A characterization of (real or complex) Hermitian algebras and equivalent C*-algebras

ZOLTÁN MAGYAR

0. Introduction

We use the symbol \mathbf{F} to denote a field that is either the real field \mathbf{R} or the complex field \mathbf{C} . We call an algebra A over \mathbf{F} a *-algebra if there is a conjugate linear mapping "*" from A into A satisfying

(i) $(ab)^* = b^*a^*$ for all $a, b \in A$,

(ii) $(a^*)^* = a$ for all $a \in A$.

We call A an auto-*-algebra if we replace the axiom (i) by the axiom

(i') $(ab)^* = a^*b^*$ for all $a, b \in A$.

We call A a generalized *-algebra if A is a *-algebra or an auto-*-algebra. An element $a \in A$ is called self-adjoint, if $a=a^*$, skew-adjoint, if $a=-a^*$; and normal, if $aa^*==a^*a$. Denote by A_H , A_J and A_N the sets of all self-adjoint, skew-adjoint and normal elements, respectively.

We will treat Banach generalized *-algebras, that are generalized *-algebras with complete algebra norm. We define the spectrum of an element with respect to an algebra containing it as in [1] (see pp. 19-20 and 70). Then it is known that

$$\max\{|z|; z \in \text{Sp}(A, a)\} = \inf ||a^n||^{1/n} = \lim ||a^n||^{1/n}$$

if $\| \cdot \|$ is a complete algebra norm on A. We write in this case

$$r(a) := \inf_{n} ||a^{n}||^{1/n}.$$

Let A be a Banach generalized *-algebra. A is called Hermitian if Sp $(A, a) \subset \mathbb{R}$ for all $a \in A_H$, and skew-Hermitian if Sp $(A, a) \subset i \cdot \mathbb{R}$ for all $a \in A_J$. Every Hermitian

Received October 16, 1985.

algebra over C is automatically skew-Hermitian, of course. But this assertion is not true for real algebras. We will prove that a real Banach generalized *-algebra A is Hermitian *and* skew-Hermitian if and only if its complexification $A_{\rm C}$ (see [1] pp. 68—69) is Hermitian (see Theorem 3 below).

We remark that there is an equivalent, but formally weaker, definition of the skew-Hermitian property demanding only $1 \notin \text{Sp}(A, a)$ for all $a \in A_J$. It is not very hard to see that if $\text{Sp}(A, a) \oplus i \cdot \mathbf{R}$ for some $a \in A_J$ then there are $s, t \in \mathbf{R}$ such that $\text{Sp}(A, sa + ta^3) \ge 1$, and $sa + ta^3 \in A_J$.

A is called a C^* -algebra, if it is isometrically *-isomorphic to a norm-closed *-subalgebra of the Banach *-algebra $B(\mathfrak{H})$ of all bounded F-linear operators on some Hilbert space \mathfrak{H} over F. A is called an equivalent C^* -algebra, if it is homeomorphically *-isomorphic to some C^* -algebra. We will give a characterization of equivalent C^* -algebras in Theorem 1 below, which is a generalization of a result of PTAK (see [4]).

We will prove the following characterization of Hermitian and skew-Hermitian algebras: A is Hermitian and skew Hermitian if and only if there is such a *-homomorphism π of A into some $B(\mathfrak{H})$ which preserves the spectral radius (see Theorem 2). In contrast to a lot of characterizations of complex Hermitian algebras, this is valid for real algebras, too.

Our results are based on the following lemma:

Lemma 0.1. Let A be a Hermitian and skew-Hermitian Banach generalized *-algebra over F. Then there is a Hilbert space \mathfrak{H} over F and a *-homomorphism π : $A \mapsto B(\mathfrak{H})$ such that $\|\pi(a)\| = r(a^*a)^{1/2}$ for all $a \in A$. Moreover, $r(a) \leq \|\pi(a)\|$ for all $a \in A$, and rad $(A) = \pi^{-1}(\{0\})$. If A has a unit then π can be chosen so that $\pi(1) = 1$.

