{1}\varrho\chi_{a}g\right)(\zeta) =$$
$$= -\Delta_{*}(\zeta)\sum_{j=1}^{k}\xi_{j}(\zeta)u_{j}(\zeta) + \Theta(\zeta)\xi_{1}(\zeta)\varrho\chi_{a}(\zeta)g(\zeta) =$$

 $=\sum_{i=1}^{k} \left[-\delta_{i}(\zeta) \sum_{j=1}^{k} \zeta_{j}(\zeta) \langle u_{j}(\zeta), h_{i}(\zeta) \rangle_{\mathfrak{E}_{*}} + \zeta_{1}(\zeta) \varrho \langle \Theta(\zeta) \chi_{a}(\zeta) g(\zeta), h_{i}(\zeta) \rangle_{\mathfrak{E}_{*}}\right] h_{i}(\zeta) \quad \text{a.e.}$

Hence $X_+ W_{\varrho} (\sum_{j=1}^k \xi_j e_j) = 0$ yields that (21)

$$\delta_i(\zeta) \sum_{j=1}^{\kappa} \xi_j(\zeta) \langle u_j(\zeta), h_i(\zeta) \rangle_{\mathfrak{E}_*} - \xi_1(\zeta) \varrho \langle \Theta(\zeta) \chi_{\mathfrak{a}}(\zeta) g(\zeta), h_i(\zeta) \rangle_{\mathfrak{E}_*} = 0, \quad 1 \leq i \leq j \leq j \leq k$$

holds for a.e. $\zeta \in \alpha_k$.

Let $E_{q}(\zeta)$ ($\zeta \in \alpha_{k}$) stand for the operator acting on \mathfrak{G} with matrix in the basis $\{e_{j}\}_{j=1}^{k}$ of the form

k,

$$e_{ij}^{(\varrho)}(\zeta) = \begin{cases} \varrho \delta_i(\zeta)^{-1} \langle \Theta(\zeta) \chi_a(\zeta) g(\zeta), h_i(\zeta) \rangle_{\mathfrak{E}_*} & \text{if } j = 1 \\ 0 & \text{otherwise.} \end{cases}$$

By (11) we infer that

$$\begin{aligned} |e_{i1}^{(q)}(\zeta)| &= \varrho |\delta_i(\zeta)|^{-1} |\langle \Theta(\zeta) \chi_{\alpha}(\zeta) g(\zeta), h_i(\zeta) \rangle_{\mathfrak{E}_{\bullet}} | \leq \\ &\leq \varrho |\delta_i(\zeta)|^{-1} \chi_{\alpha}(\zeta) ||g(\zeta)||_{\mathfrak{E}} \leq \varrho \lambda |\delta_k(\zeta)|^{-1} \end{aligned}$$

is true for every $1 \le i \le k$ and a.e. $\zeta \in \alpha_k$, whence

(22)
$$\|E_{\varrho}(\zeta)\| = \left(\sum_{i=1}^{k} |e_{i1}^{(\varrho)}(\zeta)|^2\right)^{1/2} \leq k^{1/2} \varrho \lambda |\delta_k(\zeta)|^{-1} \text{ a.e. on } \alpha_k.$$

Let us consider a Borel set $\beta \subset \alpha_k$ of positive measure and a positive number $\lambda' > 0$ such that $|\delta_k(\zeta)|^{-1} \leq \lambda'$ for a.e. $\zeta \in \beta$. Let us assume that the functions $\{u_j\}_{j=1}^k$ correspond to a number c satisfying (19). Now, if $\varrho > 0$ fulfils the inequality

(23)
$$\rho k^{1/2} \lambda \lambda' < c - k^{3/2} (1 - c^2)^{1/2},$$

then by (20) and (22) we obtain that $||E_{\varrho}(\zeta)|| < ||B(\zeta)^{-1}||^{-1}$ and so $B_1(\zeta) = B(\zeta) - E(\zeta)$ is invertible a.e. on β . In view of (21) we infer that $\xi_j(\zeta) = 0$ $(1 \le j \le k)$ a.e. on β , and since $m(\beta) > 0$ that $\xi_j = 0$ $(1 \le j \le k)$. Therefore, the operator $A_{\varrho} \in \mathscr{I}(S^{(k)}, T)$ defined before will be an injection whenever c and $\varrho > 0$ satisfy the inequalities (19) and (23), respectively. At the same time we have

