# A characterization of (real or complex) Hermitian algebras and equivalent $C^{*}$-algebras 

ZOLTÁN MAGYAR

## 0. Introduction

We use the symbol $\mathbf{F}$ to denote a field that is either the real field $\mathbf{R}$ or the complex field $\mathbf{C}$. We call an algebra $A$ over $\mathbf{F} \mathbf{a}^{*}$-algebra if there is a conjugate linear mapping "**" from $A$ into $A$ satisfying
(i) $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in A$,
(ii) $\left(a^{*}\right)^{*}=a$ for all $a \in A$.

We call $A$ an auto-*-algebra if we replace the axiom (i) by the axiom
(i') $(a b)^{*}=a^{*} b^{*}$ for all $a, b \in A$.
We call $A$ a generalized *-algebra if $A$ is a *-algebra or an auto-*-algebra. An element $a \in A$ is called self-adjoint, if $a=a^{*}$, skew-adjoint, if $a=-a^{*}$; and normal, if $a a^{*}=$ $=a^{*} a$. Denote by $A_{H}, A_{J}$ and $A_{N}$ the sets of all self-adjoint, skew-adjoint and normal elements, respectively.

We will treat Banach generalized *-algebras, that are generalized *-algebras with complete algebra norm. We define the spectrum of an element with respect to an algebra containing it as in [1] (see pp. 19-20 and 70). Then it is known that

$$
\max \{|z| ; z \in \operatorname{Sp}(A, a)\}=\inf _{n}\left\|a^{n}\right\|^{1 / n}=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}
$$

if $\|\cdot\|$ is a complete algebra norm on $A$. We write in this case

$$
r(a):=\inf _{n}\left\|a^{n}\right\|^{1 / n}
$$

Let $A$ be a Banach generalized ${ }^{*}$-algebra. $A$ is called Hermitian if $\operatorname{Sp}(A, a) \subset \mathbf{R}$ for all $a \in A_{H}$, and skew-Hermitian if $\operatorname{Sp}(A, a) \subset i \cdot \mathbf{R}$ for all $a \in A_{J}$. Every Hermitian
algebra over $\mathbf{C}$ is automatically skew-Hermitian, of course. But this assertion is not true for real algebras. We will prove that a real Banach generalized ${ }^{*}$-algebra $A$ is Hermitian and skew-Hermitian if and only if its complexification $A_{\mathrm{C}}$ (see [1] pp. 68 -69) is Hermitian (see Theorem 3 below).

We remark that there is an equivalent, but formally weaker, definition of the skew-Hermitian property demanding only $1 \notin \operatorname{Sp}(A, a)$ for all $a \in A_{J}$. It is not very hard to see that if $\operatorname{Sp}(A, a) \nsubseteq i \cdot \mathbf{R}$ for some $a \in A_{J}$ then there are $s, t \in \mathbf{R}$ such that $\operatorname{Sp}\left(A, s a+t a^{3}\right) \ni 1$, and $s a+t a^{3} \in A_{J}$.
$A$ is called a $C^{*}$-algebra, if it is isometrically ${ }^{*}$-isomorphic to a norm-closed *-subalgebra of the Banach *-algebra $B(\mathfrak{H})$ of all bounded F-linear operators on some Hilbert space $\mathfrak{S}$ over $\mathbf{F}$. $A$ is called an equivalent $C^{*}$-algebra, if it is homeomorphically ${ }^{*}$-isomorphic to some $C^{*}$-algebra. We will give a characterization of equivalent $C^{*}$-algebras in Theorem 1 below, which is a generalization of a result of PtÁk (see [4]).

We will prove the following characterization of Hermitian and skew-Hermitian algebras: $A$ is Hermitian and skew Hermitian if and only if there is such a *-homomorphism $\pi$ of $A$ into some $B(\mathfrak{H})$ which preserves the spectral radius (see Theorem 2). In contrast to a lot of characterizations of complex Hermitian algebras, this is valid for real algebras, too.

Our results are based on the following lemma:
Lemma 0.1. Let $A$ be a Hermitian and skew-Hermitian Banach generalized *-algebra over $\mathbf{F}$. Then there is a Hilbert space $\mathfrak{5}$ over $\mathbf{F}$ and $a^{*}$-homomorphism $\pi$ : $A \mapsto B(\mathfrak{5})$ such that $\|\pi(a)\|=r\left(a^{*} a\right)^{1 / 2}$ for all $a \in A$. Moreover, $r(a) \leqq\|\pi(a)\|$ for all $a \in A$, and $\operatorname{rad}(A)=\pi^{-1}(\{0\})$. If $A$ has a unit then $\pi$ can be chosen so that $\pi(1)=1$.