Proof. First we suppose that A is a *-algebra. Let

$$A_p = \{a \in A_H; \operatorname{Sp}(A, a) \subset \mathbb{R}_+\}.$$

Then it is known that A_p is a cone and $a^*a \in A_p$ for all $a \in A$ (see [5]). This is also true for the unitization A + F of A, since A + F is Hermitian and skew-Hermitian as well. Thus it is not hard to see that we can find for any fixed $a \in A$ a self-adjoint positive functional such that f(1)=1 and $f(a^*a)=r(a^*a)$ so that the customary GNS-construction gives us a Hilbert space \mathfrak{H} and a^* -homomorphism π of A satisfying $\|\pi(a)\| = r(a^*a)^{1/2}$ for all $a \in A$. (For more detailed description see [2], Lemma 3.1 and [1] § 37. See also [4] for another proof in case $\mathbf{F} = \mathbf{C}$.)

Since rad $(A) = \{a \in A; r(qa) = 0 \text{ for every } q \in A\}$ (see [1] p. 126), it is clear that rad $(A) \subset N$, where $N := \pi^{-1}(\{0\})$. On the other hand, the author has proved in [3], that $r(a) \leq r(a^*a)^{1/2}$ in a Hermitian and skew-Hermitian Banach *-algebra. Thus N is an ideal consisting of elements of spectrum $\{0\}$ whence $N \subset \operatorname{rad}(A)$. Moreover, we see that $r(a) \leq ||\pi(a)||$ for all $a \in A$.

Now we suppose A is an auto-*-algebra. Being a conjugate linear automorphism the "*" maps rad (A) onto itself. Let B = A/rad(A) and p be the canonical mapping $A \rightarrow B$. Then it is known that

(1)
$$\operatorname{Sp}(A, a) \setminus \{0\} = \operatorname{Sp}(B, p(a)) \setminus \{0\}$$
 for all $a \in A$.

(It is not hard to deduce this fact from Proposition 24.16. (i), p. 125 in [1].)

Therefore B is a Hermitian and skew-Hermitian Banach auto-*-algebra. Moreover, B is semisimple (see [1] p. 126). Thus, by a result of the author (see [3]), B is commutative, and hence B is a *-algebra. Therefore we have a representation π_1 of B satisfying the statements of our lemma, and so by (1) $\pi := \pi_1 \circ p$ is a representation we asked.

1. A characterization of equivalent C*-algebras

Lemma 1.1. Let A be a Banach-algebra over F, and let g be an entire function on C, satisfying $g'(0) \neq 0$. Further in case $\mathbf{F} = \mathbf{R}$ we assume that the Taylor-series of g at zero has only real coefficients. Then there is a function $f: \mathbf{R}_+ \rightarrow \mathbf{R}_+$ so that $\|x\|^2 \leq f(c) \cdot \|x^2\|$ whenever x is such that $\|g(tx)\| \leq c$ for all $t \in \mathbf{R}_+$. (g(a) may be in the unitization $A + \mathbf{F}$ of A, if A does not have a unit. We fix a norm on $A + \mathbf{F}$ in that case.)

Proof. Let $g(z) = \sum_{n=0}^{\infty} \alpha_n z^n$. If $h(z) = \sum_{n=2}^{\infty} |\alpha_n| \cdot z^n$ then *h* is an entire function, too. Suppose that $||g(tx)|| \le c$ for all $t \in \mathbf{R}_+$ for some $x \in A$ and $c \in \mathbf{R}_+$. We can assume that ||x|| = 1 because both sides of the inequality $||x||^2 \le f(c) \cdot ||x^2||$ are multiplied by $|\lambda|^2$ when we replace x by λx , and the case x = 0 is trivial. Then let $p = ||x^2||^{1/3}$, thus we see that $p \le 1$ and $||x^n|| \le (p^3)^{[n/2]} \le p^n$ for all $n \ge 2$. Hence we have for all $t \in \mathbf{R}_+$

$$t = ||tx|| = |\alpha_1|^{-1} \cdot ||g(tx) - \alpha_0 \cdot 1 - \sum_{n=2}^{\infty} \alpha_n t^n x^n|| \le |\alpha_1|^{-1} \cdot (c + |\alpha_0| \cdot ||1|| + h(tp)).$$

