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A characterization of (real or complex) Hermitian 
algebras and equivalent C*-aIgebras 

ZOLTÁN MAGYAR 

0. Introduction 

We use the symbol F to denote a field that is either the real field R or the complex 
field C. We call an algebra A over F a *-algebra if there is a conjugate linear mapping 
"*" from A into A satisfying 

(i) (abf = b*a* for all a, b^ A, 

(ii) (a*)* = a for all aeA. 

We call A an auto-*-algebra if we replace the axiom (i) by the axiom 

(i') (ab)* = a*b* for all a, b£A. 

We call A a generalized *-algebra if A is a *-algebra or an auto-*-algebra. An element 
a$A is called self-adjoint, if a=a*, skew-adjoint, if a=—a*\ and normal, if aa* = 
=a*a. Denote by AH, Aj and AN the sets of all self-adjoint, skew-adjoint and normal 
elements, respectively. 

We will treat Banach generalized *-algebras, that are generalized *-a!gebras 
with complete algebra norm. We define the spectrum of an element with respect to 
an algebra containing it as in [1] (see pp. 19—20 and 70). Then it is known that 

max {|z|; z€Sp(^, a)} = infl^T'" = lim ||an||1/n 
n n-* oo 

if || . || is a complete algebra norm on A. We write in this case 

r(a) := inf Ha"!]1'". n 

Let A be a Banach generalized *-algebra. A is called Hermitian if Sp (A, a ) c R 
for all a£AH, and skew-Hermitian if Sp (A, a)ci-R for.all a£Aj. Every Hermitian 
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algebra over C is automatically skew-Hermitian, of course. But this assertion is not 
true for real algebras. We will prove that a real Banach generalized *-algebra A is 
Hermitian and skew-Hermitian if and only if its complexification Ac (see [1] pp. 
68—69) is Hermitian (see Theorem 3 below). 

We remark that there is an equivalent, but formally weaker, definition of the 
skew-Hermitian property demanding only l$Sp(y4, a) for all a€Aj. It is not very 
hard to see that if Sp (A, a)<ti- R for some a^Aj then there are s,t£ R such that 
SpG^ia+ta3)}!, and sa+tcP^Aj. 

A is called a C*-algebra, if it is isometrically ^-isomorphic to a norm-closed 
*-subalgebra of the Banach *-algebra B(§>) of all bounded F-linear operators on 
some Hilbert space § over F. A is called an equivalent C*-algebra, if it is homeo-
morphically *-isomorphic to some C*-algebra. We will give a characterization of 
equivalent C*-algebras in Theorem 1 below, which is a generalization of a result 
o f PTAK ( s e e [4]) . 

We will prove the following characterization of Hermitian and skew-Hermitian 
algebras: A is Hermitian and skew Hermitian if and only if there is such a *-homo-
morphism n of A into some B(§>) which preserves the spectral radius (see Theorem 2). 
In contrast to a lot of characterizations of complex Hermitian algebras, this is valid 
for real algebras, too. 

Our results are based on the following lemma: 

Lemma 0.1. Let A be a Hermitian and skew-Hermitian Banach generalized 
*-algebra over F. Then there is a Hilbert space § over Fand a *-homomorphism n: 
A^B(F>) such that \\n(a)\\=r(a*a)112 for all a£A. Moreover, /•(a)s||7r(a)[| for all 
a£A, and rad 04)=ti-1({0}). If A has a unit then n can be chosen so that 7i(l) = l. 

Proof. First we suppose that A is a *-algebra. Let 

Ap = {a£AH-, Sp(^, fl)cR+}; 

Then it is known that Ap is a cone and a*a£Ap for all a£A (see [5]). This is also 
true for the unitization A+F of A, since A+F is Hermitian and skew-Hermitian as 
well. Thus it is not hard to see that we can find for any fixed a£A a self-adjoint 
positive functional such that / (1)=1 and f(a*a)=r(a*a) so that the customary 
GNS-construction gives us a Hilbert space § and a *-homomorphism n of A satisfying 
l|7i(a)||=r(a*a)1/2 for all a£A. (For more detailed description see [2], Lemma 3.1 
and [1] § 37. See also [4] for another proof in case F = C.) 

Since rad (A)={a£A; r(qa)=0 for every q€A} (see [1] p. 126), it is clear 
that rad (A)<zN, where jV:=7t-1({0}). On the other hand, the author has proved 
in [3], that r(a)^r(a*a)lf* in a Hermitian and skew-Hermitian Banach *-algebra. 
Thus N is an ideal consisting of elements of spectrum {0} whence A^crad (A). 
Moreover, we see that r(a)^\\n(a)^ for all a£A. 
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Now we suppose A is an auto-*-algebra. Being a conjugate linear automorphism 
the "*" maps rad (A) onto itself. Let B=A/rad(A) and p be the canonical mapping 
A>-+B. Then it is known that 

(1) Sp (A, a)\{0} = Sp (B, p(a))\{0} for all a£A. 

