Injection of shifts into contractions

L. KÉRCHY

The structure of unilateral shifts is well understood. Hence any relation between a contraction and a unilateral shift can be very useful. Here we only quote a recent result of H . Bercovici and K . Takahashi (cf. [1]) claiming that a contraction T is reflexive whenever the set $\mathscr{I}(T, S)=\{A: A T=S A\}$ of intertwining operators contains a nonzero element, where S denotes the simple unilateral shift. In 1974 B. Sz.-NaGY and C. FoIAş proved the following (cf. [7, Corollary 2]):

Theorem 0. If T is a contraction of class C_{10} with finite defect indices d_{T} and $d_{T^{*}}$, then

$$
S^{(k)} \stackrel{\text { c.i. }}{\prec} T \prec S^{(k)}, \text { where } k=d_{T^{*}}-d_{T} \text {. }
$$

Here $S^{(k)}$ stands for the unilateral shift of multiplicity k, i.e. for the orthogonal sum of k copies of the simple unilateral shift $S=S^{(1)} . T<S^{(k)}$ denotes that T is a quasiaffine transform of $S^{(k)}$, i.e. $\mathscr{I}\left(T, S^{(k)}\right)$ contains a quasiaffinity (an operator with trivial kernel and dense range). The meaning of the notation $S^{(k)} \underset{\sim}{\text { c.i. }} T$ is that $S^{(k)}$ can be completely injected into T, i.e. $\mathscr{I}\left(S^{(k)}, T\right)$ contains a subsystem Φ consisting of injections such that $\vee\{\operatorname{ran} A: A \in \Phi\}=\operatorname{dom} T$. In connection with other notions concerning contractions readers are referred to the monograph [9].

We remark that, as it was illustrated by an example in [7], the relation $S^{(k)} \stackrel{\text { c.i. }}{<} T$ in Theorem 0 can not be generally replaced by $S^{(k)}<T$.

Definition. Let T be a completely non-unitary (c.n.u.) contraction. If the space of T is separable then the number

$$
\mu_{*, T}=\underset{\zeta \in \partial \mathbf{D}}{\operatorname{ess}} \sup _{\operatorname{Dr}} \operatorname{rank} \Delta_{*, T}(\zeta) \in[0, \infty]
$$

will be called the $*$-multiplicity of T. In the general case $\mu_{*, T}$ is defined as the least upper bound of the *-multiplicities of the restrictions of \boldsymbol{T} to its separable reducing subspaces.

Here $\Delta_{*, T}(\zeta)=\left[I-\Theta_{T}(\zeta) \Theta_{T}(\zeta)^{*}\right]^{1 / 2}$ is the defect function of the adjoint of the characteristic function Θ_{T} of T, and the essential upper bound is taken with respect to the normalized Lebesgue measure m on the boundary ∂D of the open unit disc D.

The *-multiplicity $\mu_{*, T}$ of T coincides with the usual multiplicity of the unitary operator R_{*}, T of multiplication by the identical function $\chi(\zeta)=\zeta$ on the Hilbert space $\left(\Delta_{*, T} L^{2}\left(\mathcal{D}_{T^{*}}\right)\right)^{-}$. (Cf. [3].) Furthermore, we can observe that if T is of class $C .0$ with $d_{T}<\infty$, then rank $\Delta_{*, T}(\zeta)=d_{T^{*}}-d_{T}$ a.e.; whence $\mu_{*, T}=d_{T^{*}}-d_{T}$. Now, it is natural to ask how the statement of Theorem 0 alters if $\mu_{*, T}<\infty$ is assumed instead of $d_{T^{*}}<\infty$.

First we note that by a result of Takahashi (cf. [10, Proposition 2]) $S^{(k)} \stackrel{\text { c.i. }}{<} T$ is already a consequence of the relation $T<S^{(k)}$. However $T \prec S^{(k)}$ does not hold in general. This is shown by the following.

Example. Let us consider a contraction T of class C_{10} such that rank $\Delta_{*, T}=\chi_{\alpha}$ a.e., where χ_{α} denotes the characteristic function of a Borel set $\alpha \subset \partial \mathrm{D}$ of measure $0<m(\alpha)<1$. (The existence of such a contraction was proved in [4].) Now the *-multiplicity of T is 1 .

Let us assume that T is the quasi-affine transform of $S^{(k)}$, for some $1 \leqq k \leqq \infty$, and let $C \in \mathscr{I}\left(T, S^{(k)}\right)$ be a quasi-affinity. Let $U^{(k)}$ denote the minimal unitary extension of $S^{(k)}$. The operator C can be considered as an element of $\mathscr{I}\left(T, U^{k}\right)$. In view of [5, Proposition 4] there exists an operator $D \in \mathscr{I}\left(R_{*, T}, U^{(k)}\right)$ such that $C=D X$, where $X \in \mathscr{I}\left(T, R_{*, T}\right)$ is a canonical intertwining operator. Since $R_{*, T}^{*} \mid(\operatorname{ran} X)^{\perp}$ is always of class C_{10} (cf. [,5 Proposition 4]) and since $R_{*, T}$ is now reductive, it follows that X has dense range. We infer that $(\operatorname{ran} D)^{-}=(\operatorname{ran} C)^{-}=$ $=\operatorname{dom} S^{(k)}$, so D can be considered as a quasi-surjective operator from $\mathscr{I}\left(R_{*, T}, S^{(k)}\right)$, whence $D^{*} \in \mathscr{I}\left(S^{*(k)}, R_{*, T}^{*}\right)$ is an injection. This yields that $\{0\}=\operatorname{ker} R_{*, T}^{*} \supset$ $\supset D^{*}$ ker $S^{*(k)} \neq\{0\}$, what is a contradiction.