Proof. First we suppose that $A$ is a ${ }^{*}$-algebra. Let

$$
A_{p}=\left\{a \in A_{H} ; \operatorname{Sp}(A, a) \subset \mathbf{R}_{+}\right\}
$$

Then it is known that $A_{p}$ is a cone and $a^{*} a \in A_{p}$ for all $a \in A$ (see [5]). This is also true for the unitization $A+\mathbf{F}$ of $A$, since $A+\mathbf{F}$ is Hermitian and skew-Hermitian as well. Thus it is not hard to see that we can find for any fixed $a \in A$ a self-adjoint positive functional such that $f(1)=1$ and $f\left(a^{*} a\right)=r\left(a^{*} a\right)$ so that the customary GNS-construction gives us a Hilbert space $\mathfrak{S}$ and a *-homomorphism $\pi$ of $A$ satisfying $\|\pi(a)\|=r\left(a^{*} a\right)^{1 / 2}$ for all $a \in A$. (For more detailed description see [2], Lemma 3.1 and [1] § 37. See also [4] for another proof in case $\mathbf{F}=\mathbf{C}$.)

Since $\operatorname{rad}(A)=\{a \in A ; r(q a)=0$ for every $q \in A\}$ (see [1] p. 126), it is clear that $\operatorname{rad}(A) \subset N$, where $N:=\pi^{-1}(\{0\})$. On the other hand, the author has proved in [3], that $r(a) \leqq r\left(a^{*} a\right)^{1 / 2}$ in a Hermitian and skew-Hermitian Banach *-algebra. Thus $N$ is an ideal consisting of elements of spectrum $\{0\}$ whence $N \subset \operatorname{rad}(A)$. Moreover, we see that $r(a) \leqq\|\pi(a)\|$ for all $a \in A$.

Now we suppose $A$ is an auto-*-algebra. Being a conjugate linear automorphism the "*"" maps $\operatorname{rad}(A)$ onto itself. Let $B=A / \operatorname{rad}(A)$ and $p$ be the canonical mapping $A \mapsto B$. Then it is known that

$$
\begin{equation*}
\mathrm{Sp}(A, a) \backslash\{0\}=\mathrm{Sp}(B, p(a) \backslash\{0\} \text { for all } a \in A . \tag{1}
\end{equation*}
$$

(It is not hard to deduce this fact from Proposition 24.16. (i), p. 125 in [1].)
Therefore $B$ is a Hermitian and skew-Hermitian Banach auto-*-algebra. Moreover, $B$ is semisimple (see [1] p. 126). Thus, by a result of the author (see [3]), $B$ is commutative, and hence $B$ is a ${ }^{*}$-algebra. Therefore we have a representation $\pi_{1}$ of $B$ satisfying the statements of our lemma, and so by (1) $\pi:=\pi_{1} \circ p$ is a representation we asked.

## 1. A characterization of equivalent $\mathbf{C}^{*}$-algebras

Lemma 1.1. Let A be a Banach-algebra over $\mathbf{F}$, and let $g$ be an entire function on $\mathbf{C}$, satisfying $g^{\prime}(0) \neq 0$. Further in case $\mathbf{F}=\mathbf{R}$ we assume that the Taylor-series of $g$ at zero has only real coefficients. Then there is a function $f: \mathbf{R}_{+} \mapsto \mathbf{R}_{+}$so that $\|x\|^{2} \leqq f(c) \cdot\left\|x^{2}\right\|$ whenever $x$ is such that $\|g(t x)\| \leqq c$ for all $t \in \mathbf{R}_{+} \cdot(g(a)$ may be in the unitization $A+\mathrm{F}$ of $A$, if $A$ does not have a unit. We fix a norm on $A+\mathrm{F}$ in that case.)

Proof. Let $g(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n}$. If $h(z)=\sum_{n=2}^{\infty}\left|\alpha_{n}\right| \cdot z^{n}$ then $h$ is an entire function, too. Suppose that $\|g(t x)\| \leqq c$ for all $t \in \mathbf{R}_{+}$for some $x \in A$ and $c \in \mathbf{R}_{+}$. We can assume that $\|x\|=1$ because both sides of the inequality $\|x\|^{2} \leqq f(c) \cdot\left\|x^{2}\right\|$ are multiplied by $|\lambda|^{2}$ when we replace $x$ by $\lambda x$, and the case $x=0$ is trivial. Then let $p=\left\|x^{2}\right\|^{1 / 3}$, thus we see that $p \leqq 1$ and $\left\|x^{n}\right\| \leqq\left(p^{3}\right)^{[n / 2]} \leqq p^{n}$ for all $n \geqq 2$. Hence we have for all $t \in \mathbf{R}_{+}$

$$
t=\|t x\|=\left|\alpha_{1}\right|^{-1} \cdot\left\|g(t x)-\alpha_{0} \cdot 1-\sum_{n=2}^{\infty} \alpha_{n} t^{n} x^{n}\right\| \leqq\left|\alpha_{1}\right|^{-1} \cdot\left(c+\left|\alpha_{0}\right| \cdot\|1\|+h(t p)\right) .
$$