(It is not hard to deduce this fact from Proposition 24.16. (i), p. 125 in [1].) 
Therefore B is a Hermitian and skew-Hermitian Banach auto-*-algebra. More-

over, B is semisimple (see [1] p. 126). Thus, by a result of the author (see [3]), B is 
commutative, and hence B is a *-algebra. Therefore we have a representation nt 
of B satisfying the statements of our lemma, and so by (1) tz:= ^op is a representa-
tion we asked. 

1. A characterization of equivalent C*-algebras 

Lemma 1.1. Let A be a Banach-algebra over F, and let g be an entire function 
on C, satisfying g'(0)?±0. Further in case F = R we assume that the Taylor-series 
of g at zero has only real coefficients. Then there is a function f : R+>-*R+ so that 
||x||2=S/(c)-||*2|| whenever x is such that || g(£x)|| c for all R + . (g(a) may be in the 
unitization A+F of A, if A does not have a unit. We fix a norm on ^4+F in that case.) 

o o oo 

Proof. Let g(z)= If h(z)= 2 laJ •z" then h is an entire function, 
n=0 n=2 

too. Suppose that ||g(/;c)|| s c for all f£R+ for some x^A and c£R+ . We can as-
sume that ||;t|| = l because both sides of the inequality ||x||2^/(c) • [|x2|| are mul-
tiplied by |A|2 when we replace x by Xx, and the case x = 0 is trivial. Then let />=||x2[|1/3, 
thus we see that p ^ 1 and ||x"[] for all wS2. Hence we have for all 
te R+ 

t = \\tx\\ = • | |g(ix)-a0 -1-2 S |«,|-i • (c+|a0| • || 1|| + h(tp)). 
n = 2 

Hence p^O, and replace t=p~\ we see that p-1S(p(c), where <p(c) = 
= lail -1(c+laol • IUII +M0)- Thus ||x2|| =p3^(p(c)~3, and so f(c)=cp(cf satisfies 
our condition. 

Lemma 1.2. Let A andg be as in Lemma 1.1, and let (x) denote the real algebra 
generated by an element x(LA. Then the function f of Lemma 1.1 also satisfies ||x|| S 
-f(c)-r{x) whenever x is such that ||g(a)||Sc for all a£ (x). 

Proof. Assume that ||g(a)||Sc for all a£(x) for some x£A and c£R + . 
Then by Lemma 1.1 we have 

| | f l | | 2 s / ( c ) - M for all ae(x). 
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Writing a=x?", we can infer by induction that 

and hence, tending with n to infinity we get ||x|| s / ( c ) • /•(*). 

Theorem 1. Let A be a Banach generalized *-algebra over F. Then A is an 
equivalent C*-algebra if and only if there is a constant C such that 

(i) ||sin (A)|| =iC for all h£AB and, 
(ii) ||sinh(/c)||==C for all k^A}. 

Remark. Of course, in case F = C (i) is equivalent to (ii). 

Proof. First we assume that A is an equivalent C*-algebra. Then there is a 
norm p on A so that (A, p) is a C*-algebra and a constant C such that ||a|| ̂ C • p(a) 
for all a£A. It is known that a C*-algebra is Hermitian, skew-Hermitian and its 
norm equals the spectral radius on normal elements (this is well known for F = C , 
and for F = R we can canonically embed the subalgebra of B(§>) into ¿?(§c) where 
£>c is the complexification of the real Hilbert space §>, and thus we can infer the 
statement). Therefore if h£AB then Sp (A, h)aR, and so Sp (A, sin (/z))(z[— 1, 1] 
(see [1], § 7), further sin (h)£AH for the * is norm-preserving in a C*-algebra, and 
hence p(sin(h))=r(sia(h))^l, ¡|sin (/¡)l| =C• p(sin (h))^C. Similarly, if k£Aj then 
Sp(^, A:)c=i-R, Sp (A, sinh (Ac))ci • [— 1, 1], sinh (k)^Aj, and hence ||sinh (A:)|| ==C. 

Now we assume that A satisfies (i) and (ii) with a suitable constant C. First we 
show that 

(1) A is Hermitian and skew-Hermitian. 