Therefore $T<S^{(k)}$ is not true, for any $1 \leqq k \leqq \infty$.
In [10] K. TaRAhaShi characterized, in terms of the characteristic function, contractions which are quasi-affine transforms of unilateral shifts of finite multiplicity. While in [11] P. Y. Wu gave a characterization for contractions which are quasisimilar to unilateral shifts of finite multiplicity.

Though, as we have seen, $T<S^{(k)}\left(k=\mu_{*, T}\right)$ loses validity in Theorem 0 if $d_{T^{*}}=\infty$, we shall prove that the relation $S^{(k)} \stackrel{\text { c.i. }}{\prec} T\left(k=\mu_{*, r}\right)$ does remain true in a very general setting. This is expressed in the following theorem, the main result of our paper.

Theorem. If T is a c.n.u. contraction with $*-m u l t i p l i c i t y ~ 1 \leqq \mu_{*, T}<\infty$, then

$$
S^{(k)} \stackrel{\text { c.i. }}{\prec} T, \text { where } k=\mu_{*, T} .
$$

We remark that injection of shifts into strict contractions was investigated in [8] and [12]. A contraction T is called strict if $\|T\|<1$, in which case $\mu_{*, T}=0$.

In proving our theorem we can assume that T acts on a separable Hilbert space 5 . In fact, in the opposite case 5 can be decomposed into the orthogonal sum of separable subspaces reducing for T, and then the characteristic function of T will be the orthogonal sum of the characteristic functions of the restrictions of T. Hence in the sequel every Hilbert space will be supposed to be separable.

Since T is c.n.u. it can be given as a model operator (cf. [9, Chapter VI]). So let $\left\{\Theta, \mathfrak{E}, \mathfrak{E}_{*}\right\}$ be a purely contractive analytic function, its defect function is $\Delta=\left[I-\Theta^{*} \Theta\right]^{1 / 2}$. Let U_{+}denote the operator of multiplication by the identical function $\chi(\zeta)=\zeta$ on the Hilbert space $\Omega_{+}=H^{2}\left(\mathcal{E}_{*}\right) \oplus\left(\Delta L^{2}(\mathbb{E})\right)^{-}$. The c.n.u. contraction T is defined on the Hilbert space $\mathfrak{H}=\Omega_{+} \ominus\left\{\Theta w \oplus \Delta w: w \in H^{2}(\mathcal{E})\right\}$ as $T=$ $=P U_{+} \mid \mathfrak{H}$, where P denotes the orthogonal projection onto \mathfrak{G} in $\mathfrak{\Omega}_{+}$. The $*$-multiplicity of T is $\mu_{*, T}=$ ess sup $\operatorname{rank} \Delta_{*}(\zeta)$, where $\Delta_{*}=\left[I-\Theta \Theta^{*}\right]^{1 / 2}$.

The proof of the Theorem is based on the following.
Lemma. Let h be a function in $L^{2}\left(\mathbb{E}_{*}\right)$ such that $\|h(\zeta)\|_{⿷_{*}}=1$ a.e. Then for any non-zero function $f \in H^{2}\left(\mathfrak{E}_{*}\right)$ and for any number $0<c<1$, there exists an analytic function $u \in H^{2}\left(\mathfrak{E}_{*}\right)$ such that

$$
\begin{equation*}
\|u(\zeta)\|_{\varsigma_{*}} \leqq 1 \quad \text { a.e. } \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\mid\langle u(\zeta), h(\zeta)\rangle_{\mathbb{E}_{*}} \geqq \geqq \quad \text { a.e., and } \tag{2}\\
\langle u, f\rangle_{\boldsymbol{H}^{2}\left(\mathfrak{E}_{*}\right)} \neq 0 . \tag{3}
\end{gather*}
$$

Proof. First we show that a function $u \in H^{2}\left(\mathbb{E}_{*}\right)$ can be found with the properties (1) and (2). The proof of this is essentially the same as the proof of the Lemma in [6]. For the sake of easy reference we give the details.

Let $\left\{x_{j}\right\}_{j=1}^{\infty}$ be a dense sequence on the unit sphere of \mathfrak{E}_{*}, and for every j let us consider the function $h_{j}(\zeta)=\left\langle x_{j}, h(\zeta)\right\rangle_{\mathbb{\Xi}_{*}}(\zeta \in \partial \mathrm{D}), h_{j} \in L^{2}$. Then we have

$$
\begin{equation*}
1=\|h(\zeta)\|_{\mathfrak{E}_{*}}=\sup _{\boldsymbol{j}}\left|h_{j}(\zeta)\right|, \quad \text { for } \text { a.e. } \zeta \in \partial \mathbf{D} \tag{4}
\end{equation*}
$$

