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On reducing subspaces of éomposition operators

JAMES. GUYKER

If ¢ is an analytic function mapping the unit disk into itself, RYrr [10] has
shown that ¢ induces a bounded linear operator C, on Hardy space H? defined by
C, f=foe. Many of the basic properties of C, depend on the fixed points of ¢ in
the closure of the disk (see [4], [9] for references). If ¢ is not a rotation about a fixed
point, then by the Denjoy—Wolff theorem ([6], [13]) ¢ has a unique fixed point
such that |¢’(®)l=1. In-this paper, the reducing subspaces of classes of C, are
characterized when |x|<1 and either ¢ is univalent or some positive integral power
of C, is compact. The complementary case when a=0 and ¢ is inner follows from
results of NORDGREN [8] and BrowN [2].

Notion. We will assume henceforth that ¢ is neither a constant nor a Mébius
transformation of the disk onto itself, that « is the Denjoy—Wolff fixed point of ¢,
and that |a]<1. Then |¢’(ax)l<1, and there is a natural basis of H? with respect
to which C, is lower triangular with diagonal [1, ¢'(2), ¢’ (2)? ...]. Indeed, let
]

_]" (n=0,1,...), N

(1
by(@, 2) = 1—2z& 1—z&

then for i=j,
—lal? —a Pt
(Cobyb) = 1l—¢':zl)a [£=ef [11<p::)a] =1 1-lza>_"'

which is ¢’ («)' whenever i=j, and is O when i<j.
Moreover, if f is in. H2, then f=3 ( f, b,)b, where

#oy =2 ()L carra—mamrrem

This follows diféctly'by wi'iting fin terms of "1§s ‘Taylor sefies, expanding
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by the binomial theorem, and by observing that {(z—a)*, 2°/(1 —z&)"*') is O when-
ever n#k, and is 1 when n=k, since the adjoint of multiplication by z/(1—z&)
on H? maps h(z) into (h(z)—h(®))/(z—0).

We recall that a subspace .# reduces an operator T on a Hilbert space 5% if
both .# and # ©.# are invariant under 7, or equivalently, if the orthogonal
projection onto .# commutes with 7. If the only subspaces that reduce T are {0}
and # itself, then T is said to be irreducible (otherwise T is reducible).

Theorem 1. If ¢ is univalent and o0, then C, is irreducible.

When a=0, the constants reduce C,. In fact, by [4, Theorem 4.1], the kernel
of 1-C, contains only the constant functions, so it follows in this case that .
reduces C,, if and only if 4 =.4,®.4#,, where 4, is either {0} or the space of
constants, and ., reduces the restriction of C, to zH?. A complete description (Theo-
rem 2) of the subspaces ., may be obtained under a compactness condition, with
univalence weakened to ¢’ («x)>%0. The study of compact composition operators
was initiated by SCHWARTZ in [11], and continued by several authors ([3], [5], [12]).
In particular, CAUGHRAN and SCHWARTZ [3, Theorem 2] have shown that when
some positive integral power of C,, is compact, the Denjoy—WOolff point always lies
inside the disk. Note that Cj) =C,,, Where gy is defined 1nduct1vely by ¢, =¢ and

¢n+1—'(P°¢n

Theorem 2. Suppose that Cy is compact for some positive integer N, and that

@' (@)#0. Then C, is reducible if and only if a=0. Moreover, if a=0, then the

restriction of C, to zH?* is reducible if and only if there exists an H* function ¥ which

is bounded by one, and a nonnegative integer p1, such that ¢(z)=z¥(2*); in this

*case, a subspace M reduces C,, restricted to zH? if and only if M =V{bjp+;: =0,
JjET} where I is an arbitrary subset of {1, ..., p} ({1, 2, ...} if p=0).