Hence $p \neq 0$, and replace $t=p^{-1}$, we see that $p^{-1} \leq \varphi(c)$, where $\varphi(c) = = |\alpha_1|^{-1}(c+|\alpha_0| \cdot ||1|| + h(1))$. Thus $||x^2|| = p^3 \geq \varphi(c)^{-3}$, and so $f(c) = \varphi(c)^3$ satisfies our condition.

Lemma 1.2. Let A and g be as in Lemma 1.1, and let $\langle x \rangle$ denote the real algebra generated by an element $x \in A$. Then the function f of Lemma 1.1 also satisfies $||x|| \leq \leq f(c) \cdot r(x)$ whenever x is such that $||g(a)|| \leq c$ for all $a \in \langle x \rangle$.

Proof. Assume that $||g(a)|| \le c$ for all $a \in \langle x \rangle$ for some $x \in A$ and $c \in \mathbb{R}_+$. Then by Lemma 1.1 we have

$$||a||^2 \leq f(c) \cdot ||a^2||$$
 for all $a \in \langle x \rangle$.

Writing $a=x^{2^n}$, we can infer by induction that

$$\|x\|^{2^n} \leq f(c)^{2^n - 1} \cdot \|x^{2^n}\|$$

and hence, tending with n to infinity we get $||x|| \leq f(c) \cdot r(x)$.

Theorem 1. Let A be a Banach generalized *-algebra over \mathbf{F} . Then A is an equivalent C*-algebra if and only if there is a constant C such that

- (i) $\|\sin(h)\| \leq C$ for all $h \in A_H$ and,
- (ii) $\|\sinh(k)\| \leq C$ for all $k \in A_J$.

Remark. Of course, in case F = C (i) is equivalent to (ii).

Proof. First we assume that A is an equivalent C^* -algebra. Then there is a norm p on A so that (A, p) is a C^* -algebra and a constant C such that $||a|| \leq C \cdot p(a)$ for all $a \in A$. It is known that a C^* -algebra is Hermitian, skew-Hermitian and its norm equals the spectral radius on normal elements (this is well known for $\mathbf{F} = \mathbf{C}$, and for $\mathbf{F} = \mathbf{R}$ we can canonically embed the subalgebra of $B(\mathfrak{H})$ into $B(\mathfrak{H}_C)$ where \mathfrak{H}_C is the complexification of the real Hilbert space \mathfrak{H} , and thus we can infer the statement). Therefore if $h \in A_H$ then $\operatorname{Sp}(A, h) \subset \mathbf{R}$, and so $\operatorname{Sp}(A, \sin(h)) \subset [-1, 1]$ (see [1], § 7), further $\sin(h) \in A_H$ for the * is norm-preserving in a C*-algebra, and hence $p(\sin(h)) = r(\sin(h)) \leq 1$, $||\sin(h)|| \leq C \cdot p(\sin(h)) \leq C$. Similarly, if $k \in A_J$ then $\operatorname{Sp}(A, k) \subset i \cdot \mathbf{R}$, $\operatorname{Sp}(A, \sinh(k)) \subset i \cdot [-1, 1]$, $\sinh(k) \in A_J$, and hence $||\sinh(k)|| \leq C$.

Now we assume that A satisfies (i) and (ii) with a suitable constant C. First we show that

(1) A is Hermitian and skew-Hermitian.