Let $0<\nu<1$ be arbitrary, and define $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ as $\alpha_{1}=\alpha_{1}^{(0)}, \alpha_{j}=\alpha_{j}^{(0)} \backslash\left(\bigcup_{i=1}^{-1} \alpha_{i}\right)$ ($j \geqq 2$), where $\alpha_{j}^{(0)}=\left\{\zeta \in \partial \mathrm{D}:\left|h_{j}(\zeta)\right|>v\right\}$. The sequence $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ consists of pairwise disjoint Borel sets, and by (4) we have

$$
\begin{equation*}
m\left(\partial \mathbf{D} \backslash\left(\bigcup_{j} \alpha_{j}\right)\right)=0 \tag{5}
\end{equation*}
$$

Let $\left\{\mu_{j}\right\}_{j=1}^{\infty}$ be a sequence of positive numbers such that $0<\mu=\sum_{j=1}^{\infty} \mu_{j}<1$. For every j, let us consider an outer function $\hat{u}_{j} \in H^{\infty}$ with absolute value $\left|\hat{u}_{j}\right|=$ $=(1-\mu) \chi_{\alpha_{j}}+\mu_{j} \chi_{\partial \mathrm{D} \backslash \alpha_{j}}$ a.e. on $\partial \mathrm{D}$, and let us define $u_{j}=\hat{u}_{j} x_{j} \in H^{2}\left(\mathcal{E}_{*}\right)$.

For every j and for a.e. $\zeta \in \alpha_{j}$ we can write $\sum_{i=1}^{\infty}\left\|u_{i}(\zeta)\right\|_{\mathbb{E}_{*}}=1-\mu+\sum_{\substack{i=1 \\ i \neq j}}^{\infty} \mu_{i} \leqq 1-$ $-\mu+\mu=1$. Hence in view of (5) $\sum_{j=1}^{\infty}\left\|u_{j}(\zeta)\right\|_{\mathfrak{c}_{*}} \leqq 1$ and so $\sum_{j=1}^{\infty} u_{j}(\zeta)$ strongly converges in \mathfrak{E}_{*} a.e. on $\partial \mathrm{D}$. The limit function $u(\zeta)=\sum_{j=1}^{\infty} u_{j}(\zeta)$ satisfies (1), therefore, $u \in L^{2}\left(\mathscr{E}_{*}\right)$. Furthermore, Lebesgue's dominated theorem ensures that $\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{n} u_{j}-u\right\|_{L^{2}\left(\mathfrak{F}_{*}\right)}=0$, whence $u \in H^{2}\left(\mathfrak{E}_{*}\right)$.

For every j and for a.e. $\zeta \in \alpha_{j}$ we have

$$
\begin{gather*}
\left|\langle u(\zeta), h(\zeta)\rangle_{\mathbb{E}_{*}}\right|=\left|\sum_{i=1}^{\infty}\left\langle u_{i}(\zeta), h(\zeta)\right\rangle_{\mathbb{C}_{*}}\right|=\left|\sum_{i=1}^{\infty} \hat{u}_{i}(\zeta) h_{i}(\zeta)\right| \geqq \tag{6}\\
\geqq\left|\hat{u}_{j}(\zeta)\right|\left|h_{j}(\zeta)\right|-\sum_{\substack{i=1 \\
i \neq j}}^{\infty}\left|\hat{u}_{i}(\zeta)\right|\left|h_{i}(\zeta)\right| \geqq(1-\mu) v-\sum_{i=1}^{\infty} \mu_{i}=(1-\mu) v-\mu .
\end{gather*}
$$

If μ and v are chosen sufficiently close to 0 and 1 , respectively, then $(1-\mu) v-\mu \geqq c$, and so (2) is implied by (5) and (6).

Now, let us take real numbers c_{1} and c_{2} satisfying $c<c_{1}<c_{2}<1$. By the previous part of the proof we can find a function $u_{1} \in H^{2}\left(\mathcal{E}_{*}\right)$ such that (1) and (2) hold with c_{1} / c_{2} in place of c. Then for the function $u_{2}=c_{2} u_{1} \in H^{2}\left(\mathcal{E}_{*}\right)$ we have

$$
\begin{array}{lll}
\left\|u_{2}(\zeta)\right\|_{\mathfrak{E}_{*}} \leqq c_{2} & \text { a.e., } & \text { and } \\
\left|\left\langle u_{2}(\zeta), h(\zeta)\right\rangle_{\mathbb{C}_{*}}\right| \geqq c_{1} & \text { a.e.. } \tag{8}
\end{array}
$$

Let δ denote the positive number $\delta=\min \left\{c_{1}-c, 1-c_{2}\right\}$, and for any integer $n \geqq 0$ and for any vector $a \in \mathfrak{E}_{*},\|a\| \leqq \delta$ let us define the function $u_{n, a} \in H^{2}\left(\mathfrak{E}_{*}\right)$ as $u_{n, a}=u_{2}+\chi^{n} a$. By (7) and (8) it easily follows that $u_{n, a}$ has the properties (1) and (2). Let us assume that (3) is not true, for any choice of n and a. Then taking $a=0$ we obtain $\left\langle u_{2}, f\right\rangle_{H^{2}\left(\mathbb{G}_{*}\right)}=0$, whence $\left\langle\chi^{n} a, f\right\rangle=\left\langle u_{n, a}, f\right\rangle=0$ for every $n \geqq 0$ and $a \in \mathbb{E}_{*}$, $\|a\| \leqq \delta$. But the set $\left\{\chi^{n} a: n \geqq 0, a \in \mathscr{E}_{*},\|a\| \leqq \delta\right\}$ is total in $H^{2}\left(\mathfrak{E}_{*}\right)$ and $f \in H^{2}\left(\mathfrak{E}_{*}\right)$, so f must be zero, which is a contradiction.

