On reducing subspaces of composition operators

JAMES GUYKER

If φ is an analytic function mapping the unit disk into itself, RYFF [10] has shown that φ induces a bounded linear operator C_{φ} on Hardy space H^2 defined by $C_{\varphi}f=f\circ\varphi$. Many of the basic properties of C_{φ} depend on the fixed points of φ in the closure of the disk (see [4], [9] for references). If φ is not a rotation about a fixed point, then by the Denjoy—Wolff theorem ([6], [13]) φ has a unique fixed point α such that $|\varphi'(\alpha)| \leq 1$. In this paper, the reducing subspaces of classes of C_{φ} are characterized when $|\alpha| < 1$ and either φ is univalent or some positive integral power of C_{φ} is compact. The complementary case when $\alpha=0$ and φ is inner follows from results of NORDGREN [8] and BROWN [2].

Notion. We will assume henceforth that φ is neither a constant nor a Möbius transformation of the disk onto itself, that α is the Denjoy—Wolff fixed point of φ , and that $|\alpha| < 1$. Then $|\varphi'(\alpha)| < 1$, and there is a natural basis of H^2 with respect to which C_{φ} is lower triangular with diagonal $[1, \varphi'(\alpha), \varphi'(\alpha)^2, ...]$. Indeed, let

$$b_n(\alpha, z) = \frac{(1-|\alpha|^2)^{1/2}}{1-z\bar{\alpha}} \left[\frac{z-\alpha}{1-z\bar{\alpha}} \right]^n \quad (n=0, 1, \ldots),$$

then for $i \leq j$,

$$\langle C_{\varphi} b_j, b_i \rangle = \left\langle \frac{1 - |\alpha|^2}{1 - \varphi(z)\bar{\alpha}} \left[\frac{\varphi(z) - \varphi(\alpha)}{z - \alpha} \right]^j \left[\frac{1 - z\bar{\alpha}}{1 - \varphi(z)\bar{\alpha}} \right]^j \left[\frac{z - \alpha}{1 - z\bar{\alpha}} \right]^{j-i}, \ \frac{1}{1 - z\bar{\alpha}} \right\rangle,$$

which is $\varphi'(\alpha)^i$ whenever i=j, and is 0 when i < j.

Moreover, if f is in H^2 , then $f = \sum \langle f, b_n \rangle b_n$ where

$$\langle f, b_n \rangle = \sum_{k=0}^{n} {n \choose k} \frac{f^{(k)}(\alpha)}{k!} (-\bar{\alpha})^{n-k} (1-|\alpha|^2)^{k+(1/2)}.$$

This follows directly by writing f in terms of its Taylor series, expanding

$$\left[\frac{z-\alpha}{1-z\overline{\alpha}}\right]^{n} = \left[-\alpha + (1-|\alpha|^{2})\frac{z}{1-z\overline{\alpha}}\right]^{n}$$

Received July 29, 1986.

J. Guyker

by the binomial theorem, and by observing that $\langle (z-\alpha)^k, z^n/(1-z\overline{\alpha})^{n+1} \rangle$ is 0 whenever $n \neq k$, and is 1 when n=k, since the adjoint of multiplication by $z/(1-z\overline{\alpha})$ on H^2 maps h(z) into $(h(z)-h(\alpha))/(z-\alpha)$.

We recall that a subspace \mathscr{M} reduces an operator T on a Hilbert space \mathscr{H} if both \mathscr{M} and $\mathscr{H} \ominus \mathscr{M}$ are invariant under T, or equivalently, if the orthogonal projection onto \mathscr{M} commutes with T. If the only subspaces that reduce T are $\{0\}$ and \mathscr{H} itself, then T is said to be irreducible (otherwise T is reducible).

Theorem 1. If φ is univalent and $\alpha \neq 0$, then C_{φ} is irreducible.

When $\alpha=0$, the constants reduce C_{φ} . In fact, by [4, Theorem 4.1], the kernel of $1-C_{\varphi}$ contains only the constant functions, so it follows in this case that \mathcal{M} reduces C_{φ} if and only if $\mathcal{M}=\mathcal{M}_0\oplus\mathcal{M}_1$, where \mathcal{M}_0 is either {0} or the space of constants, and \mathcal{M}_1 reduces the restriction of C_{φ} to zH^2 . A complete description (Theorem 2) of the subspaces \mathcal{M}_1 may be obtained under a compactness condition, with univalence weakened to $\varphi'(\alpha)\neq 0$. The study of compact composition operators was initiated by SCHWARTZ in [11], and continued by several authors ([3], [5], [12]). In particular, CAUGHRAN and SCHWARTZ [3, Theorem 2] have shown that when some positive integral power of C_{φ} is compact, the Denjoy—Wolff point always lies inside the disk. Note that $C_{\varphi}^N = C_{\varphi_N}$ where φ_N is defined inductively by $\varphi_1 = \varphi$ and $\varphi_{n+1} = \varphi \circ \varphi_n$.

