1998 (Berlin, 1994) a Ball construction of the construction of Source and Source and Source and Source and Source and

On commutativity and spectral radius property of real generalized *-algebras

ZOLTÁN MAGYAR

Introduction. Let A denote a Banach algebra over the real field throughout this paper. Of course, a complex algebra is a real algebra as well, although the spectra will change (cf. [1], p. 70). Assume we have a linear operation $a \rightarrow a^*$ on A with the properties

(i)
$$a^{**}=a$$
,

(ii)
$$(ab)^* = b^*a^*$$
.

Then A is called a *-algebra. If we replace (ii) by

(ii')
$$(ab)^* = a^*b^*$$

then we call A an auto-*-algebra. We say A is a generalized *-algebra if A is either a *-algebra or an auto-*-algebra (cf. [4], [6]). In such an algebra let

 $A_{II} = \{a \in A; a = a^*\}, A_{I} = \{a \in A; a = -a^*\}, A_{N} = \{a \in A; aa^* = a^*a\}.$

We call the elements of A_H , A_J and A_N self-adjoint, skew-adjoint and normal, respectively.

In [6] A is called Hermitian if each self-adjoint element has purely real spectrum and A is called skew Hermitian if the spectra of the skew-adjoint elements do not contain any non-zero real number (the spectrum is defined as follows: a complex number z belongs to Sp(x) if and only if $z \cdot 1 - x$ is not invertible in A_1 , where A_1 is the complexification, and unitization if necessary, of A, see [1], p. 70). None of these properties implies the other one as simple examples show. This is a marked difference from the complex case.

We shall retain the above definition of skew Hermitianness but we shall call \hat{A} Hermitian if both properties are satisfied.

Our main results then:

Received November 9, 1984 and in revised form May 25, 1988.

340 Z. Magyar

Theorem 1. If A is an Hermitian Banach auto-*-algebra then A/rad A is commutative.

Theorem 2. If A is an Hermitian Banach generalized *-algebra then $r(a^*a) \ge r(a)^2$ for any $a \in A$, where r denotes the spectral radius.

Remarks. If the *-operation is the identical mapping then Theorem 1 reduces to a theorem of I. KAPLANSKY (see Thm. 8 in [2]) and, indeed, that result is the starting point of our proof. We should emphasize that the significance of Kaplansky's theorem for Hermitian auto-*-algebras was first pointed out by T. W. PALMER in [4], though [4] contains a wrong proof assuming the unitary elements form a group, which is not true in an auto-*-algebra. On the other hand, the authors of [6] simply overlooked that the proof of their key Gelfand—Naimark type theorem (Theorem 2.3 in [6]) does not work for auto-*-algebras. Now our Theorem 1 implies that all results of [4] and [6] are true.

Finally we shall include a version of Theorem 2 which answers a question in [6] (see Proposition 3 below).

To prove our theorems we shall need the following simple lemmas.

Lemma 1. If A is skew Hermitian then every skew-adjoint element has purely imaginary spectrum.

Proof. Suppose to the contrary that $a \in A_J$, $z \in \text{Sp}(a)$ and z is not imaginary. Then z can not be real, since A is skew Hermitian, and hence z^2 is not real. Thus z and z^3 are linearly independent over **R**, and hence there are s, $t \in \mathbf{R}$ such that $sz + tz^3 = 1$. Then Sp $(sa + ta^3) \ni 1$, while $sa + ta^3$ is skew-adjoint; this is a contradiction.

Lemma 2. If A is an auto-*-algebra then

£1.1 .

$$\operatorname{rad} A_{H} = A_{H} \cap \operatorname{rad} A$$

(see [1] for the concept of the Jacobson-radical).

Proof. The containment " \supset " follows at once from the "quasi-inverse-characterization" of the radical (see [1], p. 125).