Observe that if $z \in \mathbb{C} \setminus \mathbb{R}$, then the set $\{\sin(tz); t \in \mathbb{R}\}\$ is not bounded. This fact implies that $\{r(\sin(th)); t \in \mathbb{R}\}\$ is not bounded if $\operatorname{Sp}(A, h) \subset \mathbb{R}$, and similarly $\{r(\sinh(tk)); t \in \mathbb{R}\}\$ is not bounded if $\operatorname{Sp}(A, k) \subset i \cdot \mathbb{R}\$ for $\sinh(z) = -i \cdot \sin(iz)$. Since $r(a) \leq ||a||$, thus (i) and (ii) clearly imply (1).

Now we want to show that

(2) there is a constant M such that $||a|| \leq M \cdot r(a)$ for all $a \in A_H \cup A_J$.

We have by Lemma 1.2 and (i) a constant m_1 such that

$$||a|| \leq m_1 \cdot r(a) \quad \text{for all} \quad a \in A_H$$

and we have by Lemma 1.1 and (ii) a constant m_2 such that

(4)
$$||a||^2 \leq m_2 ||a^2||$$
 for all $a \in A_J$.

But $a^2 \in A_H$ for $a \in A_I$, thus $||a^2|| \leq m_1 \cdot r(a^2) = m_1 \cdot r(a)^2$, and hence (2) is true with $M = \max(m_1, \sqrt{m_1 \cdot m_2})$.

348

We can apply Lemma 0.1 to A because (1) holds; let π be the corresponding representation. Since $||\pi(a)|| = r(a^*a)^{1/2}$, we have

(5)
$$\|\pi(a)\| = r(a) \text{ for all } a \in A_H \cup A_J,$$

and so by (2) we get $||a|| \leq M \cdot ||\pi(a)||$ for all $a \in A_H \cup A_J$. Thus if a is an arbitrary element in A and $h = \frac{a+a^*}{2}$, $k = \frac{a-a^*}{2}$, then $||a|| \leq ||h|| + ||k|| \leq M(||\pi(h)|| + ||\pi(k)||)$ and $||\pi(h)|| \leq ||\pi(a)||$, $||\pi(k)|| \leq ||\pi(a)||$ for the * is norm-preserving on $B(\mathfrak{H})$. Thus we get

(6)
$$||a|| \leq 2M \cdot ||\pi(a)||$$
 for all $a \in A$.

We have $\|\pi(a)\|^2 = r(a^*a) \le \|a^*a\| \le \|a^*\| \cdot \|a\|$, and hence by (6) we infer $\|a\| \le \le 4M^2 \cdot \|a^*\|$. Thus $\|a^*\| \le 4M^2 \cdot \|a\|$ for $a^{**} = a$, and hence

(7)
$$\|\pi(a)\|^2 \leq 4M^2 \cdot \|a\|^2$$
 for all $a \in A$.

It follows from (6) and (7) that π is homeomorphic and $\pi(A)$ is complete. Therefore A is an equivalent C^* -algebra.

2. A characterization of Hermitian algebras

Lemma 2.1. Let A and B be Banach generalized *-algebras over F. Assume that $p: A \mapsto B$ is a *-homomorphism satisfying $r(h) \leq r(p(h))$ for all $h \in A_H$. Then A is Hermitian (resp. skew-Hermitian) whenever B is.

Remark. The condition $r(h) \leq r(p(h))$ is equivalent to r(h) = r(p(h)) for $\operatorname{Sp}(B, p(h)) \subset \operatorname{Sp}(A, h) \cup \{0\}$.