Observe that if z £ C \ R , then the set {sin (tz); i£R} is not bounded. This fact 
implies that {/-(sin (i/j)); R} is not bounded if Sp (A, h) ct R, and similarly 
{/•(sinh(*&)); /6R} is not bounded if Sp (A, k)<£i• R for sinh (z)= — z- sin (iz). 
Since r(a)^||a||, thus (i) and (ii) clearly imply (1). 

Now we want to show that 

(2) there is a constant M such that ||a|| s M-r{a) for all a£ABUAj. 

We have by Lemma 1.2 and (i) a constant m1 such that 

(3) . ||a|| S mx • r{a) for all a€AB 

and we have by Lemma 1.1 and (ii) a constant m2 such that 

(4) ||a||2S/M2||fl2|| for all a£Aj. 

But a2£AB for a£Af, thus ||a2|| • r(a2)=m1 • r(a)2, and hence (2) is true with 
M=max(m1, ljmx • m2). 
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We can apply Lemma 0.1 to A because (1) holds; let n be the corresponding 
representation. Since ||7t(a)|| =r(a*a)1/2, we have 

(5) [|7t(a)|| = r(a) for all aZABUAj, 

and so by (2) we get | |a| |sAi- ||7t(a)[| for all a£AHUAj. Thus if a is an arbitrary 

element in A and h= , then ||al|^||/t[| + ||A:||sM(||7r(A)|| + ||rt(fe)ll) 

and ||7i(/i)l|^||7t(a)||, ||jt(fc)||s||jr(a)|| for the * is norm-preserving on B(§>). Thus 
we get 
(6) \\a\\^2M-\\n(a)\\ for all a^A. 

We have ||7t(a)||2=r(fl*a)s||a+a||s||a*|| • ||a||, and hence by (6) we infer 
s4M24a*\\. Thus \\a*\\^4M2-\\a\\ for a**=a, and hence 
(7) ||n(a)||2 s 4M2 • ||a||2 for all a€A. 

It follows from (6) and (7) that n is homeomorphic and 71(A) is complete. Therefore 
A is an equivalent C*-algebra. 

2. A characterization of Hermitian algebras 

Lemma 2.1. Let A and B be Banach generalized *-algebras over F. Assume that 
p: A>-*B is a *-homomorphism satisfying r(h)^r(p(h)) for all h£AH. Then A is 
Hermitian (resp. skew-Hermitian) whenever B is. 

Remark. The condition r(h)Sr(p(h)) is equivalent to r(h)=r(p(h)) for 
Sp (B, p(h))dSp (A, h) U {0}. 

Proof. Suppose that A is not Hermitian (resp. skew-Hermitian) but B is. 
Then there is an element hxeAH (resp. k^A/) such that Sp (A, hx) cj: R (resp. 
Sp(J , ¿ O i l ' - R). If z€C\(RUz'-R) then z2£R and hence {tz+sz3; i , j£R}=C. 
This implies that there is an element hdlthi+shl; t, i€R}c,4H. (resp. k£{fA^+j&J; 
M € R } c 4 , ) such that i<ESp (A,h) (resp. l£Sp (A,k)). Let c=h2 (resp. c=-k2). 
Then 
(1) - l € S p ( ^ , c ) and c£AH.. 

Further, p(c)=p(h)2 (resp. p(c)=—p(k)2), p is a *-homomorphism, and B is 
Hermitian (resp. skew-Hermitian); thus we get 

(2) Sp(5, p (c ) )cR + . 

Since A is a Banach-algebra, Sp (A, c) is bounded and hence there is a real 
number A such that 
(3) A =»-1 and — A - 1 -c has a quasi-inverse d in A. 

t 
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Moreover, d£AH, because — A-1 • c£AH. Since p is homomorphic, thus p(d) 
is the quasi-inverse of —A-1 • p(c). It is known that if b is the quasi-inverse of a in 
an arbitrary algebra then {t(t— l ) - 1 ; rgSp (a)}=Sp (6). (Sketch of the proof: b is 
the quasi-inverse of a if and only if l—b is the inverse of 1—a, where 1—a, 1—¿6 
6^4+F if A does not have a unit in which case Sp (A, x)=Sp (^4+F, x) for all 
X€A; and hence it is easy to deduce the statement.) Thus we get from (1), (2) and 
(3) that 

(4) there is a negative number (namely (1—A)-1) in Sp (A, d) 
and 
(5) Sp(5, /?(i/))c[0, 1). 

Consider the polynomials Pn(X)=X{\-Xf. Then P„(d)£AH, and since 
Sp(i^,(a))=Pn(Sp(a)) in an arbitrary algebra, thus r(/j;(i/))>l for sufficient large 
n by (4), while r(Pn(p(d)))< 1 for all n by (5). Thus we have got a contradiction to 
the assumption of our lemma. 