The reducing subspaces of more general composition .operators are formed
from cyclic subsets of basis vectors as follows. Let j=1, p>0 and r=1 be integers
such that if p>0 then j=p and p is relatively prime to r. Let ]0“"] and j,i1=
=rj,—i,p (n= ...) where i, is the unique integer which is 0 if p=0, and satis-
fies i,p<rj,= (z,,+1) p if p=0. The set {j,: n=0)} will be called the (r, p)-cycle
generated by j. Let p=0. Then since 1=j,=p for all n, the terms of the sequence
J. tepeat. It follows easily that if j,.;=j,,, (m=>n), then j,=j,; and hence
Jm—n=Jj. Therefore, j is the first term to reappear. Moreover, the set {1, ..., p}
({1, 2, ...} if p=0) may be written as a dlS_]Olllt umon of (r, p)-cycles With no add1-
tional conditions on ¢, we have

Theorem 3. If a0, then no nontrivial closed span of basis vectors b, (n=0)
reduces C,: If a=0, and is of order r, then a nontrivial closed span. 4 of vectors b,



Reducing subspaces of composition operators 3N

(n=1) reduces the restriction of C, to zH?* if and-only if there exists a nonnegative
integer p#1, which is relatively prime to r whenever p#0, such that -¢(z)=z"¥(z)
for some H= function ¥ which is bounded by one, and M =VN{b;,,;: i=0, jcI'}
where I is a union of (r, p)-cycles.

In view of the above results, a natural question is: when either ¢ is univalent
or Cg is compact, are all the reducing subspaces of C, closed spans of basis vectors?
The related step in the proof of Theorem 2 follows by expressing the span of the
first » basis vectors (n=0, 1, ...) in terms of the kernel of some element of the von
Neumann algebra generated by 1, C, and Cj. A similar argument may be used
in the following example.

Example 1. Let ¢=10 where A is a constant (0<|4|<1) and 6 is an inner
function such that 6(0)=0. By ([1, Theorem 20], [8, Theorem 1], or [10, Theorem
3]), C, is an isometry, so that C,;C, is a diagonal operator with diagonal
(1,141, 143 ...). Therefore, V b,:ker]](C;C,,,—M[') (n=0, 1,...), and it follows

[ 0
that the reducing subspaces are closed spans of b,’s and are thus described by The-
orem 3.

Further evidence is provided by the following result which implies that reducing

subspaces are (at least) closed spans of finite linear combinations of basis vectors.

Theorem 4. Suppose that ||¢ll.<1 and ¢’(x)=0. If X commutes with C, and
(&) is the matrix of X with respect to {b,}, then A;=0 (j=1,2,...) and there
exists an integer M such that A,;=0 (i=1,2,...) for every j=Mi.

Theorem 4 suggests an alternative approach to answering the above question
in the affirmative, as illustrated by

Example 2. Let a=0 be of order r=>1, and suppose that ¢ is a polynomial
of degree r™ such that |@ylle<1 for some positive integers M and N. Then the
reducing subspaces of C,, are given by Theorem 3: Let P be the projection onto a
reducing subspace. Since P commutes with C;N, it follows from Theorem 4 that
Pb, is a polynomial for every n; thus, it suffices to show that the degree of Pb, does
not exceed n for every n. Suppose that n<deg Pb, for some n,.and let i be the least
such integer. Seiting j=deg Pb;, we have that

(PC, Coybis b)) = (Cry Co, Pbi, b)),
and hence by straightforward calculations, u‘=p’ where
= bus 91, e -1

(so that- O<]u|<1). ‘Therefore i=j, a contradiction.
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The- verification of Theorem 3 depends upon a reformulation of the usual
multinomial theorem, which subsequently determines how often powers of ¢ have
nonzero coefficients.

Lemma. Let
w p—1
f@=aw+ 3 3 aype;27H
i=1 j=0
be a formal power series where ay, is nonzero, and for j=0,1, ..., define
j ~
&y =0,,4; and Gy = kg; @, p+k8m-1,j-x (m>1).