Proof. Suppose that A is not Hermitian (resp. skew-Hermitian) but B is. Then there is an element $h_1 \in A_H$ (resp. $k_1 \in A_J$) such that $\operatorname{Sp}(A, h_1) \subset \mathbb{R}$ (resp. $\operatorname{Sp}(A, k_1) \subset i \cdot \mathbb{R}$). If $z \in \mathbb{C} \setminus (\mathbb{R} \cup i \cdot \mathbb{R})$ then $z^2 \notin \mathbb{R}$ and hence $\{tz + sz^3; t, s \in \mathbb{R}\} = \mathbb{C}$. This implies that there is an element $h \in \{th_1 + sh_1^3; t, s \in \mathbb{R}\} \subset A_H$ (resp. $k \in \{tk_1 + sk_1^3; t, s \in \mathbb{R}\} \subset A_J$) such that $i \in \operatorname{Sp}(A, h)$ (resp. $1 \in \operatorname{Sp}(A, k)$). Let $c = h^2$ (resp. $c = -k^2$). Then

(1)
$$-1 \in \operatorname{Sp}(A, c)$$
 and $c \in A_H$.

Further, $p(c) = p(h)^2$ (resp. $p(c) = -p(k)^2$), p is a *-homomorphism, and B is Hermitian (resp. skew-Hermitian); thus we get

(2)
$$\operatorname{Sp}(B, p(c)) \subset \mathbf{R}_+$$
.

Since A is a Banach-algebra, Sp(A, c) is bounded and hence there is a real number λ such that

(3) $\lambda > 1$ and $-\lambda^{-1} \cdot c$ has a quasi-inverse d in A.

,

(

Moreover, $d \in A_H$, because $-\lambda^{-1} \cdot c \in A_H$. Since p is homomorphic, thus p(d) is the quasi-inverse of $-\lambda^{-1} \cdot p(c)$. It is known that if b is the quasi-inverse of a in an arbitrary algebra then $\{t(t-1)^{-1}; t \in \text{Sp}(a)\} = \text{Sp}(b)$. (Sketch of the proof: b is the quasi-inverse of a if and only if 1-b is the inverse of 1-a, where $1-a, 1-b \in A+F$ if A does not have a unit in which case Sp(A, x) = Sp(A+F, x) for all $x \in A$; and hence it is easy to deduce the statement.) Thus we get from (1), (2) and (3) that

(4) there is a negative number (namely $(1-\lambda)^{-1}$) in Sp (A, d)

and

(5) $\operatorname{Sp}(B, p(d)) \subset [0, 1).$

Consider the polynomials $P_n(X) = X(1-X)^n$. Then $P_n(d) \in A_H$, and since $\operatorname{Sp}(P_n(a)) = P_n(\operatorname{Sp}(a))$ in an arbitrary algebra, thus $r(P_n(d)) > 1$ for sufficient large n by (4), while $r(P_n(p(d))) < 1$ for all n by (5). Thus we have got a contradiction to the assumption of our lemma.

Lemma 2.2. Let A and B be Banach algebras over F and p: $A \mapsto B$ be a homomorphism. Then the following conditions are equivalent:

- (i) r(a)=r(p(a)) for all $a \in A$,
- (ii) $\partial \text{Sp}(A, a) \subset \partial \text{Sp}(B, p(a)) \cup \{0\}$ for all $a \in A$.

Proof. First we assume (ii). Let $a \in A$ be fixed and let S be the closed disc about zero in C with radius r(p(a)). Then $\partial \operatorname{Sp}(A, a) \subset S$, and $\operatorname{Sp}(A, a)$ is a bounded set in C, thus $\operatorname{Sp}(A, a) \subset S$, $r(a) \leq r(p(a))$. Therefore (i) holds, for $r(a) \geq r(p(a))$ is true for any homomorphism p.

Now we assume (i). Fix an element $a \in A$ and a complex number $z \in \partial \operatorname{Sp}(A, a) \setminus \{0\}$. Suppose that $z \notin \partial \operatorname{Sp}(B, p(a))$. Since $\operatorname{Sp}(B, p(a)) \subset \operatorname{Sp}(A, a) \cup \cup \{0\}$, we get $z \notin \operatorname{Sp}(B, p(a))$. Choose a sequence of complex numbers $z_n \to z$ such that $z_n \notin \operatorname{Sp}(A, a)$. We may assume $z_n \neq 0$ for all *n*. If $\mathbf{F} = \mathbf{R}$ then let

$$u_n = |z_n|^{-2} \cdot (2 \cdot \operatorname{Re}(z_n)a - a^2)$$
 and $u = |z|^{-2} \cdot (2 \cdot \operatorname{Re}(z)a - a^2)$,

while in case $\mathbf{F} = \mathbf{C}$ let

 $u_n = z_n^{-1} \cdot a$ and $u = z^{-1} \cdot a$.