Lemma 2.2. Let A andB be Banach algebras over F and p: A^B be a homo-
morphism. Then the following conditions are equivalent: 

(i) r(a)=r(p{aj) for all a£A, 
(ii) aSp (A, a)cdSp (B,p(a))U {0} for all a£A. 

Proof. First we assume (ii). Let a£A be fixed and let S be the closed disc 
about zero in C with radius r(p(a)). Then d Sp (A, a) a S, and Sp (A, a) is a bounded 
set in C, thus Sp(^, a)c:S, r(a)Sr(p(a)). Therefore (i) holds, for r(a)^r(p(a)) is 
true for any homomorphism p. 

Now we assume (i). Fix an element a£A and a complex number 
zedSp (A, a)\{0}. Suppose that z$dSp (B,p(a)). Since Sp (B, p(a))aSp (A, a)U 
U{0}, we get z$Sp (B,p(a)). Choose a sequence of complex numbers zn—z such 
that z„$Sp (A, a). We may assume zn^0 for all n. If F = R then let 

"„ = |zn | -2-(2-Re(z„)a-a2) and u = \z\~2•(2-Re(z)a-a% 

while in case F = C let 

u„ = z~1 • a and u — z - 1 • a. 

Then we have by [1] (see p. 70): 

(1) u„-*u in A and p(u„) — p(u) in B, 

(2) u„ has a quasi-inverse in A, 

(3) u does not have a quasi-inverse in A, 

(4) p(u) has a quasi-inverse in B. 
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Further on, u„ and u are polynomials of a, and hence there is a maximal commutative 
subalgebra A' of A containing u and «„.for all n, and similarly a maximal commu-
tative subalgebra B' of B containing p(A'). By (3) there is a character cp on A' such that 
<p(u)= 1. Thus <?(«„) —1, and hence, denoting the quasi-inverse of un by vn, 
|<p(iv)| — T h e r e f o r e r(u„) — a n d thus (i) yields 

(5) r{p(va))~~. 

On the other hand, l$Sp (B',p(u)), and hence there is an such that 
| i /i(p(u))-l |>e for all characters i¡/ of B'. Thus if \\p(un)-p(u)\\^sll then 
№(/>(«„))-11 — e/2 for all i¡t, and №(/>K))|s||/>(«»)ll ^constant, because p(u„)~p(u). 
Hence rw:=max {|A(A-1)-X|; A€Sp(5,,p(Mn))}-H-~, while rn=r(p(vn)) for p(v„) 
is the quasi-inverse of P(H„). This contradiction to (5) proves our lemma. 

Theorem 2. Let A be a Banach generalized *-algebra over F. Then the following 
conditions are equivalent: 

(i) A is Hermitian and skew-Hermitian, 
(ii) there is a Hilbert space Jf> and a *-homomorphism n: A^B(§) satisfying 

| | 7 t ( a ) | | =r(a*a)112 for all aiA, 
(iii) there is a n as in (ii) and satisfying r{n(aj)=r(a) for all a£A, 
(iv) there is an as in (ii) and satisfying 

3 Sp (A, a)(zd Sp (£(§), 7t(a))U {0} for all a£A. 

Proof. First we prove (i)=>-(iii). Consider the homomorphism n obtained from 
Lemma 0.1. Then for any a£A r(a)n=r(cf)^\\n(cDl for all n, and hence r ( a ) s 
^r(n(a)), thus r{a)=r(n(a)). 

Now we prove (ii)^(i). If h£Aa then r(h)2=r(h2)=r(h*h)=\\n(h)\\2=r(n(h))2 

and hence by Lemma 2.1 we get (i), because 2?(5) is Hermitian and skew-Hermitian. 
Since (iii)=>(ii) is trivial and (iii)-»-(iv) was proved in Lemma 2.2, the proof of 

Theorem 2 is complete. 

3. Relation between real and complex Hermitian algebras 

Lemma 3.1. Let A and B be Banach-algebras with unit over F, and p: A*-+B 
be a homomorphism satisfying (1) = 1 and r(p(a))=r(a) for all a£A. Assume that 
Sp (5, j?(x))cR\{0) for some x€A. Then x is invertible in A. 

Proof . Since A is a Banach algebra withunit, there is a real number A >-0 so that 
fl=(A+xa)_1 exists in A. Then p(a)=(X+p(x)2)-\ and hence Sp(5,^(a))c(0,1/A), 
r{p(a))<X~\ Thus r(a)<A~\ and therefore A_1$Sp (A, a), A$Sp (A, JL+x2), and 
we see that x2 is invertible in A. Hence x is invertible in A. 