Hence $p \neq 0$, and replace $t=p^{-1}$, we see that $p^{-1} \leqq \varphi(c)$, where $\varphi(c)=$ $=\left|\alpha_{1}\right|^{-1}\left(c+\left|\alpha_{0}\right| \cdot\|1\|+h(1)\right)$. Thus $\left\|x^{2}\right\|=p^{3} \geqq \varphi(c)^{-3}$, and so $f(c)=\varphi(c)^{3}$ satisfies our condition.

Lemma 1.2. Let $A$ and $g$ be as in Lemma 1.1, and let $\langle x\rangle$ denote the real algebra generated by an element $x \in A$. Then the function $f$ of Lemma 1.1 also satisfies $\|x\| \leqq$ $\leqq f(c) \cdot r(x)$ whenever $x$ is such that $\|g(a)\| \leqq c$ for all $a \in\langle x\rangle$.

Proof. Assume that $\|g(a)\| \leqq c$ for all $a \in\langle x\rangle$ for some $x \in A$ and $c \in \mathbf{R}_{+}$. Then by Lemma 1.1 we have

$$
\|a\|^{2} \leqq f(c) \cdot\left\|a^{2}\right\| \quad \text { for all } \quad a \in\langle x\rangle .
$$

Writing $a=x^{2^{n}}$, we can infer by induction that

$$
\|x\|^{2^{n}} \leqq f(c)^{2^{2}-1} \cdot\left\|x^{2^{n}}\right\|
$$

and hence, tending with $n$ to infinity we get $\|x\| \leqq f(c) \cdot r(x)$.
Theorem 1. Let $A$ be a Banach generalized *-algebra over F. Then $A$ is an equivalent $C^{*}$-algebra if and only if there is a constant $C$ such that
(i) $\|\sin (h)\| \leqq C$ for all $h \in A_{H}$ and,
(ii) $\|\sinh (k)\| \leqq C$ for all $k \in A_{J}$.

Remark. Of course, in case $\mathbf{F}=\mathbf{C}$ (i) is equivalent to (ii).
Proof. First we assume that $A$ is an equivalent $C^{*}$-algebra. Then there is a norm $p$ on $A$ so that $(A, p)$ is a $C^{*}$-algebra and a constant $C$ such that $\|a\| \leqq C \cdot p(a)$ for all $a \in A$. It is known that a $C^{*}$-algebra is Hermitian, skew-Hermitian and its norm equals the spectral radius on normal elements (this is well known for $\mathbf{F}=\mathbf{C}$, and for $\mathbf{F}=\mathbf{R}$ we can canonically embed the subalgebra of $B(\mathfrak{H})$ into $B\left(\mathfrak{H}_{\mathrm{C}}\right)$ where $\mathfrak{S}_{\mathbf{C}}$ is the complexification of the real Hilbert space $\mathfrak{H}$, and thus we can infer the statement). Therefore if $h \in A_{H}$ then $\operatorname{Sp}(A, h) \subset \mathbf{R}$, and so $\operatorname{Sp}(A, \sin (h)) \subset[-1,1]$ (see [1], §7), further $\sin (h) \in A_{H}$ for the ${ }^{*}$ is norm-preserving in a $C^{*}$-algebra, and hence $p(\sin (h))=r(\sin (h)) \leqq 1,\|\sin (h)\| \leqq C \cdot p(\sin (h)) \leqq C$. Similarly, if $k \in A_{J}$ then $\operatorname{Sp}(A, k) \subset i \cdot \mathbf{R}, \operatorname{Sp}(A, \sinh (k)) \subset i \cdot[-1,1], \sinh (k) \in A_{J}$, and hence $\|\sinh (k)\| \leqq C$.

Now we assume that $A$ satisfies (i) and (ii) with a suitable constant $C$. First we show that $A$ is Hermitian and skew-Hermitian.

Observe that if $z \in \mathbf{C} \backslash \mathbf{R}$, then the set $\{\sin (t z) ; t \in \mathbf{R}\}$ is not bounded. This fact implies that $\{r(\sin (t h)) ; t \in \mathbf{R}\}$ is not bounded if $\operatorname{Sp}(A, h) \nsubseteq \mathbf{R}$, and similarly $\{r(\sinh (t k)) ; t \in \mathbf{R}\}$ is not bounded if $\operatorname{Sp}(A, k) \nsubseteq i \cdot \mathbf{R}$ for $\sinh (z)=-i \cdot \sin (i z)$. Since $r(a) \leqq\|a\|$, thus (i) and (ii) clearly imply (1).