Therefore, the function $u=u_{n, a} \in H^{2}\left(\mathbb{E}_{*}\right)$ possesses the properties (1)-(3) for an appropriate choice of $n \geqq 0$ and $a \in \mathbb{E}_{*} ;\|a\| \leqq \delta$.

Now we turn to the
Proof of the Theorem. Let k denote the *-multiplicity of $T: 1 \leqq k=$ $=\mu_{\underline{*}, T}<\infty$.

1) First we show that there exists an injection A in $\mathscr{I}\left(S^{(k)}, T\right)$.

The operator $X_{+}: \Omega_{+} \rightarrow\left(\Delta_{*}\left(L^{2}\left(\mathscr{E}_{*}\right)\right)^{-}, X_{+}(u \oplus v)=\left(-\Delta_{*} u+\Theta v\right)\right.$ intertwines U_{+}with the operator R_{*} of multiplication by χ on the space $\left(\Lambda_{*} L^{2}\left(\mathfrak{E}_{*}\right)\right)^{-}, X_{+} \epsilon$ $\in \mathscr{I}\left(U_{+}, R_{*}\right)$. In view of the commuting relation $\Delta_{*} \Theta=\Theta \Delta$ it is immediate that $X_{+}\left(\Omega_{+} \ominus \mathfrak{S}\right)=\{0\}$, and so the operator $X=X_{+} \mid \mathfrak{S}$ belongs to $\mathscr{I}\left(T, R_{*}\right)$ and the relation

$$
\begin{equation*}
X_{+}=X P \tag{9}
\end{equation*}
$$

holds. (A detailed study of the operator X can be found in [5].)
Since $\Delta_{*}(\zeta)$ is a positive operator of finite rank a.e. and ess sup rank $\Delta_{*}(\zeta)=k$, we conclude that $\Delta_{*}(\zeta)$ is of the form

$$
\begin{equation*}
\Delta_{*}(\zeta)=\sum_{j=1}^{k} \delta_{j}(\zeta) h_{j}(\zeta) \otimes h_{j}(\zeta) \tag{10}
\end{equation*}
$$

where

$$
\begin{gather*}
h_{j} \in L^{2}\left(\mathfrak{E}_{*}\right) \text { for every } 1 \leqq j \leqq k, \\
\left\{h_{j}(\zeta)\right\}_{j=1}^{k} \text { is an orthonormal system in } \mathfrak{E}_{*} \text { a. e. on } \partial \mathbf{D}, \\
0 \leqq \delta_{j} \in L^{\infty} \text { for every } 1 \leqq j \leqq k, \tag{11}\\
1 \geqq \delta_{1}(\zeta) \geqq \delta_{2}(\zeta) \geqq \ldots \geqq \delta_{k}(\zeta) \text { a.e. on } \partial \mathbf{D}, \text { and } \\
m\left(\alpha_{k}\right)>0, \text { where } \alpha_{k}=\left\{\zeta \in \partial \mathbf{D}: \delta_{k}(\zeta) \neq 0\right\} .
\end{gather*}
$$

(Indeed, the function $\delta_{1}(\zeta)=\left\|\Delta_{*}(\zeta)\right\|_{\epsilon_{*}}$ is measurable, and an easy application of [2, Lemma II.1.1] guarantees the existence of a function $h_{1} \in L^{2}\left(\mathfrak{F}_{*}\right)$ such that $\left\|h_{1}(\zeta)\right\|_{\Pi^{*}}=1$ a.e. and $h_{1}(\zeta) \in \operatorname{ker}\left(\Delta_{*}(\zeta)-\delta_{1}(\zeta) I\right)$, whenever $\operatorname{ker}\left(\Delta_{*}(\zeta)-\delta_{1}(\zeta) I\right) \neq\{0\}$. The functions $\delta_{2} \in L^{\infty}$ and $h_{2} \in L^{2}\left(\mathfrak{C}_{*}\right)$ can be obtained from $\Delta_{*}-\delta_{1} h_{1}$ in place of Δ_{*} in an analogous way; and so on.)

Let $0<c<1$ be arbitrary. In virtue of our Lemma, for every $1 \leqq j \leqq k$, we can find a function $u_{j} \in H^{2}\left(\mathfrak{F}_{*}\right)$ such that

$$
\begin{align*}
& \left\|u_{j}(\zeta)\right\|_{\boldsymbol{\epsilon}_{*}} \leqq 1 \text { a.e., and } \tag{12}\\
& \left|\left\langle u_{j}(\zeta), h_{j}(\zeta)\right\rangle_{\mathcal{E}_{*}}\right| \geqq c \quad \text { a.e. } \tag{13}
\end{align*}
$$