10 



352 " Z. Magyar 

:•'••! Lemma'3.2. Let A be a generalized * -algebra over R, and Aq be its complexi-
fication. Then (Alxad(A))cis*-isomorphic to Aclrad (Ac). 

Proof. We want to prove that 

(1) rad (Ac) = {(a, b)€Ac; a, berad(A)}. 

(We use the symbols of [1], see p. 68.) Let N={a£A; (a, 0)£rad (Ac)}. Clearly N 
is an ideal of A. If adN, then (a, 0) is quasi-invertible in Ac, hence a is quasi-invert-
ible in A. Thus we obtain 
(2) iVcrad (A). 

r Now we fix an element ¿>£rad (A) and an irreducible representation p of Ac 
over the complex linear space X. Suppose that L is a real subspace of X, invariant 
for the, operators p((a, 0)) for all a€A. Then L+i-L and LUi-L are complex 
subspaces, invariant for p(Ac), and hence, being p an irreducible representation, 
if L is non-trivial then X=L(&i-L as a real linear space. Hence if L1 is another 
such subspace then {Oj^LjglL is not possible, that is a—p((a, 0))|L is an irreduc-
ible-representation of A on Z,. Thus p((b, 0))|L=0 for rad (A), and hence 
p((b, 0))=0 because X is the complex hull'of L. If such L does not exist then 
a^-p((a, 0)) gives an irreducible representation and p((b, 0))=0, too. Having this 
for any irreducible representation p of Ac we see that b£N, rad (A)aN, and hence 
by (2) we get 
(3) N = rad (A). 

Now~consider the mapping (a,b)':=(a, —b) on Ac. This is conjugate linear 
automorphism, hence it preserves the quasi-invertibility, and therefore maps rad (Ac) 
onto itself. We can infer from this: 

rad (Ac) = {(a, b); (a,0), (0, fc)€rad (Ac)}. 

But -i-(0,b)=(b,0) and hence rad b); a,b£N}, that is, by (3), we 
can see that (1) holds. 

It is easy to deduce from (1) that (A/rad (A))c is "-isomorphic to Ac/rad (Ac). 

Theorem 3. Let A be a Banach generalized *-algebra over R. Then A is Her-
fhitian and skew'-Hermitian if an only if its complexification Ac is a complex Hermitian 
algebra. " ; 

Proof. Since the spectrum in a real algebra is defined through its complexifi-
cation, one of the directions is trivial. To prove the other direction let A^be Hermitian 
and skew-Heimitiah as well. We may assume A has a unit, because otherwise A + R 
is Hermitian and skew-Hermitian while (yi+R)c is "-isomorphic to Ac+C. Then, 
we may also assume A is semi-simple by Lemma 3.2. 
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Thus by Lemma 0.1 we have a *-homomorphism n: A>-—B(§>), which is now 
injective. Moreover, it is easy to show (see e.g. the proof of Theorem 2) that 

(1) n satisfies the conditions of Lemma 3.1. 

We want to prove that Ac is Hermitian. Since l£A, it is enough to show that 1 +x2 

is invertible in Ac whenever x£(Ac)H. Fix an x=(a, b)£(Ac)a, then a£AH and 
be A]. Let c = l +a2—b2, d=ab+ba, then 1 +x2=(c,d). Since the complexifica-
tion of JB(§) is clearly *-isomorphic to B(§>c), which is Hermitian, thus (n(c), n(d)) 
is invertible in B(§>)c, so we have u, v€B(&) satisfying 

(2) u-n(c)—v-n(d) = 1, u-it(d)+v-n(c) = 0 
and 
(3) n(c)-u—n(d)-v = 1, n(d)-u+n(c)-v = 0. 

It is known that the set Ap={h£.AH; Sp (A, h)cz R+} is a cone (see [5]), and hence 
a2—b2£Ap because a2,—b2£Ap. Thus we can infer 

(4) c has an inverse h in AH. 

We see from (2) that v=-u-n(dh) and so u• n(c+dhd)=l. Similarly, we 
can see from (3) that n(c+dhd)-u=\. Observe that m=c+dhd€AH because 
d£Aj and c, h£AH, and hence Sp (B(§>), 7r(m))cR. Applying Lemma 3.1 we get 
a k=m~1 in A, moreover, n(k) — u. Hence v=n(J), where j= —kdh. Now by 
the injectivity of n we can infer that (k,j) = (l - fx 2) - 1 in Ac. The proof is complete. 
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