Then we have by [1] (see p. 70):

(1) $u_n \rightarrow u$ in A and $p(u_n) \rightarrow p(u)$ in B,

- (2) u_n has a quasi-inverse in A,
- (3) u does not have a quasi-inverse in A,
- (4) p(u) has a quasi-inverse in B.

Further on, u_n and u are polynomials of a, and hence there is a maximal commutative subalgebra A' of A containing u and u_n for all n, and similarly a maximal commutative subalgebra B' of B containing p(A'). By (3) there is a character φ on A' such that $\varphi(u)=1$. Thus $\varphi(u_n) \rightarrow 1$, and hence, denoting the quasi-inverse of u_n by v_n , $|\varphi(v_n)| \rightarrow \infty$. Therefore $r(v_n) \rightarrow \infty$ and thus (i) yields

(5)
$$r(p(v_n)) \to \infty$$
.

On the other hand, $1 \notin \operatorname{Sp}(B', p(u))$, and hence there is an $\varepsilon > 0$ such that $|\psi(p(u))-1| > \varepsilon$ for all characters ψ of B'. Thus if $||p(u_n)-p(u)|| \le \varepsilon/2$ then $|\psi(p(u_n))-1| \ge \varepsilon/2$ for all ψ , and $|\psi(p(u_n))| \le ||p(u_n)|| \le \operatorname{constant}$, because $p(u_n) \to p(u)$. Hence $r_n := \max \{|\lambda(\lambda - 1)^{-1}|; \lambda \in \operatorname{Sp}(B, p(u_n))\} \to \infty$, while $r_n = r(p(v_n))$ for $p(v_n)$ is the quasi-inverse of $p(u_n)$. This contradiction to (5) proves our lemma.

Theorem 2. Let A be a Banach generalized *-algebra over \mathbf{F} . Then the following conditions are equivalent:

(i) A is Hermitian and skew-Hermitian,

(ii) there is a Hilbert space \mathfrak{H} and a *-homomorphism $\pi: A \mapsto B(\mathfrak{H})$ satisfying $\|\pi(a)\| = r(a^*a)^{1/2}$ for all $a \in A$,

(iii) there is a π as in (ii) and satisfying $r(\pi(a))=r(a)$ for all $a \in A$,

(iv) there is a π as in (ii) and satisfying

$$\partial \operatorname{Sp}(A, a) \subset \partial \operatorname{Sp}(B(\mathfrak{H}, \pi(a)) \cup \{0\} \text{ for all } a \in A.$$

Proof. First we prove (i) \Rightarrow (iii). Consider the homomorphism π obtained from Lemma 0.1. Then for any $a \in A$ $r(a)^n = r(a^n) \leq ||\pi(a^n)||$ for all *n*, and hence $r(a) \leq \leq r(\pi(a))$, thus $r(a) = r(\pi(a))$.

Now we prove (ii) \Rightarrow (i). If $h \in A_H$ then $r(h)^2 = r(h^2) = r(h^*h) = ||\pi(h)||^2 = r(\pi(h))^2$ and hence by Lemma 2.1 we get (i), because $B(\mathfrak{H})$ is Hermitian and skew-Hermitian.

Since (iii) \Rightarrow (ii) is trivial and (iii) \Leftrightarrow (iv) was proved in Lemma 2.2, the proof of Theorem 2 is complete.