Let $\left\{e_{j}\right\}_{j=1}^{k}$ be an orthonormal basis on a Hilbert space \mathfrak{G}. The operator of multiplication by χ on the space $H^{2}(\mathfrak{G})$ is a unilateral shift of multiplicity k, which will be denoted by $S^{(k)}$. Since on account of (12), for any sequence $\left\{\xi_{j}\right\}_{\}=1}^{k} \subset H^{2}$, we have

$$
\begin{gathered}
\left\|\sum_{j=1}^{k} \xi_{j} u_{j}\right\|_{\mathbb{R}^{2}\left(\bigodot_{*}\right)} \leqq \sum_{j=1}^{k}\left\|\xi_{j} u_{j}\right\|_{\mathbb{R}^{2}\left(巛_{*}\right)}=\sum_{j=1}^{k}\left(\int_{\partial \mathrm{D}}\left|\xi_{j}\right|^{2}\left\|u_{j}\right\|_{\Theta_{*}}^{2} d m\right)^{1 / 2} \leqq \\
\\
\leqq \sum_{j=1}^{k}\left\|\xi_{j}\right\|_{H^{2}} \leqq k^{1 / 2}\left\|\sum_{j=1}^{k} \xi_{j} e_{j}\right\|_{H^{2}(\varpi)},
\end{gathered}
$$

it follows that by the definition

$$
W\left(\sum_{j=1}^{k} \xi_{j} e_{j}\right)=\sum_{j=1}^{k} \xi_{j} u_{j}, \quad\left\{\xi_{j}\right\}_{j=1}^{k} \subset H^{2}
$$

we obtain a bounded, linear operator, belonging to $\mathscr{I}\left(S^{(k)}, U_{+}\right)$. Now, in virtue of [9, Theorem I.4.1] the operator

$$
\begin{equation*}
A=P W \tag{14}
\end{equation*}
$$

belongs to $\mathscr{I}\left(S^{(k)}, T\right)$.
We are going to prove that A is injective if c is sufficiently close to 1 . First of all we observe that by (9) and (14)

$$
\begin{equation*}
X A=X_{+} W \tag{15}
\end{equation*}
$$

holds, hence the injectivity of A is a consequence of the injectivity of $X_{+} W$.
Let us assume that $X_{+} W\left(\sum_{j=1}^{k} \xi_{j} e_{j}\right)=0$, for a sequence $\left\{\xi_{j}\right\}_{j=1}^{k} \subset H^{2}$. On account of (10) this means that for a.e. $\zeta \in \partial D$ we have

$$
\begin{gathered}
0=\left(X_{+} W \sum_{j=1}^{k} \xi_{j} e_{j}\right)(\zeta)=-\Delta_{*}(\zeta) \sum_{j=1}^{k} \xi_{j}(\zeta) \dot{u}_{j}(\zeta)= \\
=-\left[\sum_{i=1}^{k} \delta_{i}(\zeta) h_{i}(\zeta) \otimes h_{i}(\zeta)\right] \sum_{j=1}^{k} \xi_{j}(\zeta) u_{j}(\zeta)=-\sum_{i=1}^{k} \delta_{i}(\zeta)\left(\sum_{j=1}^{k} \xi_{j}(\zeta)\left\langle u_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{C}_{*}}\right) h_{i}(\zeta) .
\end{gathered}
$$

Making use of (11) we obtain that

$$
\begin{equation*}
\sum_{j=1}^{k} \xi_{j}(\zeta)\left\langle u_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathfrak{E}_{*}}=0, \quad 1 \leqq i \leqq k \tag{16}
\end{equation*}
$$

for a.e. $\zeta \in \alpha_{k}$.
Let us introduce the operators $B(\zeta), C(\zeta), D(\zeta)(\zeta \in \partial \mathrm{D})$ acting on $(5$ such that their matrices $\left[b_{i j}(\zeta)\right]_{i, j=1}^{k},\left[c_{i j}(\zeta)\right]_{i, j=1}^{k},\left[d_{i j}(\zeta)\right]_{i, j=1}^{k}$, respectively, in the basis $\left\{e_{j}\right\}_{j=1}^{k}$ are of the following form:

$$
\begin{aligned}
b_{i j}(\zeta) & =\left\langle u_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{C}_{*}}, \quad 1 \leqq i, j \leqq k, \\
c_{i j}(\zeta) & = \begin{cases}b_{i j}(\zeta) & \text { if } \quad i=j \\
0 & \text { otherwise },\end{cases} \\
& \\
d_{i j}(\zeta) & =\left\{\begin{array}{lll}
0 & \text { if } \quad i=j \\
-b_{i j}(\zeta) & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

By (13) we see that $\left|c_{j j}(\zeta)\right|=\left|b_{j j}(\zeta)\right|=\left|\left\langle u_{j}(\zeta), h_{j}(\zeta)\right\rangle_{\mathbb{C}_{*}}\right| \geqq c$ a.e. $(1 \leqq j \leqq k)$, hence $C(\zeta)$ is invertible and

$$
\begin{equation*}
\left\|C(\zeta)^{-1}\right\| \leqq c^{-1} \quad \text { a.e. } \tag{17}
\end{equation*}
$$

