On commutativity and spectral radius property of real generalized *-algebras

ZOLTÅN MAGYAR

Introduction. Let A denote a Banach algebra over the real field throughout this paper. Of course, a complex algebra is a real algebra as well, although the spectra will change (cf. [1], p. 70): Assume we have a linear operation $a \rightarrow a^{*}$ on A with the properties
(i) $a^{* *}=a$,
(ii) $(a b)^{*}=b^{*} a^{*}$.

Then A is called a *-algebra. If we replace (ii) by
(ii) $(a b)^{*}=a^{*} b^{*}$
then we call A an auto-*-algebra. We say A is a generalized ${ }^{*}$-algebra if A is either a^{*}-algebra or an auto-*-algebra (cf. [4], [6]). In such an algebra let

$$
A_{H}=\left\{a \in A ; a=a^{*}\right\}, \quad A_{J}=\left\{a \in A ; a=-a^{*}\right\}, \quad A_{N}=\left\{a \in A ; a a^{*}=a^{*} a\right\}
$$

We call the elements of A_{H}, A_{J} and A_{N} self-adjoint, skew-adjoint and normal, respectively.

In [6] A is called Hermitian if each self-adjoint element has purely real spectrum and A is called skew Hermitian if the spectra of the skew-adjoint elements do not contain any non-zero real number (the spectrum is defined as follows: a complex number z belongs to $\operatorname{Sp}(x)$ if and only if $z \cdot 1-x$ is not invertible in A_{1}, where A_{1} is the complexification, and unitization if necessary, of A, see [1], p. 70). None of these properties implies the other one as simple examples show. This is a marked difference from the complex case.

We shall retain the above definition of skew Hermitianness but we shall call A Hermitian if both properties are satisfied.

Our main results then:

[^0]Theorem 1. If A is an Hermitian Banach auto-*-algebra then $A / \mathrm{rad} A$ is commutative.

Theorem 2. If A is an Hermitian Banach generalized ${ }^{*}$-algebra then $r\left(a^{*} a\right) \geqq r(a)^{2}$ for any $a \in A$, where r denotes the spectral radius.

Remarks. If the *-operation is the identical mapping then Theorem 1 reduces to a theorem of I. Kaplansky (see Thm. 8 in [2]) and, indeed, that result is the starting point of our proof. We should emphasize that the significance of Kaplansky's theorem for Hermitian auto-*-algebras was first pointed out by T. W. Palmer in [4], though [4] contains a wrong proof assuming the unitary elements form a group, which is not true in an auto-*-algebra. On the other hand, the authors of [6] simply overlooked that the proof of their key Gelfand-Naimark type theorem (Theorem 2.3 in [6]) does not work for auto-*-algebras. Now our Theorem 1 implies that all results of [4] and [6] are true.

Finally we shall include a version of Theorem 2 which answers a question in [6] (see Proposition 3 below).

To prove our theorems we shall need the following simple lemmas.
Lemma 1. If A is skew Hermitian then every skew-adjoint element has purely imaginary spectrum.

Proof. Suppose to the contrary that $a \in A_{J}, z \in \operatorname{Sp}(a)$ and z is not imaginary. Then z can not be real, since A is skew Hermitian, and hence z^{2} is not real. Thus z and z^{3} are linearly independent over \mathbf{R}, and hence there are $s, t \in \mathbf{R}$ such that $s z+$ $+t z^{3}=1$. Then $\operatorname{Sp}\left(s a+t a^{3}\right) \ni 1$, while $s a+t a^{3}$ is skew-adjoint; this is a contradiction.

Lemma 2. If A is an auto-*-algebrà then.

$$
\operatorname{rad} A_{H}=A_{H} \cap \operatorname{rad} A
$$

(see [1] for the concept of the Jacobson-radical).
Proof. The containment " \supset " follows at once from the "quasi-inverse-characterization" of the radical (see [1], p. 125).

Prove " \subset ". Consider an element $a \in \operatorname{rad}_{H} A_{H}$, and an irreducible representation p of A over the real vector space X. Then we have to show $p(a)=0$ (if this is true for all p then $a \in \operatorname{rad} A$). If p is irreducible for A_{H} too, then we are done. If p is not irreducible then for any non-trivial A_{H}-invariant subspace M set

$$
M^{\prime}:=\text { the linear span of } p\left(A_{J}\right) M
$$

Then the relations $A_{H} A_{J} \subset A_{J}, A_{J} A_{J} \subset A_{H}$ imply $p\left(A_{H}\right) M^{\prime} \subset M^{\prime}$ and $p\left(A_{J}\right) M^{\prime} \subset M$. Hence $M+M^{\prime}$ and $M \cap M^{\prime}$ are invatiant for $A_{A^{\prime}}+A_{J}=A$, and therefore $X=M \oplus$
$\oplus M^{\prime}$. Now if M were not irreducible then one could find a non-trivial A_{H}-invariant subspace L in M, on the other hand, $X=L \oplus L^{\prime}$ and clearly $L^{\prime} \subset M^{\prime}$, which is a contradiction. The same is true for M^{\prime} since it is another invariant subspace. So we see $\left.p\right|_{\lambda_{H}}$ is a direct sum of two irreducible representations and hence $p(a)=0$.