Now we want to show that
(2) there is a constant $M$ such that $\|a\| \leqq M \cdot r(a)$ for all $a \in A_{H} \cup A_{J}$.

We have by Lemma 1.2 and (i) a constant $m_{1}$ such that

$$
\begin{equation*}
\|a\| \leqq m_{1} \cdot r(a) \text { for all } a \in A_{H} \tag{3}
\end{equation*}
$$

and we have by Lemma 1.1 and (ii) a constant $m_{2}$ such that

$$
\begin{equation*}
\|a\|^{2} \leqq m_{2}\left\|a^{2}\right\| \quad \text { for all } a \in A_{J} \tag{4}
\end{equation*}
$$

But $a^{2} \in A_{B}$ for $a \in A_{I}$, thus $\left\|a^{2}\right\| \leqq m_{1} \cdot r\left(a^{2}\right)=m_{1} \cdot r(a)^{2}$, and hence (2) is true with $M=\max \left(m_{1}, \sqrt{m_{1} \cdot m_{2}}\right)$.

We can apply Lemma 0.1 to $A$ because (1) holds; let $\pi$ be the corresponding representation. Since $\|\pi(a)\|=r\left(a^{*} a\right)^{1 / 2}$, we have

$$
\begin{equation*}
\|\pi(a)\|=r(a) \text { for all } a \in A_{H} \cup A_{J} \tag{5}
\end{equation*}
$$

and so by (2) we get. $\|a\| \leqq M \cdot\|\pi(a)\|$ for all $a \in A_{H} \cup A_{j}$. Thus if $a$ is an arbitrary element in $A$ and $h=\frac{a+a^{*}}{2}, k=\frac{a-a^{*}}{2}$, then $\|a\| \leqq\|h\|+\|k\| \leqq M(\|\pi(h)\|+\|\pi(k)\|)$ and $\|\pi(h)\| \leqq\|\pi(a)\|,\|\pi(k)\| \leqq\|\pi(a)\|$ for the ${ }^{*}$ is norm-preserving on $B(\mathfrak{H})$. Thus we get

$$
\begin{equation*}
\|a\| \leqq 2 M \cdot\|\pi(a)\| \quad \text { for all } \quad a \in A \tag{6}
\end{equation*}
$$

We have $\|\pi(a)\|^{2}=r\left(a^{*} a\right) \leqq\left\|a^{*} a\right\| \leqq\left\|a^{*}\right\| \cdot\|a\|$, and hence by (6) we infer $\|a\| \leqq$ $\leqq 4 M^{2} \cdot\left\|a^{*}\right\|$. Thus $\left\|a^{*}\right\| \leqq 4 M^{2} \cdot\|a\|$ for $a^{* *}=a$, and hence

$$
\begin{equation*}
\|\pi(a)\|^{2} \leqq 4 M^{2} \cdot\|a\|^{2} \quad \text { for all } a \in A \tag{7}
\end{equation*}
$$

It follows from (6) and (7) that $\pi$ is homeomorphic and $\pi(A)$ is complete. Therefore $A$ is an equivalent $C^{*}$-algebra.

## 2. A characterization of Hermitian algebras

Lemma 2.1. Let A and B be Banach generalized *-algebras over F. Assume that $p: A \mapsto B$ is $a^{*}$-homomorphism satisfying $r(h) \leqq r(p(h))$ for all $h \in A_{H}$. Then $A$ is Hermitian (resp. skew-Hermitian) whenever $B$ is.

Remark. The condition $r(h) \leqq r(p(h))$ is equivalent to $r(h)=r(p(h))$ for $\operatorname{Sp}(B, p(h)) \subset \operatorname{Sp}(A, h) \cup\{0\}$.