On the other hand, if $i \neq j$ then by (12) and (13)

$$
\begin{aligned}
& \qquad\left|d_{i j}(\zeta)\right|=\left|b_{i j}(\zeta)\right|=\left|\left\langle u_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{C}_{*}}\right|=\left|\left\langle u_{j}(\zeta)-\left\langle u_{j}(\zeta), h_{j}(\zeta)\right\rangle_{\mathbb{C}_{*}} h_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{C}_{*}}\right| \leqq \\
& \leqq\left\|u_{j}(\zeta)-\left\langle u_{j}(\zeta), h_{j}(\zeta)\right\rangle_{\mathfrak{C}_{*}} h_{j}(\zeta)\right\|_{\mathbb{C}_{*}}=\left[\left.\left\|u_{j}(\zeta)\right\|\right|_{\mathbb{C}_{*}} ^{2}-\mid\left\langle u_{j}(\zeta), h_{j}(\zeta)\right\rangle_{\mathbb{C}_{*}}{ }^{2}\right]^{1 / 2} \leqq\left(1-c^{2}\right)^{1 / 2} \\
& \text { and so }
\end{aligned}
$$

$$
\begin{equation*}
\|D(\zeta)\| \leqq \sum_{i=1}^{k}\left(\sum_{j=1}^{k}\left|d_{i j}(\zeta)\right|^{2}\right)^{1 / 2} \leqq\left(1-c^{2}\right)^{1 / 2} k^{3 / 2} \quad \text { a.e. } \tag{18}
\end{equation*}
$$

Consequently, if \boldsymbol{c} satisfies

$$
\begin{equation*}
1>c>k^{3 / 2}\left(k^{3}+1\right)^{-1 / 2} \tag{19}
\end{equation*}
$$

then $k^{3 / 2}\left(1-c^{2}\right)^{1 / 2}<c$, and by the inequalities (17), (18) we infer $\|D(\zeta)\|<\left\|C(\zeta)^{-1}\right\|^{-1}$. Then the operator $B(\zeta)=C(\zeta)-D(\zeta)=C(\zeta)\left[I-C(\zeta)^{-1} D(\zeta)\right]$ will be invertible and

$$
\begin{gather*}
\left\|B(\zeta)^{-1}\right\| \leqq\left\|C(\zeta)^{-1}\right\|\left(1-\left\|C(\zeta)^{-1}\right\|\|D(\zeta)\|\right)^{-1} \leqq \tag{20}\\
\leqq c^{-1}\left(1-k^{3 / 2}\left(1-c^{2}\right)^{1 / 2} c^{-1}\right)^{-1}=\left(c-k^{3 / 2}\left(1-c^{2}\right)^{1 / 2}\right)^{-1} \quad \text { a.e. }
\end{gather*}
$$

Since the matrix of $B(\zeta)$ coincides with the matrix of the system of equations (16), it follows that $\xi_{j}(\zeta)=0$ for every $1 \leqq j \leqq k$ and for a.e. $\zeta \in \alpha_{k}$. But α_{k} is of positive measure and the functions ξ_{j} are from the Hardy class H^{2}, so we conclude that $\xi_{j}=0$, for every $1 \leqq j \leqq k$.

Therefore, taking into consideration (15) we obtain that under the assumption (19) the operator $A \in \mathscr{I}\left(S^{(k)}, T\right)$ defined before is injective.
2) To prove that $S^{(k)}$ can be completely injected into T it is enough to show that for any non-zero vector h in \mathfrak{S} the injection $A \in \mathscr{I}\left(S^{(k)}, T\right)$ can be chosen in such a way that h is not orthogonal to the range of A.

Let us be given first $0 \neq f \in H^{2}\left(\mathfrak{E}_{*}\right)$ and $g \in\left(\Delta L^{2}(\mathbb{E})\right)^{-}$such that $f \oplus g \in \mathfrak{F}$. Our Lemma ensures the existence of a function $u_{1} \in H^{2}\left(\mathbb{E}_{*}\right)$ for which beyond (12) and (13) even the relation $\left\langle u_{1}, f\right\rangle_{H^{2}\left(\Psi_{7}\right)} \neq 0$ holds. In this case $\left\langle A e_{1}, f \oplus g\right\rangle_{5}=$ $=\left\langle P\left(u_{1} \oplus 0\right), f \oplus g\right\rangle_{\Omega_{+}}=\left\langle u_{1} \oplus 0, P(f \oplus g)\right\rangle_{\Omega_{+}}=\left\langle u_{1} \oplus 0, f \oplus g\right\rangle_{\Omega_{+}}=\left\langle u_{1}, f\right\rangle_{H^{2}\left(\mathbb{(}_{+}\right)} \neq 0$, i.e. $f \oplus g$ is not orthogonal onto ran A.

Let us assume now that $0 \neq g \in \mathfrak{S} \cap\left(\Delta L^{2}(\mathbb{E})\right)^{-}$. Let $\lambda>1$ be a real number such that the set $\alpha=\left\{\zeta \in \partial \mathrm{D}: \lambda^{-1}<\|g(\zeta)\|_{\mathbb{E}}<\lambda\right\}$ is of positive measure. Let $\varrho>0$ be arbitrary and let us consider the functions $\left\{u_{j}\right\}_{j=1}^{k} \subset H^{2}\left(\mathcal{E}_{*}\right)$ occuring in the first part of the proof. Since for any $\xi_{1} \in H^{2}$ we have