Lemma 3. Let A be an auto-*-algebra. Then

$$
\mathrm{Sp}_{A_{\mathrm{H}}}(h)=\mathrm{Sp}_{A}(h) \text { for any } h \in A_{\mathrm{H}}
$$

Proof. If a self-adjoint element has a quasi-inverse (or inverse) in A, then this quasi-inverse (or inverse) is self-adjoint, too. Thus we get our statement using the well-known characterization of the spectrum (see [1], p. 70).

Lemma. 4. Factorization by the radical does not effect the spectra except possibly for the number 0 in them.

Proof. Use the "quasi-inverse-characterization" of the radical (see [1], p. 125) and the fact if x has a left- and a right-quasi-inverse then x is quasi-invertible.

Proof of Theorem 1. First observe that the "**" preserves the radical (use the characterizations of the radical from [1]). Hence $A / \mathrm{rad} A$ is a Banach auto-*algebra and it is Hermitian by Lemma 4. Thus we can assume A is semi-simple. In this case A_{H} is semi-simple, too, by Lemma 2. If $\|a\|^{\prime}:=\left\|a^{*}\right\|$ then $\|\cdot\|^{\prime}$ is another Banach algebra norm, hence by Johnson's theorem the two norms are equivalent (see [1], p. 130 for the proof of Johnson's theorem). Thus A_{H} is closed. Using Lemma 4 we see A_{H} is a semi-simple Banach algebra in which every element has purely real spectrum. This implies, by Theorem 8 of [2], that

$$
\begin{equation*}
A_{H} \text { is commutative. } \tag{1}
\end{equation*}
$$

Let $h \rightarrow \hat{h}$ be the Gelfand transform on A_{H}. It is injective, because A_{H} is semisimple. Next we will show

$$
\begin{equation*}
\text { if } j \in A_{J} \text { and } j^{2}=0 \text { then } j=0 \tag{2}
\end{equation*}
$$

Consider a fixed $j \in A_{J}$ for which $j^{2}=0$. Let $k \in A_{J}$ be arbitrary and $r \in R$. Since A is skew Hermitian, thus $S p(r j+k)$ is imaginary, and hence, using Lemma 3, we have $0 \geqq \widehat{(r j+k)^{2}}=\hat{r} \widehat{(j k+k j)}+\widehat{k^{2}}$, for $\dot{j}^{2}=0$. This is true for any r; therefore $\widehat{j k+k j}=0, \quad j k+k j=0$. Thus $(j k)^{2}=j(-j k) k=0$, which implies $\widehat{(j k)}=0, j k=0$. Since $j k+k j=0$, we have. $j k=k j=0$ for any $k \in A_{J}$. Now let $a \in A$ be arbitrary, and $h=(1 / 2)\left(a+a^{*}\right), k=(1 / 2)\left(a-a^{*}\right)$. Then $a j=(h+k) j=h j \in A_{J}$, and therefore $j a j=0,(a j)^{2}=0$. We get from this $\operatorname{Sp}(a j)=\{0\}$ for each $a \in A$, and hence $j=0$ for A is semi-simple.

Next we want to show that

$$
\begin{equation*}
k h k=k^{2} h \quad \text { for any } h \in A_{H}, \quad k \in A_{J} \tag{3}
\end{equation*}
$$

Let $g=h k-k h$. Since $k^{2} \in A_{H}$, thus $k^{2} h=h k^{2}$, and hence $g k=-k g$. Therefore $(k g)^{2}=k \cdot(-k g) \cdot g$ and hence $\widehat{(k g)}{ }^{2}=-\widehat{k^{2}} \widehat{g}^{2}$. Since $k, g \in A_{J}$ and $k g \in A_{H}$, thus k^{2}, g^{2} have non-positive real spectra, while (kg$)^{2}$ has non-negative spectrum. Thus we can infer $\widehat{k g}=0, k g=0$, which is exactly (3).

Now we will prove that

$$
\begin{equation*}
k h=h k \quad \text { for any } h \in A_{H}, \quad k \in A_{J} . \tag{4}
\end{equation*}
$$

Let $g=h k-k h$. Then $g^{2}=h k h k-h k^{2} h+k h k h-k h^{2} k=0$ (use (3) for h, k in the 1 st and 3 rd term, and for h^{2}, k in the 4th term). Thus, by (2), we get $g=0$.