Proof. Suppose that $A$ is not Hermitian (resp. skew-Hermitian) but $B$ is. Then there is an element $h_{1} \in A_{H}$ (resp. $k_{1} \in A_{J}$ ) such that $\operatorname{Sp}\left(A, h_{1}\right) \nsubseteq \mathbf{R}$ (resp. $\left.\operatorname{Sp}\left(A, k_{1}\right) \nsubseteq i \cdot \mathbf{R}\right)$. If $z \in \mathbf{C} \backslash(\mathbf{R} \cup i \cdot \mathbf{R})$ then $z^{2} \notin \mathbf{R}$ and hence $\left\{t z+s z^{3} ; t, s \in \mathbf{R}\right\}=\mathbf{C}$. This implies that there is an element $h \in\left\{t h_{1}+s h_{1}^{3} ; t, s \in \mathbf{R}\right\} \subset A_{H}$. (resp. $k \in\left\{t k_{1}+s k_{1}^{3}\right.$; $t, s \in \mathbf{R}\} \subset A_{J}$ ) such that $i \in \operatorname{Sp}(A, h)$ (resp. $1 \in \operatorname{Sp}(A, k)$ ). Let $c=h^{2}$ (resp. $c=-k^{2}$ ). Then

$$
\begin{equation*}
-1 \in \operatorname{Sp}(A, c) \text { and } c \in A_{H} \tag{1}
\end{equation*}
$$

Further, $p(c)=p(h)^{2}$ (resp. $\left.p(c)=-p(k)^{2}\right), p$ is a ${ }^{*}$-homomorphism, and $B$ is Hermitian (resp. skew-Hermitian); thus we get

$$
\begin{equation*}
\operatorname{Sp}(B, p(c)) \subset \mathbf{R}_{+} \tag{2}
\end{equation*}
$$

Since $A$ is a Banach-algebra, $\mathrm{Sp}(A, c)$ is bounded and hence there is a real number $\lambda$ such that

$$
\begin{equation*}
\lambda>1 \text { and }-\lambda^{-1} \cdot c \text { has a quasi-inverse } d \text { in } A \tag{3}
\end{equation*}
$$

Moreover, $d \in A_{H}$, because $-\lambda^{-1} \cdot c \in A_{H}$. Since $p$ is homomorphic, thus $p(d)$ is the quasi-inverse of $-\lambda^{-1} \cdot p(c)$. It is known that if $b$ is the quasi-inverse of $a$ in an arbitrary algebra then $\left\{t(t-1)^{-1} ; t \in \operatorname{Sp}(a)\right\}=\operatorname{Sp}(b)$. (Sketch of the proof: $b$ is the quasi-inverse of $a$ if and only if $1-b$ is the inverse of $1-a$, where $1-a, 1-b \in$ $\in A+F$ if $A$ does not have a unit in which case $\operatorname{Sp}(A, x)=\operatorname{Sp}(A+F, x)$ for all $x \in A$; and hence it is easy to deduce the statement.) Thus we get from (1), (2) and (3) that
(4) there is a negative number (namely $\left.(1-\lambda)^{-1}\right)$ in $\operatorname{Sp}(A, d)$
and

$$
\begin{equation*}
\operatorname{Sp}(B, p(d)) \subset[0,1) \tag{5}
\end{equation*}
$$

Consider the polynomials $P_{n}(X)=X(1-X)^{n}$. Then $P_{n}(d) \in A_{H}$, and since $\operatorname{Sp}\left(P_{n}(a)\right)=P_{n}(\operatorname{Sp}(a))$ in an arbitrary algebra, thus $r\left(P_{n}(d)\right)>1$ for sufficient large $n$ by (4), while $r\left(P_{n}(p(d))\right)<1$ for all $n$ by (5). Thus we have got a contradiction to the assumption of our lemma.

Lemma 2.2. Let $A$ and $B$ be Banach algebras over $\mathbf{F}$ and $p: A \mapsto B$ be a homomorphism. Then the following conditions are equivalent:
(i) $r(a)=r(p(a))$ for all $a \in A$,
(ii) $\partial \operatorname{Sp}(A, a) \subset \partial \operatorname{Sp}(B, p(a)) \cup\{0\}$ for all $a \in A$.

Proof. First we assume (ii). Let $a \in A$ be fixed and let $S$ be the closed disc about zero in C with radius $r(p(a))$. Then $\partial \mathrm{Sp}(A, a) \subset S$, and $\operatorname{Sp}(A, a)$ is a bounded set in C, thus $\mathrm{Sp}(A, a) \subset S, r(a) \leqq r(p(a))$. Therefore (i) holds, for $r(a) \geqq r(p(a))$ is true for any homomorphism $p$.