$$
\left\|\xi_{1}\left(u_{1} \oplus \varrho \chi_{a} g\right)\right\|_{\Omega_{+}}=\left(\int_{\partial \mathrm{D}}\left|\zeta_{1}\right|^{2}\left(\left\|u_{1}\right\|_{\mathbb{E}_{*}}^{2}+\varrho^{2} \chi_{a}\|g\|_{\S}^{2}\right) d m\right)^{1 / 2} \leqq\left(1+\varrho^{2} \lambda^{2}\right)^{1 / 2}\left\|\xi_{1}\right\|_{\mathbb{B}^{2}}
$$

it follows that the definition

$$
W_{Q}\left(\sum_{j=1}^{k} \xi_{j} e_{j}\right)=\xi_{1}\left(u_{1} \oplus \varrho \chi_{a} g\right)+\sum_{j=2}^{k} \xi_{j} u_{j} \quad\left(\left\{\xi_{j}\right\}_{j=1}^{k} \subset H^{2}\right)
$$

gives a bounded linear operator $\left(\left\|W_{\varrho}\right\| \leqq k^{1 / 2}\left(1+\varrho^{2} \lambda^{2}\right)^{1 / 2}\right)$ belonging to $G\left(S^{(k)}, U_{+}\right)$. We define $A_{e} \in \mathscr{I}\left(S^{(k)}, T\right)$ by $A_{e}=P W_{e}$. Since $X A_{e}=X_{+} W_{e}$, the injectivity of A_{Q} is again implied by the injectivity of $X_{+} W_{Q}$.

For any $\left\{\xi_{j}\right\}_{j=1}^{\}_{j}} \subset H^{2}$ we have

$$
\begin{gathered}
X_{+} W_{e}\left(\sum_{j=1}^{k} \xi_{j} e_{j}\right)(\zeta)=X_{+}\left(\sum_{j=1}^{k} \xi_{j} u_{j} \oplus \xi_{1} \varrho \chi_{a} g\right)(\zeta)= \\
=-\Delta_{*}(\zeta) \sum_{j=1}^{k} \xi_{j}(\zeta) u_{j}(\zeta)+\Theta(\zeta) \xi_{1}(\zeta) \varrho \chi_{a}(\zeta) g(\zeta)= \\
=\sum_{i=1}^{k}\left[-\delta_{i}(\zeta) \sum_{j=1}^{k} \xi_{j}(\zeta)\left\langle u_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{E}_{*}}+\xi_{1}(\zeta) \varrho\left\langle\Theta(\zeta) \chi_{a}(\zeta) g(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{E}_{*}}\right] h_{i}(\zeta) \text { a.e.. }
\end{gathered}
$$

Hence $X_{+} W_{e}\left(\sum_{j=1}^{k} \xi_{j} e_{j}\right)=0$ yields that

$$
\begin{equation*}
\delta_{i}(\zeta) \sum_{j=1}^{\kappa} \xi_{j}(\zeta)\left\langle u_{j}(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{F}_{*}}-\zeta_{1}(\zeta) \varrho\left\langle\Theta(\zeta) \chi_{\alpha}(\zeta) g(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{G}_{*}}=0, \quad 1 \leqq i \leqq k \tag{21}
\end{equation*}
$$

holds for a.e. $\zeta \in \alpha_{k}$.
Let $E_{\boldsymbol{Q}}(\zeta)\left(\zeta \in \alpha_{k}\right)$ stand for the operator acting on \boldsymbol{G} with matrix in the basis $\left\{e_{j}\right\}_{j=1}^{k}$ of the form

$$
e_{i j}^{(e)}(\zeta)=\left\{\begin{array}{l}
\varrho \delta_{i}(\zeta)^{-1}\left\langle\Theta(\zeta) \chi_{\alpha}(\zeta) g(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{E} *} \text { if } j=1 \\
0 \text { otherwise }
\end{array}\right.
$$

By (11) we infer that

$$
\begin{aligned}
\left|e_{i 1}^{(\varrho)}(\zeta)\right| & =\varrho\left|\delta_{i}(\zeta)\right|^{-1}\left|\left\langle\Theta(\zeta) \chi_{\alpha}(\zeta) g(\zeta), h_{i}(\zeta)\right\rangle_{\mathbb{E}_{*}}\right| \leqq \\
& \leqq \varrho\left|\delta_{i}(\zeta)\right|^{-1} \chi_{\alpha}(\zeta)\|g(\zeta)\|_{\Subset} \leqq \varrho \lambda\left|\delta_{k}(\zeta)\right|^{-1}
\end{aligned}
$$

is true for every $1 \leqq i \leqq k$ and a.e. $\zeta \in \alpha_{k}$, whence

$$
\begin{equation*}
\left\|E_{\varrho}(\zeta)\right\|=\left(\sum_{i=1}^{k}\left|e_{i 1}^{(\varrho}(\zeta)\right|^{2}\right)^{1 / 2} \leqq k^{1 / 2} \varrho \lambda\left|\delta_{k}(\zeta)\right|^{-1} \quad \text { a.e. on } \quad \alpha_{k} . \tag{22}
\end{equation*}
$$