Prove " \subset ". Consider an element $a \in \operatorname{rad} A_H$, and an irreducible representation p of A over the real vector space X. Then we have to show p(a)=0 (if this is true for all p then $a \in \operatorname{rad} A$). If p is irreducible for A_H too, then we are done. If p is not irreducible then for any non-trivial A_H -invariant subspace M set

M' := the linear span of $p(A_J)M_{a_J}$

Then the relations $A_H A_J \subset A_J$, $A_J A_J \subset A_H$ imply $p(A_H)M' \subset M'$ and $p(A_J)M' \subset M$. Hence M+M' and $M \cap M'$ are invariant for $A_H + A_J = A$; and therefore $X = M \oplus$ $\oplus M'$. Now if *M* were not irreducible then one could find a non-trivial A_H -invariant subspace *L* in *M*, on the other hand, $X=L\oplus L'$ and clearly $L'\subset M'$, which is a contradiction. The same is true for *M'* since it is another invariant subspace. So we see $p|_{A_H}$ is a direct sum of two irreducible representations and hence p(a)=0.

Lemma 3. Let A be an auto-*-algebra. Then

 $\operatorname{Sp}_{A_H}(h) = \operatorname{Sp}_A(h)$ for any $h \in A_H$.

Proof. If a self-adjoint element has a quasi-inverse (or inverse) in A, then this quasi-inverse (or inverse) is self-adjoint, too. Thus we get our statement using the well-known characterization of the spectrum (see [1], p. 70).

Lemma. 4. Factorization by the radical does not effect the spectra except possibly for the number 0 in them.

Proof. Use the "quasi-inverse-characterization" of the radical (see [1], p. 125) and the fact if x has a left- and a right-quasi-inverse then x is quasi-invertible.

Proof of Theorem 1. First observe that the "*" preserves the radical (use the characterizations of the radical from [1]). Hence A/rad A is a Banach auto-*algebra and it is Hermitian by Lemma 4. Thus we can assume A is semi-simple. In this case A_H is semi-simple, too, by Lemma 2. If $||a||':=||a^*||$ then $||\cdot||'$ is another Banach algebra norm, hence by Johnson's theorem the two norms are equivalent (see [1], p. 130 for the proof of Johnson's theorem). Thus A_H is closed. Using Lemma 4 we see A_H is a semi-simple Banach algebra in which every element has purely real spectrum. This implies, by Theorem 8 of [2], that

(1)
$$A_H$$
 is commutative.

Let $h \rightarrow \hat{h}$ be the Gelfand transform on A_{H} . It is injective, because A_{H} is semisimple. Next we will show

(2) if $j \in A_j$ and $j^2 = 0$ then j = 0.

Consider a fixed $j \in A_J$ for which $j^2=0$. Let $k \in A_J$ be arbitrary and $r \in \mathbb{R}$. Since *A* is skew Hermitian, thus $\operatorname{Sp}(rj+k)$ is imaginary, and hence, using Lemma 3, we have $0 \ge (rj+k)^2 = r(jk+kj) + k^2$, for $j^2=0$. This is true for any *r*, therefore $\widehat{jk+kj}=0$, jk+kj=0. Thus $(jk)^2=j(-jk)k=0$, which implies $\widehat{(jk)}=0$, jk=0. Since jk+kj=0, we have jk=kj=0 for any $k \in A_J$. Now let $a \in A$ be arbitrary, and $h=(1/2)(a+a^*)$, $k=(1/2)(a-a^*)$. Then $aj=(h+k)j=hj\in A_J$, and therefore jaj=0, $(aj)^2=0$. We get from this $\operatorname{Sp}(aj)=\{0\}$ for each $a \in A$, and hence j=0for *A* is semi-simple.

÷

Next we want to show that

(3)
$$khk = k^2h$$
 for any $h\in A_H$, $k\in A_J$.

Let g=hk-kh. Since $k^2 \in A_H$, thus $k^2h=hk^2$, and hence gk=-kg. Therefore $(kg)^2=k \cdot (-kg) \cdot g$ and hence $\widehat{(kg)}^2=-\widehat{k^2}\widehat{g^2}$. Since $k, g \in A_J$ and $kg \in A_H$, thus k^2 , g^2 have non-positive real spectra, while $(kg)^2$ has non-negative spectrum. Thus we can infer $\widehat{kg}=0$, kg=0, which is exactly (3).

Now we will prove that

(4)
$$kh = hk$$
 for any $h \in A_H$, $k \in A_J$.

Let g=hk-kh. Then $g^2=hkhk-hk^2h+khkh-kh^2k=0$ (use (3) for h, k in the 1st and 3rd term, and for h^2 , k in the 4th term). Thus, by (2), we get g=0.

Finally, we will show that

(5)
$$jk = kj$$
 for any $j, k \in A_J$.