Now we assume (i). Fix an element $a \in A$ and a complex number $z \in \partial \operatorname{Sp}(A, a) \backslash\{0\}$. Suppose that $z \notin \partial \operatorname{Sp}(B, p(a))$. Since $\operatorname{Sp}(B, p(a)) \subset \operatorname{Sp}(A, a) \cup$ $\cup\{0\}$, we get $z \nsubseteq \operatorname{Sp}(B, p(a))$. Choose a sequence of complex numbers $z_{n} \rightarrow z$ such that $z_{n} \notin \operatorname{Sp}(A, a)$. We may assume $z_{n} \neq 0$ for all $n$. If $\mathbf{F}=\mathbf{R}$ then let

$$
u_{n}=\left|z_{n}\right|^{-2} \cdot\left(2 \cdot \operatorname{Re}\left(z_{n}\right) a-a^{2}\right) \text { and } u=|z|^{-2} \cdot\left(2 \cdot \operatorname{Re}(z) a-a^{2}\right)
$$

while in case $\mathbf{F}=\mathbf{C}$ let

$$
u_{n}=z_{n}^{-1} \cdot a \quad \text { and } \quad u=z^{-1} \cdot a
$$

Then we have by [1] (see p. 70):

$$
\begin{equation*}
u_{n} \rightarrow u \text { in } A \text { and } p\left(u_{n}\right) \rightarrow p(u) \text { in } B \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u_{n} \text { has a quasi-inverse in } A \tag{2}
\end{equation*}
$$ $u$ does not have a quasi-inverse in $A$,

$$
\begin{equation*}
p(u) \text { has a quasi-inverse in } B \tag{3}
\end{equation*}
$$

Further on, $u_{n}$ and $u$ are polynomials of $a$, and hence there is a maximal commutative subalgebra $A^{\prime}$ of $A$ containing $u$ and $u_{n}$, for all $n$, and similarly a maximal commutative subalgebra $B^{\prime}$ of $B$ containing $p\left(A^{\prime}\right)$. By (3) there is a character $\varphi$ on $A^{\prime}$ such that $\varphi(u)=1$. Thus $\varphi\left(u_{n}\right) \rightarrow 1$, and hence, denoting the quasi-inverse of $u_{n}$ by $v_{n}$, $\left|\varphi\left(v_{n}\right)\right| \rightarrow \infty$. Therefore $r\left(v_{n}\right) \rightarrow \infty$ and thus (i) yields

$$
\begin{equation*}
r\left(p\left(v_{n}\right)\right) \rightarrow \infty . \tag{5}
\end{equation*}
$$

On the other hand, $1 \notin \operatorname{Sp}\left(B^{\prime}, p(u)\right)$, and hence there is an $\varepsilon>0$ such that $|\psi(p(u))-1|>\varepsilon$ for all characters $\psi$ of $B^{\prime}$. Thus if $\left\|p\left(u_{n}\right)-p(u)\right\| \leqq \varepsilon / 2$ then $\left|\psi\left(p\left(u_{n}\right)\right)-1\right| \geqq \varepsilon / 2$ for all $\psi$, and $\left|\psi\left(p\left(u_{n}\right)\right)\right| \leqq\left\|p\left(u_{n}\right)\right\| \leqq$ constant, because $p\left(u_{n}\right) \rightarrow p(u)$. Hence $r_{n}:=\max \left\{\left|\lambda(\lambda-1)^{-1}\right| ; \lambda \in \operatorname{Sp}\left(B, p\left(u_{n}\right)\right)\right\}+\infty$, while $r_{n}=r\left(p\left(v_{n}\right)\right.$ for $p\left(v_{n}\right)$ is the quasi-inverse of $p\left(u_{n}\right)$. This contradiction to (5) proves our lemma.

Theorem 2. Let $A$ be a Banach generalized ${ }^{*}$-algebra over $\mathbf{F}$. Then the following conditions are equivalent:
(i) $A$ is Hermitian and skew-Hermitian,
(ii) there is a Hilbert space $\mathfrak{5}$ and $a^{*}$-homomorphism $\pi: A \mapsto B(\mathfrak{F})$ satisfying $\|\pi(a)\|=r\left(a^{*} a\right)^{1 / 2}$ for all $a \in A$,
(iii) there is $a \pi$ as in (ii) and satisfying $r(\pi(a))=r(a)$ for all $a \in A$,
(iv) there is a $\pi$ as in (ii) and satisfying

$$
\partial \operatorname{Sp}(A, a) \subset \partial \operatorname{Sp}(B(\mathfrak{H}), \pi(a)) \cup\{0\} \text { for all } a \in A
$$

Proof. First we prove (i) $\Rightarrow$ (iii). Consider the homomorphism $\pi$ obtained from Lemma 0.1. Then for any $a \in A \quad r(a)^{n}=r\left(a^{n}\right) \leqq\left\|\pi\left(a^{n}\right)\right\|$ for all $n$, and hence $r(a) \leqq$ $\leqq r(\pi(a))$, thus $r(a)=r(\pi(a))$.

Now we prove (ii) $\Rightarrow$ (i). If $h \in A_{H}$ then $r(h)^{2}=r\left(h^{2}\right)=r\left(h^{*} h\right)=\|\pi(h)\|^{2}=r(\pi(h))^{2}$ and hence by Lemma 2.1 we get (i), because $B(\mathfrak{H})$ is Hermitian and skew-Hermitian.