Then for every positive integer n,

S(2)" = a+

u[\48

P—
Z . lM_Jzipu

where

X

i
’an,l'p+j = Z (m)a'l.o_mdm.(i—m)p+j'

m=1

In particular, for fixed i and j, either a,;,.;=0 for all n=1, or a,;,,;=0
Jor at most i—1 values of n=1. If a,,#0, then a,;,=0 for at most i—1 values
of n=l.

The followmg estimate in H= is essential to the proof of Theorem 4, and may
be of independent interest.

Proposition. If ¢ (@)=0 for every i=1, ...,r—1, then

(e —1)/(r —1)

IC bl = |22

Jor all nonnegatwe integers'm and n.

- Acknowledgments. 1 am grateful to Professor M. A. KAASHOEK for his support
and encouragement during my sabbatical at the Free University, at which-time this
work was completed. Also, I am indebted to Professors L. DE BRaNGEs and-C. C.
CoweN for their lectures and conversations concerning composmon operators.

Proof of Theorem 1. Let # reduce C,. By [4, Theorem 4.1], the kernel of
1-C, consists of just thé constant functions. Thus we may assume that constants
belong to .#, and hence so does C}"1=[1— 20,0 (n=1,2,..). -

Let f be orthogonal to /. Then f vanishes on the set Q= {(p,,(O) n>1}
If ¢,(0)=¢,,,(0) for some positive integers m and n, "then ¢,(0) is a fixed point
of ¢,. But « is also a fixed point of ¢,,-and ¢, is not.a rotation about.a fixed. point
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since otherwise ¢ would be-inner and hence by [7; Theorem 3.17] ¢ ‘would be a
Mébius transformation. Thus it follows that ¢,(0)=a=¢,(x), and since ¢, is
univalent, we have that «=0, a contradiction. Hence, the set Q consists of distinct
points which must cluster in the closure of the disk. However, by Schwarz’s lemma,

z—a
1—2z&

Pn(2)—
1 _(Pn(z)&

for every z in the disk. Setting z=0, we conclude that Q must cluster inside the
disk. Therefore, f is identically zero.

Proof of the lemma. The formula is obvious for n=1, so by induction,
we assume it is valid for some n. Multiplying f(2)"+'=f(z)-f(z)", we have that

_ (i-2)p+j .
Ayit,ip+] = G100n,ip+j+ al,p+kan.(i—1)p+j—k]+al,ip+ja10 =

i | ' n . . .
= [ 2 ( )alo m.(i—m)p+j] +[ 2 (m—l] a?o_"'uam,(i—m)ﬁj]+a§oal,ip+j =
=1 m

=2

LI(n n n+1) : .
=2 (m)"'(m—l)]“'l'o—m Y 2 )a( DG mmyp s+
m= .

Thus, the form of f(z)" follows for every n.

Fix i and j, and let n=i. Then (na}))~'a,,,+; is a polynomial in n of degree
at most i—1. Suppose that g, ;,,;=0 for some k such that 1=k=i—1. It follows
that the sum of the first k terms of (na},)~'a,,;,+, is equal to

L2 | (n—-1)! (k—1)! m
m§1 m! L (n—m)! (k-m)!]am o, i=myp+ >

which is divisible by n—k. Since each of the last i—k terms contains a factor of
n—k, we have that n—k divides (na}))~'a, i,+;. Therefore, either all of the
coefficients of (na}o) =" a,, i+, (n=1) are zero, or a,, ,p+ ;=0 for at most i—1 values
of n=1.

Fmally, suppose that an,#O Then the leadmg coeﬁicxent of (na{o) On,ip
(n=i) is (t'am) 1é,o—(z'am) 1p70- Hence, aG,,ip=0 for at most i—1 values of
nzl . .

Proof of Theorem 3. Let oc;éO and suppose that M is & nontr1v1al closed
span of b,’s (n=0) which reduces C,. Since .# L is of the same form, we may assume
that by.is.in . Let n be the greatest 1nteger such that b,, belongs to- A for every

m=0, ..., n. Since A is invariant under C,, we have that f—C Z’(—a)”'
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X (1—|a|?)~"2b,, isin A and {f,b,,,)=0. However, by induction,
(@) =—(n+ )(-a)"+ 19’ (D[l —p(2)a] " *[p(z)—a]’

and .
() = —(n+DH=a)* 1 (1—|al?)~" 2" (a)"+.