3. Relation between real and complex Hermitian algebras

Lemma 3.1. Let A and B be Banach-algebras with unit over F, and p: $A \mapsto B$ be a homomorphism satisfying p(1)=1 and r(p(a))=r(a) for all $a \in A$. Assume that $\operatorname{Sp}(B, p(x)) \subset \mathbb{R} \setminus \{0\}$ for some $x \in A$. Then x is invertible in A.

Proof. Since A is a Banach algebra with unit, there is a real number $\lambda > 0$ so that $a = (\lambda + x^2)^{-1}$ exists in A. Then $p(a) = (\lambda + p(x)^2)^{-1}$, and hence $\operatorname{Sp}(B, p(a)) \subset (0, 1/\lambda)$, $r(p(a)) < \lambda^{-1}$. Thus $r(a) < \lambda^{-1}$, and therefore $\lambda^{-1} \notin \operatorname{Sp}(A, a)$, $\lambda \notin \operatorname{Sp}(A, \lambda + x^2)$, and we see that x^2 is invertible in A. Hence x is invertible in A.

10

Lemma 3.2. Let A be a generalized *-algebra over **R**, and $A_{\mathbf{C}}$ be its complexification. Then $(A/\operatorname{rad}(A))_{\mathbf{C}}$ is *-isomorphic to $A_{\mathbf{C}}/\operatorname{rad}(A_{\mathbf{C}})$.

Proof. We want to prove that

(1)
$$\operatorname{rad}(A_{\mathbf{C}}) = \{(a, b) \in A_{\mathbf{C}}; a, b \in \operatorname{rad}(A)\}.$$

(We use the symbols of [1], see p. 68.) Let $N = \{a \in A; (a, 0) \in rad(A_C)\}$. Clearly N is an ideal of A. If $a \in N$, then (a, 0) is quasi-invertible in A_C , hence a is quasi-invertible in A. Thus we obtain

 $N \subset \mathrm{rad}(A)$.

Now we fix an element $b \in \operatorname{rad}(A)$ and an irreducible representation p of $A_{\mathbb{C}}$ over the complex linear space X. Suppose that L is a real subspace of X, invariant for the operators p((a, 0)) for all $a \in A$. Then $L+i \cdot L$ and $L \cup i \cdot L$ are complex subspaces, invariant for $p(A_{\mathbb{C}})$, and hence, being p an irreducible representation, if L is non-trivial then $X=L\oplus i \cdot L$ as a real linear space. Hence if L_1 is another such subspace then $\{0\} \subseteq L_1 \subseteq L$ is not possible, that is $a \rightarrow p((a, 0))|_L$ is an irreducible representation of A on L. Thus $p((b, 0))|_L=0$ for $b \in \operatorname{rad}(A)$, and hence p((b, 0))=0 because X is the complex hull of L. If such L does not exist then $a \rightarrow p((a, 0))$ gives an irreducible representation and p((b, 0))=0, too. Having this for any irreducible representation p of $A_{\mathbb{C}}$ we see that $b \in N$, $\operatorname{rad}(A) \subset N$, and hence by (2) we get

(3)

a see

lanto en 2012 - A Nacional en 2012 - A

$$N = \operatorname{rad}(A).$$

Now consider the mapping (a, b)' := (a, -b) on A_{C} . This is conjugate linear automorphism, hence it preserves the quasi-invertibility, and therefore maps rad (A_{C}) onto itself. We can infer from this:

$$rad(A_{C}) = \{(a, b); (a, 0), (0, b) \in rad(A_{C})\}.$$

But $-i \cdot (0, b) = (b, 0)$ and hence rad $(A_c) = \{(a, b); a, b \in N\}$, that is, by (3), we can see that (1) holds.

It is easy to deduce from (1) that $(A/rad(A))_{C}$ is *-isomorphic to $A_{C}/rad(A_{C})$.

Theorem 3. Let A be a Banach generalized *-algebra over **R**. Then A is Hermitian and skew-Hermitian if an only if its complexification A_{C} is a complex Hermitian algebra.