Since (iii) $\Rightarrow$ (ii) is trivial and (iii) $\Leftrightarrow$ (iv) was proved in Lemma 2.2, the proof of Theorem 2 is complete.

## 3. Relation between real and complex Hermitian algebras

Lemma 3.1. Let $A$ and $B$ be Banach-algebras with unit over $F$, and $p: A \mapsto B$. be a homomorphism satisfying $p(1)=1$ and $r(p(a))=r(a)$ for all $a \in$ A. Assume that $\mathrm{Sp}(B, p(x)) \subset \mathbf{R} \backslash\{0\}$ for some $x \in A$. Then. $x$ is invertible in $A$.

Proof. Since $A$ is a Banach algebra with unit, there is a real number $\lambda>0$ so that $a=\left(\lambda+x^{2}\right)^{-1}$ exists in $A$. Then $p(a)=\left(\lambda+p(x)^{2}\right)^{-1}$, and hence $\operatorname{Sp}(B, p(a)) \subset(0,1 / \lambda)$, $r(p(a))<\lambda^{-1}$. Thus $r(a)<\lambda^{-1}$, and therefore $\lambda^{-1} \ddagger \operatorname{Sp}(A ; a), \lambda \notin \operatorname{Sp}\left(A, \lambda+x^{2}\right)$, and we see that $x^{2}$ is invertible in $A$. Hence $x$ is invertible in $A$.

Lemma 3.2. Let $A$ be a generalized *-algebra over $\mathbf{R}$, and $A_{\mathbf{C}}$ be its complexification. Then $(A / \mathrm{rad}(A))_{\mathrm{C}}$ is ${ }^{*}$-isomorphic to $A_{\mathrm{C}} / \mathrm{rad}\left(A_{\mathrm{C}}\right)$.

Proof. We want to prove that

$$
\begin{equation*}
\operatorname{rad}\left(A_{\mathrm{C}}\right)=\left\{(a, b) \in A_{\mathrm{C}} ; a, b \in \operatorname{rad}(A)\right\} \tag{1}
\end{equation*}
$$

(We use the symbols of [1], see p. 68:) Let $N=\left\{a \in A ;(a, 0) \in \operatorname{rad}\left(A_{\mathrm{C}}\right)\right\}$. Clearly $N$ is an ideal of $A$. If $a \in N$, then $(a, 0)$ is quasi-invertible in $A_{\mathrm{C}}$, hence $a$ is quasi-invertible in $A$. Thus we obtain

$$
\begin{equation*}
N \subset \operatorname{rad}(A) . \tag{2}
\end{equation*}
$$

Now we fix an element $b \in \operatorname{rad}(A)$ and an irreducible representation $p$ of $A_{\mathrm{C}}$ over the complex linear space $X$. Suppose that $L$ is a real subspace of $X$, invariant for the operators $p((a, 0))$ for all $a \in A$. Then $L+i \cdot L$ and $L \cup i \cdot L$ are complex subspaces, invariant for $p\left(A_{\mathbf{C}}\right)$, and hence, being $p$ an irreducible representation, if $L$ is non-trivial then $X=L \oplus i \cdot L$ as a real linear space. Hence if $L_{1}$ is another such subspace then $\{0\} \subseteq L_{1} \subseteq L$ is not possible, that is $\left.\ddot{a} \rightarrow p((a, 0))\right|_{L}$ is an irreducible representation of $A$ on $L$. Thus $\left.p((b, 0))\right|_{L}=0$ for $b \in \operatorname{rad}(A)$, and hence $p((b, 0))=0$ because $X$ is the complex hull of $L$. If such $L$ does not exist then $a \rightarrow p((a, 0))$ gives an irreducible representation and $p((b, 0))=0$, too. Having this for any irreducible representation $p$ of $A_{\mathrm{C}}$ we see that $b \in N, \operatorname{rad}(A) \subset N$, and hence by (2) we get

$$
\begin{equation*}
N=\operatorname{rad}(A) . \tag{3}
\end{equation*}
$$

Now consider the mapping $(a, b)^{\prime}:=(a,-b)$ on $A_{\mathrm{C}}$. This is conjugate linear automorphism, hence it preserves the quasi-invertibility, and therefore maps rad ( $A_{\mathbf{C}}$ ) onto itself. We can infer from this:

$$
\operatorname{rad}\left(A_{\mathrm{C}}\right)=\left\{(a, b) ;(a, 0),(0, b) \in \operatorname{rad}\left(A_{\mathrm{C}}\right)\right\}
$$

But $-i \cdot(0, b)=(b, 0)$ and hence $\operatorname{rad}\left(A_{\mathrm{C}}\right)=\{(a, b) ; a, b \in N\}$, that is, by (3), we can see that (1) holds.