Therefore,
(s bpsr) = ()" (A —|a|)~V3[1— ¢ (a)"*'] 52 O,

a contradiction. Thus, .# must be trivial.

Next, let «=0 be a zero of ¢ of order r, and let .# be a nontrivial closed span
of vectors b,=2z" (n=1) which reduces the restriction of C, to zH?. Let us write
@(z)=2"¥(z) for some H= function ¥. If ¥ is a constant function, then the proposed
forms of ¢ and # clearly follow with p=0. Henceforth, using the notation of the
lemma, we assume that ¥(z)=3 (¥, b,)b,=ay,+a1,2%+ay, ,412°" +... where
a,, and a,, are nonzero. Observe that if .# contains 2°, and a,,,#0, then ./ also
contains z"*%. Indeed, "¢ (2)"=z"¥(2)" is in A, and {p(z)", Z"+tP)=0; there-
fore, by the given form of .#, z7"*? belongs to .#. Since z™ is orthogonal to .#
whenever z™ is, we have that .# contains z"*4.

Let 2" be in .#. By the lemma, there exists an integer K such that g ,, =0 for
every k=r¥n. Now, 27" is in . And, if z7"t™ is in 4 for some m=0, then
%, 1 mg rg 70> and, by the above argument, .# contains 2t miDa Thys, by in-
duction, z7*™ is in .# for every m=0, 1, ..., and hence, in particular, z"<(+9
is in . Consequently, ./ contains z"*? whenever it contains z".

For integers i and j, let iAj denote the greatest common divisor of i and j.
Let g(1)=q, and for ¢=2,3, ..., define q(¢)=[rAq(t—1)]"2q(t—1). Since {q(¢)}
is a monotonically decreasing sequence of positive integers, there exists a least in-
teger T such that q(T+1)=q(T), ie., rAq(T)=1. Note that q(T)=r"Tgq

T
where o=]] [rAq(t)]"'r. If z" belongs to ., it follows that z"+4(T =z~ "¢"a+ed
1

belongs to .#. Similarly, the orthogonal complement of .# in zH? is invariant under
multiplication by 24T, Therefore, there exists a subset I3 of {1, ..., g(T)} such that
A is the closed span of vectors of the form z9M+/ (i=0; jcI;). Furthermore,
if j is in I, then ig(T)<rj=(i+1)q(T) for some integer i, and rj—ig(T) is in
I;. Hence, I, is a union of [r, g(T)}-cycles.

If $=¥(z%D), let p=q(T) and I'=I;; otherwise, let p(1)=q(T). Suppose
that for some integer s=1, a positive integer p(s), relatively prime to r, is defined
such that #=V{zP@+): j=0, jcI} for some union I, of [r, p(s)}-cycles, and
P=P(z"®). Let I=min {i: a ;,4+;#0 for some j such that O<j<p(s)}, and
let J=min {j=0: 8y, 1,+;#0}. By the lemma, a, ;5)+s=n @, 1p+s70.
for every n=1,2,.... Asabove, 2"+P®+J  and hence z™*’, belong to 4 when-
ever 2" belongs to /.
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Let 2" be in . Then n=ip(s)+j where j isin Iy and i=0. Since I, is a union
of cycles, there exists an element j’ in I and an integer i’ such that j=rj’—i’p(s).
Thus, n+J=(—i)p(s)+(rj’+J), so that z'*’ is in . Similarly, zH?*©.# is
invariant under multiplication by z’. '

Let p(s+1)=p(s)AJ. Then p(s+1) is relatively prime to r, and there exist
integers u and v such that p(s+1)=up(s)+vJ. It follows that .# and the orthogonal
complement of .# in zH? are invariant under multiplication by z”¢+1,and hence,
as above, there exists a union I, of [r, p(s+1)]-cycles such that =V {Z'P6+D+i:
i=0, jeI,,,}. Therefore, p(s+1) (s=1, 2, ...) may be defined recursively provided
Y= P(zP®) for every s. But this is impossible since {p(s)} is a strictly decreasing
sequence of positive integers. Consequently, there exists an integer S such that
P=9 ("), and the forms of ¢ and .# follow by setting p=p(S) and I'=I}.
Note that ps>%1 since ./ is nontrivial.