Finally, we will show that

$$
\begin{equation*}
j k=k j \text { for any } j, k \in A_{J} . \tag{5}
\end{equation*}
$$

Since $j k, k j \in A_{H}$, thus, by (4), $j k j=j^{2} k$ and $k j k=k^{2} j$; therefore $0=k j k j-k j^{2} k+$ $+j k j k-j k^{2} j$, in other words, $m^{2}=0$ where $m=k j-j k \in A_{H}$. Thus $\hat{m}=0$ and (5) is proved.

The theorem is proved by uniting (2), (4) and (5).
Remark. Since the complex radical of a complex algebra is the same as the real radical (cf. [1]), therefore Theorem 1 is valid for complex algebras, too. Of course, one should check that a complex Hermitian algebra is Hermitian in our sense as a real algebra. This follows from the fact if S is the complex spectrum of an element then the "real spectrum" is the set $S \cup \bar{S}$.

Proof of Theorem 2. By Lemma 4 we may again assume A is semi-simple. But then, by Theorem 1, A is a ${ }^{*}$-algebra anyway. So let A be an Hermitian Banach *-algebra. Let $p(x):=r\left(x^{*} x\right)^{1 / 2}$ for all $x \in A$. Now A satisfies the conditions of Lemma 3.1 from [6], therefore we can infer

$$
\begin{equation*}
p \text { is an algebra-seminorm on } A . \tag{6}
\end{equation*}
$$

The proof of Lemma 41.2 in [1] (see p. 225) yields in the real case that

$$
\begin{equation*}
\text { if } 1 \in \operatorname{Sp}(a) \text { then } p(a) \geqq 1 \tag{7}
\end{equation*}
$$

We assert that

$$
\begin{equation*}
3 p(a) \geqq r(a) \text { for all } a \in A \tag{8}
\end{equation*}
$$

If $r(a)=0$ then this is clear. If $r(a)>0$ then let $b=r(a)^{-1} a$. We can choose a $z \in \operatorname{Sp}(b)$ such that $|z|=1$. Let $c=(z+\bar{z}) b-b^{2}$. Then $1=(z+\bar{z}) z-z^{2} \in \operatorname{Sp}(c)$, and hence, by (7) and (6), we have

$$
1 \leqq p(c) \leqq|z+\bar{z}| p(b)+p(b)^{2} \leqq(2+p(b)) \cdot p(b), \text { thus } p(b) \geqq 1 / 3
$$

and (8) is proved.

Applying (8) to a^{n} we get $r(a)^{n}=r\left(a^{n}\right) \leqq 3 p\left(a^{n}\right)$. Now use the submultiplicativity of p and tend with n to infinity. The theorem is proved.

Remark. Differently from the complex case (cf. [5]), $r\left(a^{*} a\right) \geqq r(a)^{2}$ does not imply A is Hermitian; e.g., if $A=\mathbf{C}$ (considered as a real algebra) and the ${ }^{*}$ is the identical mapping then $r\left(a^{*} a\right)=r(a)^{2}$ for all a but A is not Hermitian.

Proposition 3. Let A be a skew Hermitian Banach generalized ${ }^{*}$-algebra. Then $r\left(a^{*} a\right)=r(a)^{2}$ for any normal element a.

Proof. Let $a \in A_{N}$ be fixed. Let B be the second commutant of the set $\left\{a, a^{*}\right\}$. Then B is a Banach algebra, closed under the involution and $\operatorname{Sp}_{B}(b)=\operatorname{Sp}_{A}(b)$ for any $b \in B$. Further, B is commutative for a is normal. Let f be a multiplicative linear functional on B. Let $f(a)=u, f\left(a^{*}\right)=v$. Since A is skew Hermitian, thus, by Lemma 1, $a-a^{*}$ and $a^{2}-\left(a^{*}\right)^{2}$ both have imaginary spectrum, and hence $u-v$ and $u^{2}-v^{2}$ are imaginary numbers. Thus if $u \neq v$ then $u+v$ is real and $v=\bar{u}$. In any case $|v|=|u|$, and hence $\left|f\left(a^{*} a\right)\right|=|f(a)|^{2}$. This is true for any multiplicative linear functional f on B, therefore $r\left(a^{*} a\right)=r(a)^{2}$.

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer (Berlin-HeidelbergNew York, 1973).
[2] I. Kaplansky, Normed algebras, Duke Math. J., 16 (1949), 399-418.
[3] S. Shirali and J. W. M. Ford, Symmetry in complex involutory Banach algebras, II. Duke Math. J., 37 (1970), 275-280.
[4] T. W. Palmer, Real C^{*}-algebras, Pacific J. Math., 35 (1970), 195-204.
[5] V. PTÁR, Banach algebras with involution, Manuscripta Math., 6 (1972), 245-290.
[6] S. H. Kulkarn and B. V. Limaye, Gelfand-Naimark theorems for real Banach *-algebras, Math. Jap., 25 (1980), 545-558.

[^0]: Received November 9, 1984 and-in revised form May 25, 1988.