Since $jk, kj \in A_H$, thus, by (4), $jkj=j^2k$ and $kjk=k^2j$; therefore $0=kjkj-kj^2k+$ $+jkjk-jk^2j$, in other words, $m^2=0$ where $m=kj-jk \in A_H$. Thus $\hat{m}=0$ and (5) is proved.

The theorem is proved by uniting (2), (4) and (5).

Remark. Since the complex radical of a complex algebra is the same as the real radical (cf. [1]), therefore Theorem 1 is valid for complex algebras, too. Of course, one should check that a complex Hermitian algebra is Hermitian in our sense as a real algebra. This follows from the fact if S is the complex spectrum of an element then the "real spectrum" is the set $S \cup \overline{S}$.

Proof of Theorem 2. By Lemma 4 we may again assume A is semi-simple. But then, by Theorem 1, A is a *-algebra anyway. So let A be an Hermitian Banach *-algebra. Let $p(x):=r(x^*x)^{1/2}$ for all $x \in A$. Now A satisfies the conditions of Lemma 3.1 from [6], therefore we can infer

The proof of Lemma 41.2 in [1] (see p. 225) yields in the real case that

(7) if
$$1 \in \text{Sp}(a)$$
 then $p(a) \ge 1$.

We assert that

(8)
$$3p(a) \ge r(a)$$
 for all $a \in A$.

If r(a)=0 then this is clear. If r(a)>0 then let $b=r(a)^{-1}a$. We can choose a $z \in \text{Sp}(b)$ such that |z|=1. Let $c=(z+\overline{z})b-b^2$. Then $1=(z+\overline{z})z-z^2 \in \text{Sp}(c)$, and hence, by (7) and (6), we have

$$1 \le p(c) \le |z+\bar{z}| p(b) + p(b)^2 \le (2+p(b)) \cdot p(b), \text{ thus } p(b) \ge 1/3$$

and (8) is proved.

Applying (8) to a^n we get $r(a)^n = r(a^n) \leq 3p(a^n)$. Now use the submultiplicativity of p and tend with n to infinity. The theorem is proved.

Remark. Differently from the complex case (cf. [5]), $r(a^*a) \ge r(a)^2$ does not imply A is Hermitian; e.g., if A = C (considered as a real algebra) and the * is the identical mapping then $r(a^*a) = r(a)^2$ for all a but A is not Hermitian.

Proposition 3. Let A be a skew Hermitian Banach generalized *-algebra. Then $r(a^*a)=r(a)^2$ for any normal element a.

Proof. Let $a \in A_N$ be fixed. Let B be the second commutant of the set $\{a, a^*\}$. Then B is a Banach algebra, closed under the involution and $\operatorname{Sp}_B(b) = \operatorname{Sp}_A(b)$ for any $b \in B$. Further, B is commutative for a is normal. Let f be a multiplicative linear functional on B. Let f(a) = u, $f(a^*) = v$. Since A is skew Hermitian, thus, by Lemma 1, $a - a^*$ and $a^2 - (a^*)^2$ both have imaginary spectrum, and hence u - v and $u^2 - v^2$ are imaginary numbers. Thus if $u \neq v$ then u + v is real and $v = \overline{u}$. In any case |v| = |u|, and hence $|f(a^*a)| = |f(a)|^2$. This is true for any multiplicative linear functional f on B, therefore $r(a^*a) = r(a)^2$.

References

- F. F. BONSALL and J. DUNCAN, Complete Normed Algebras, Springer (Berlin—Heidelberg— New York, 1973).
- [2] I. KAPLANSKY, Normed algebras, Duke Math. J., 16 (1949), 399-418.
- [3] S. SHIRALI and J. W. M. FORD, Symmetry in complex involutory Banach algebras, II. Duke Math. J., 37 (1970), 275-280.
- [4] T. W. PALMER, Real C*-algebras, Pacific J. Math., 35 (1970), 195-204.
- [5] V. PTÁK, Banach algebras with involution, Manuscripta Math., 6 (1972), 245-290.
- [6] S. H. KULKARNI and B. V. LIMAYE, Gelfand-Naimark theorems for real Banach *-algebras, Math. Jap., 25 (1980), 545-558.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES REÁLTANODA U. 13-15 1053 BUDAPEST, HUNGARY