$$\langle A_{\varrho}e_1, 0\oplus g\rangle_{\mathfrak{H}} = \langle P(u_1\oplus \varrho\chi_a g), 0\oplus g\rangle_{\mathfrak{H}_+} = \langle u_1\oplus \varrho\chi_a g, P(0\oplus g)\rangle_{\mathfrak{H}_+} =$$

$$= \langle u_1 \oplus \varrho \chi_{\alpha} g, 0 \oplus g \rangle_{\mathfrak{R}_+} = \langle \varrho \chi_{\alpha} g, g \rangle_{L^2(\mathfrak{C})} = \varrho \left(\int_{\alpha} \|g\|_{\mathfrak{C}}^2 dm \right)^{1/2} \ge \varrho \lambda^{-1} m(\alpha)^{1/2} > 0,$$

i.e. g is not orthogonal to ran A_{ρ} .

2

According to [7, Theorem 5], if T is a contraction of class $C_{.0}$ with finite defect indices d_T , d_{T^*} and if $S^{(k)} \stackrel{i}{\prec} T$, then $k \leq d_{T^*} - d_T = \mu_{*,T}$. Hence, under the assumptions of Theorem 0, $\mu_{*,T}$ is the maximum of the multiplicities of those unilateral shifts which can be completely injected into T. The following example shows that this statement fails if $d_{T^*} = \infty$.

Example. Let $\{\alpha_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint Borel subsets of $\partial \mathbf{D}$ of positive measure. For every *n*, let T_n be a contraction of class C_{10} such that rank $\Delta_{*, T_n} = \chi_{\alpha_n}$ a.e. (cf. [4]). Then the orthogonal sum $T = \bigoplus_{n=1}^{\infty} T_n$ is also of class C_{10} with rank $\Delta_{*, T} = \operatorname{rank} \bigoplus_{n=1}^{\infty} \Delta_{*, T_n} = \chi_{\sum_{n=1}^{\infty} \alpha_n}$ a.e., whence $\mu_{*, T} = 1$. By our Theorem $S \stackrel{\text{c.i.}}{\prec} T_n$ for every *n*, which results in that $S^{(\infty)} \stackrel{\text{c.i.}}{\prec} T$.

References

- H. BERCOVICI and K. TAKAHASHI, On the reflexivity of contractions on Hilbert space, J. London Math. Soc., (2) 31 (1985).
- [2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars (Paris, 1969).
- [3] L. KÉRCHY, On the commutant of C11-contractions, Acta Sci. Math., 43 (1981), 15-26.
- [4] L. KÉRCHY, On the spectra of contractions belonging to special classes, J. Funct. Analysis, 67 (1986), 153-166.
- [5] L. KÉRCHY, On the residual parts of completely non-unitary contractions, Acta Math. Acad. Sci. Hungar., 50 (1987), 127-145.
- [6] L. KÉRCHY, Invariant subspaces of C₁.-contractions with non-reductive unitary extensions, Bull. London Math. Soc., 19 (1987), 161-166.
- [7] B. SZ.-NAGY and C. FOIAS, Jordan model for contractions of class C., Acta Sci. Math., 36 (1974), 305–322
- [8] B. SZ.-NAGY and C. FOIAŞ, Injection of shifts into strict contractions, *Linear operators and approximation*. II, Proc. M. R. I. Oberwolfach, Birkhäuser (Basel, 1974), 29-37.
- [9] B. Sz.-NAGY and C. FOIAŞ, Harmonic analysis of operators on Hilbert space, North Holland Akadémiai Kiadó (Amsterdam—Budapest, 1970).

1

- [10] K. TAKAHASHI, On quasi-affine transforms of unilateral shifts, Proc. Amer. Math. Soc., 100 (1987), 683-687.
- [11] P. Y. Wu, Contractions quasisimilar to an isometry, Acta Sci. Math., 53 (1989), 139-145.
- [12] C. APOSTOL, H. BERCOVICI, C. FOIAS and C. PEARCY, Quasiaffine transforms of operators, Michigan Math. J, 29 (1982), 243-255.

A state of the sta

.

.

•

· .

.

Ξ.

· · · · · · · · ·

÷ • • •

العربية مع المنظمة المراجع المتحدة . من المطلبية من 1976 من طبق المراجع

the the second sectors

·· ·

÷ .

المرجعة والأرجعة الأحداث

. .

TYPE BAR MARINE TO

(a) for the contract of the Alexandrian

BOLYAI INSTITUTE UNIVERSITY SZEGED ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY

and the second second

- .

• •

.. .

. .

1. ...

· .. •

.

.1.5

as text duals, success

. . . .

• , .