It is easy to deduce from (1) that $(A / \mathrm{rad}(A))_{\mathbf{C}}$ is ${ }^{*}$-isomorphic to $A_{\mathbf{C}} / \mathrm{rad}\left(A_{\mathbf{C}}\right)$.
Theorem 3. Let A be a Banach generalized *-algebra over R. Then A is Hermitian and skew-Hermitian if an only if its complexification $A_{\mathrm{C}}$ is a complex Hermitian algebra:

Proof. Since the spectrum in a real algebra is defined through its complexification, one of the directions is trivial. To prove the other direction let $A$ be Hermitian and skew-Hermitian as. well. We may assume $A$ has a unit, because otherwise $A+\mathbf{R}$ is Hermitian and skew-Hermitian while $(A+\mathbf{R})_{\mathbf{C}}$ is ${ }^{*}$-isomorphic to $A_{\mathbf{C}}+\mathbf{C}$. Then we may also assume $A$ is semi-simple by Lemma 3.2.

Thus by Lemma 0.1 we have a *-homomorphism $\pi: A \mapsto B(\mathfrak{H})$, which is now injective. Moreover, it is easy to show (see e.g. the proof of Theorem 2) that
(1) $\pi$ satisfies the conditions of Lemma 3.1.

We want to prove that $A_{\mathrm{C}}$ is Hermitian. Since $1 \in A$, it is enough to show that $1+x^{2}$ is invertible in $A_{\mathbf{C}}$ whenever $x \in\left(A_{\mathbf{C}}\right)_{H}$. Fix an $x=(a, b) \in\left(A_{\mathbf{C}}\right)_{H}$, then $a \in A_{H}$ and $b \in A_{J}$. Let $c=1+a^{2}-b^{2}, d=a b+b a$, then $1+x^{2}=(c, d)$. Since the complexification of $B(\mathfrak{H})$ is clearly ${ }^{*}$-isomorphic to $B\left(\mathfrak{5}_{\mathrm{C}}\right)$, which is Hermitian, thus $(\pi(c), \pi(d))$ is invertible in $B(\mathfrak{H})_{\mathbf{C}}$, so we have $u, v \in B(\mathfrak{H})$ satisfying

$$
\begin{equation*}
u \cdot \pi(c)-v \cdot \pi(d)=1, \quad u \cdot \pi(d)+v \cdot \pi(c)=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(c) \cdot u-\pi(d) \cdot v=1, \quad \pi(d) \cdot u+\pi(c) \cdot v=0 \tag{3}
\end{equation*}
$$

It is known that the set $A_{p}=\left\{h \in A_{H} ; \operatorname{Sp}(A, h) \subset \mathbf{R}_{+}\right\}$is a cone (see [5]), and hence $a^{2}-b^{2} \in A_{p}$ because $a^{2},-b^{2} \in A_{p}$. Thus we can infer

$$
\begin{equation*}
c \text { has an inverse } h \text { in } A_{H} . \tag{4}
\end{equation*}
$$

We see from (2) that $v=-u \cdot \pi(d h)$ and so $u \cdot \pi(c+d h d)=1$. Similarly, we can see from (3) that $\pi(c+d h d) \cdot u=1$. Observe that $m=c+d h d \in A_{H}$ because $d \in A_{I}$ and $c, h \in A_{H}$, and hence $\operatorname{Sp}(B(\mathfrak{H}), \pi(m)) \subset \mathbf{R}$. Applying Lemma 3.1 we get a $k=m^{-1}$ in $A$, moreover, $\pi(k)=u$. Hence $v=\pi(j)$, where $j=-k d h$. Now by the injectivity of $\pi$ we can infer that $(k, j)=\left(1+x^{2}\right)^{-1}$ in $A_{\mathbf{C}}$. The proof is complete.

## References

[1] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag (Berlin-Heidel-berg-New York, 1973).
[2] S. H. Kulkarni and B. V. Limaye, Gelfand-Naimark theorems for real Banach *-algebras, Math. Jap., 25 (1980), 545-558.
[3] Z. Magyar, On commutativity and spectral radius property of real generalized *-algebras, Acta Sci. Math., 53 (1989), 339-343.
[4] V. PTAK, Banach algebras with involution, Manuscripta Math., 6 (1972), 245-290.
[5] S. Shiralu and J. W. M. Ford, Symmetry in complex involutory Banach algebras. II, Duke Math. J., 37 (1970), 275-280.