Proof. Since the spectrum in a real algebra is defined through its complexification, one of the directions is trivial. To prove the other direction let A be Hermitian and skew-Hermitian as well. We may assume A has a unit, because otherwise $A + \mathbf{R}$ is Hermitian and skew-Hermitian while $(A + \mathbf{R})_{\mathbf{C}}$ is *-isomorphic to $A_{\mathbf{C}} + \mathbf{C}$. Then we may also assume A is semi-simple by Lemma 3.2.

63

352

(2)

Thus by Lemma 0.1 we have a *-homomorphism $\pi: A \mapsto B(\mathfrak{H})$, which is now *injective*. Moreover, it is easy to show (see e.g. the proof of Theorem 2) that

(1) π satisfies the conditions of Lemma 3.1.

We want to prove that $A_{\mathbb{C}}$ is Hermitian. Since $1 \in A$, it is enough to show that $1+x^2$ is invertible in $A_{\mathbb{C}}$ whenever $x \in (A_{\mathbb{C}})_H$. Fix an $x=(a, b) \in (A_{\mathbb{C}})_H$, then $a \in A_H$ and $b \in A_J$. Let $c=1+a^2-b^2$, d=ab+ba, then $1+x^2=(c, d)$. Since the complexification of $B(\mathfrak{H})$ is clearly *-isomorphic to $B(\mathfrak{H}_{\mathbb{C}})$, which is Hermitian, thus $(\pi(c), \pi(d))$ is invertible in $B(\mathfrak{H})_{\mathbb{C}}$, so we have $u, v \in B(\mathfrak{H})$ satisfying

(2)
$$u \cdot \pi(c) - v \cdot \pi(d) = 1, \quad u \cdot \pi(d) + v \cdot \pi(c) = 0$$

and

(3)
$$\pi(c) \cdot u - \pi(d) \cdot v = 1, \quad \pi(d) \cdot u + \pi(c) \cdot v = 0.$$

It is known that the set $A_p = \{h \in A_H; \text{ Sp}(A, h) \subset \mathbb{R}_+\}$ is a cone (see [5]), and hence $a^2 - b^2 \in A_p$ because $a^2, -b^2 \in A_p$. Thus we can infer

(4)
$$c$$
 has an inverse h in A_H .

We see from (2) that $v = -u \cdot \pi(dh)$ and so $u \cdot \pi(c+dhd) = 1$. Similarly, we can see from (3) that $\pi(c+dhd) \cdot u = 1$. Observe that $m = c + dhd \in A_H$ because $d \in A_I$ and $c, h \in A_H$, and hence Sp $(B(\mathfrak{H}), \pi(m)) \subset \mathbb{R}$. Applying Lemma 3.1 we get a $k = m^{-1}$ in A, moreover, $\pi(k) = u$. Hence $v = \pi(j)$, where j = -kdh. Now by the injectivity of π we can infer that $(k, j) = (1 + x^2)^{-1}$ in $A_{\mathbb{C}}$. The proof is complete.

References

- F. F. BONSALL and J. DUNCAN, Complete normed algebras, Springer-Verlag (Berlin-Heidelberg-New York, 1973).
- [2] S. H. KULKARNI and B. V. LIMAYE, Gelfand-Naimark theorems for real Banach *-algebras, Math. Jap., 25 (1980), 545-558.
- [3] Z. MAGYAR, On commutativity and spectral radius property of real generalized *-algebras, Acta Sci. Math., 53 (1989), 339-343.
- [4] V. Prák, Banach algebras with involution, Manuscripta Math., 6 (1972), 245-290.
- [5] S. SHIRALI and J. W. M. FORD, Symmetry in complex involutory Banach algebras. II, Duke Math. J., 37 (1970), 275-280.

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF APPLIED ANALYSIS MÜZEUM KÖRÚT 6—8 1088 BUDAPEST, HUNGARY

1.4.1.1.1.1