Conversely, suppose that ¢(z)=z"¥(z?) where rAp=1 if p=0, and that
M=\ {ZPt: i=0, jcI'} for some union I' of (r, p)-cyclés. If p=0, then clearly
A is invariant under C,; so we assume that p>1. If z" belongs to .#, then so does
Z%+mP for every m=0. Indeed n=ip+j where j is in I' and /=0 and there exists
an integer i’ such that i"p<rj=(’+1)p. Hence, rj=i’'p+j’, where j* isin I’
by the definition of (r, p)-cycle. Therefore, z™+mP=z+¥+mp /" i5 in 4, and thus,
sois @(z)"=2"¥(z")". It follows that .# is invariant under C,,.

Finally, .#+ is invariant under C, since it is the closed span of vectors of the
form Z'P+J (i=0; jeI'’), where I'” is the complement in {1,...,,p} ({1,2,...}, if
p=0) of I' and is hence the union of (r, p)-cycles.

Proof of Theorem 2. Since C,";N=C;N is compact with nonzero eigenvalues
(p’(a)’"N (m=0, 1, ...), it follows from (4, Theorem 4.1] that ¢’ («)" is an eigenvalue
of C;, of multiplicity one for every m. Thus, by the matrix of C}, with respect to {b,},

we have that \n/b,,,=ker ﬁ '[C:’:‘—qo’(a)"'] for every n=0,1,.... Therefore, by
0 0

induction, either b, belongs to .# or is orthogonal to .# for each n, and hence the
form of . is given by Theorem 3.

Proof of the proposition. Using induction on n with m fixed, the case
n=0 is obvious, so we assume that the inequality holds for some 7. Since ¢ (a)=a
and ¢®(a)=0 (i=1;...,r—1), we have that ¢P(2)=0 for every i=1,...,r"—1.
Hence, C3*b,,=C, f where f=b,(a, ¢,)=[(z—)/(1—2z8)]""g for some H> func-
tion g. Therefore, -[C%™ b, [lo=[(p—a)/(1— )™ | g(¢)l~ where [g(¢)]e=
=gl = flleo=[(p—a)/(1 — @a)| ™=~ by the induction hypothesis. The
case n+1 now follows by combining the above inequalities.

Proof of Theorem 4. Since |¢[l.<1, C, is compact by [11, Theorem 5.2].
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Therefore, by [4, Theorem 4.1], the kernel of I—C; is one-dimensional, and since
it is invariant under X*, we have that 1,,=0 (j=1).

Suppose that ¢™(@)=0 (m=1,...,r—1) and ¢ (x)#0. By direct compu-
tations, there exist constants u,=u.(n) such that for every i=0,

b= p-—i(r"—l)/(r'—l)crbl’n_*_i 2 1 b,
where p=(1—|a|?y 1o (x)(r!)~2. Moreover, since |¢l.<1, it follows that

llog—)/(1—9@)]|<1, and hence there exists an integer M=1 such that
o —a)/(1~ @)% <|u|. Thus,

Ay = (Xby, by)y = p= i =DIT=D(XC D, bypndy + 2 By Ay

and consequently by the proposition, for j=Mi we have that
—a

M
V] 2 vhoi] = 1X ( -1
Jhiy— 3 B dey| = 1 X5 - _lul

Therefore, the theorem follows by induction on i=1, and the separate case i=0,
since the right hand side converges to zero as n tends to infinity.

]i(r" —1){(r—1)
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