Let us consider a Borel set $\beta \subset \alpha_{k}$ of positive measure and a positive number $\lambda^{\prime}>0$ such that $\left|\delta_{k}(\zeta)\right|^{-1} \leqq \lambda^{\prime}$ for a.e. $\zeta \in \beta$. Let us assume that the functions $\left\{u_{j}\right\}_{j=1}^{k}$ correspond to a number c satisfying (19). Now, if $\varrho>0$ fulfils the inequality

$$
\begin{equation*}
\varrho k^{1 / 2} \lambda \lambda^{\prime}<c-k^{3 / 2}\left(1-c^{2}\right)^{1 / 2} \tag{23}
\end{equation*}
$$

then by (20) and (22) we obtain that $\left\|E_{Q}(\zeta)\right\|<\left\|B(\zeta)^{-1}\right\|^{-1}$ and so $B_{1}(\zeta)=B(\zeta)-E(\zeta)$ is invertible a.e. on β. In view of (21) we infer that $\xi_{j}(\zeta)=0(1 \leqq j \leqq k)$ a.e. on β; and since $m(\beta)>0$ that $\xi_{j}=0(1 \leqq j \leqq k)$.

Therefore, the operator $\dot{A}_{e} \in \mathscr{F}\left(S^{(k)}, T\right)$ defined before will be an injection whenever c and $\varrho>0$. satisfy the inequalities (19) and (23), respectively. At the same time we have

$$
\begin{gathered}
\left\langle A_{e} e_{3}, 0 \oplus g\right\rangle_{\Omega}=\left\langle P\left(u_{1} \oplus \varrho \chi_{a} g\right), 0 \oplus g\right\rangle_{\Omega_{+}}=\left\langle u_{1} \oplus \varrho \chi_{a} g, P(0 \oplus g)\right\rangle_{\Omega_{+}}= \\
=\left\langle u_{1} \oplus \varrho \chi_{a} g, 0 \oplus g\right\rangle_{\Omega_{+}}=\left\langle\varrho \chi_{a} g, g\right\rangle_{L^{\prime}(\Phi)}=\varrho\left(\int_{a}\|g\|_{\Phi}^{2} d m\right)^{1 / 2} \supseteqq \varrho \lambda^{-1} m(\alpha)^{1 / 2}>0 ;
\end{gathered}
$$

i.e. g is not orthogonal to ran $A_{\boldsymbol{e}}$.

According to [7, Theorem 5], if T is a contraction of class $C_{.0}$ with finite defect indices $d_{T}, d_{T^{*}}$ and if $S^{(k)} \stackrel{i}{\prec} T$, then $k \leqq d_{T^{*}}-d_{T}=\mu_{*, T}$. Hence, under the assumptions of Theorem $0, \mu_{*, T}$ is the maximum of the multiplicities of those unilateral shifts which can be completely injected into T. The following example shows that this statement fails if $d_{T^{*}}=\infty$.

Example. Let $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint Borel subsets of $\partial \mathrm{D}$ of positive measure. For every n, let T_{n} be a contraction of class C_{10} such that $\operatorname{rank} \Delta_{*}, r_{n}=\chi_{\alpha_{n}}$ a.e. (cf. [4]). Then the orthogonal sum $T=\bigoplus_{n=1}^{\infty} T_{n}$ is also of class C_{10} with rank $\Delta_{*, T}=\operatorname{rank} \bigoplus_{n=1}^{\infty} \Delta_{*, T_{n}}=\chi_{n=1}^{\infty} \alpha_{n}$ a.e., whence $\mu_{*, T}=1$. By our Theorem $S \stackrel{\text { c.i. }}{\prec} T_{n}$ for every n, which results in that $S^{(\infty)} \stackrel{\text { c.i. }}{\prec} T$.

References

[1 H. Bercovici and K. Tarahashi, On the reflexivity of contractions on Hilbert space, J. London Math. Soc., (2) 31 (1985).
[2] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars (Paris, 1969).
[3] L. Kérchy, On the commutant of C_{11}-contractions, Acta Sci. Math., 43 (1981), 15-26.
[4] L. Kérchy, On the spectra of contractions belonging to special classes, J. Funct. Analysis, 67 (1986), 153-166.
[5] L. Kérchy, On the residual parts of completely non-unitary contractions, Acta Math. Acad. Sci. Hungar., 50 (1987), 127-145.
[6] L. Kerchy, Invariant subspaces of C_{1}-contractions with non-reductive unitary extensions, Bull. London Math. Soc., 19 (1987), 161-166.
[7] B. Sz.-Nagy and C. Foias, Jordan model for contractions of class C.0, Acta Sci. Math., 36 (1974), 305-322
[8] B. Sz.-Nagy and C. Folaş, Injection of shifts into strict contractions, Linear operators and approximation. II, Proc. M. R. I. Oberwolfach, Birkhäuser (Basel, 1974), 29-37.
[9] B. Sz.-NaGy and C. Foias, Harmonic analysls of operators on Hilbert space, North Holland Akadémiai Kiado (Amsterdam-Budapest, 1970).
[10] K. Tarabaser, On quasi-affine transforms of unilateral shifts, Proc. Amer. Math. Soc., 100 (1987), 683-687.
[11] P. Y. Wu, Contractions quasisimilar to an isometry, Acta Sci. Math., 53 (1989), 139-145.
[12] C. Apostol, H. Bercovici, C. Folas and C. Pearcy, Quasiaffine transforms of operators, Michigan Math. J. 29 (1982), 243-255.

BOLYAI INSTITUTE
UNIVERSITY SZEGED
ARADI VERTANUK TERE 1
6720 SZEGED, HUNGARY