Theorem 2. Suppose that C_{φ}^{N} is compact for some positive integer N, and that $\varphi'(\alpha) \neq 0$. Then C_{φ} is reducible if and only if $\alpha = 0$. Moreover, if $\alpha = 0$, then the restriction of C_{φ} to zH^{2} is reducible if and only if there exists an H^{∞} function Ψ which is bounded by one, and a nonnegative integer $p \neq 1$, such that $\varphi(z) = z\Psi(z^{p})$; in this case, a subspace \mathcal{M} reduces C_{φ} restricted to zH^{2} if and only if $\mathcal{M} = \bigvee \{b_{ip+j}: i \geq 0, j \in \Gamma\}$ where Γ is an arbitrary subset of $\{1, ..., p\}$ ($\{1, 2, ...\}$ if p = 0).

The reducing subspaces of more general composition operators are formed from cyclic subsets of basis vectors as follows. Let $j \ge 1$, $p \ge 0$, and $r \ge 1$ be integers such that if p > 0, then $j \le p$ and p is relatively prime to r. Let $j_0 = j$ and $j_{n+1} =$ $=rj_n - i_n p$ (n=0, 1, ...) where i_n is the unique integer which is 0 if p=0, and satisfies $i_n p < rj_n \le (i_n+1)p$ if p > 0. The set $\{j_n : n \ge 0\}$ will be called the (r, p)-cycle generated by j. Let p > 0. Then since $1 \le j_n \le p$ for all n, the terms of the sequence j_n repeat. It follows easily that if $j_{m+1} = j_{n+1}$ (m>n), then $j_m = j_n$; and hence $j_{m-n} = j$. Therefore, j is the first term to reappear. Moreover, the set $\{1, ..., p\}$ $(\{1, 2, ...\}$ if p=0) may be written as a disjoint union of (r, p)-cycles. With no additional conditions on φ , we have

Theorem 3. If $\alpha \neq 0$, then no nontrivial closed span of basis vectors b_n ($n \ge 0$) reduces C_{∞} . If $\alpha = 0$, and is of order r, then a nontrivial closed span \mathcal{M} of vectors b_n

370

 $(n \ge 1)$ reduces the restriction of C_{φ} to zH^2 if and only if there exists a nonnegative integer $p \ne 1$, which is relatively prime to r whenever $p \ne 0$, such that $\varphi(z) = z^r \Psi(z^p)$ for some H^{∞} function Ψ which is bounded by one, and $\mathcal{M} = \forall \{b_{ip+j} : i \ge 0, j \in \Gamma\}$ where Γ is a union of (r, p)-cycles.

In view of the above results, a natural question is: when either φ is univalent or C_{φ}^{N} is compact, are all the reducing subspaces of C_{φ} closed spans of basis vectors? The related step in the proof of Theorem 2 follows by expressing the span of the first *n* basis vectors (n=0, 1, ...) in terms of the kernel of some element of the von Neumann algebra generated by 1, C_{φ} and C_{φ}^{*} . A similar argument may be used in the following example.

Example 1. Let $\varphi = \lambda \theta$ where λ is a constant $(0 < |\lambda| < 1)$ and θ is an inner function such that $\theta(0) = 0$. By ([1, Theorem 20], [8, Theorem 1], or [10, Theorem 3]), C_{θ} is an isometry, so that $C_{\varphi}^* C_{\varphi}$ is a diagonal operator with diagonal $(1, |\lambda|, |\lambda|^2, ...)$. Therefore, $\bigvee_{0}^{n} b_i = \ker \prod_{0}^{n} (C_{\varphi}^* C_{\varphi} - |\lambda|^i)$ (n = 0, 1, ...), and it follows that the reducing subspaces are closed spans of b_n 's and are thus described by Theorem 3.

Further evidence is provided by the following result which implies that reducing subspaces are (at least) closed spans of *finite* linear combinations of basis vectors.

Theorem 4. Suppose that $\|\varphi\|_{\infty} < 1$ and $\varphi'(\alpha) = 0$. If X commutes with C_{φ} and (λ_{ij}) is the matrix of X with respect to $\{b_n\}$, then $\lambda_{0j} = 0$ (j=1, 2, ...) and there exists an integer M such that $\lambda_{ij} = 0$ (i=1, 2, ...) for every $j \ge Mi$.

Theorem 4 suggests an alternative approach to answering the above question in the affirmative, as illustrated by

Example 2. Let $\alpha = 0$ be of order r > 1, and suppose that φ is a polynomial of degree r^M such that $\|\varphi_N\|_{\infty} < 1$ for some positive integers M and N. Then the reducing subspaces of C_{φ} are given by Theorem 3: Let P be the projection onto a reducing subspace. Since P commutes with $C_{\varphi_N}^*$, it follows from Theorem 4 that Pb_n is a polynomial for every n; thus, it suffices to show that the degree of Pb_n does not exceed n for every n. Suppose that $n < \deg Pb_n$ for some n, and let i be the least such integer. Setting $j = \deg Pb_i$, we have that

$$\langle PC_{\varphi_N}^{*^{\mathcal{M}}}C_{\varphi_N}b_i, b_j\rangle = \langle C_{\varphi_N}^{*^{\mathcal{M}}}C_{\varphi_N}Pb_i, b_j\rangle,$$

and hence by straightforward calculations, $\mu^i = \mu^j$ where

$$\mu = [\langle b_r, \varphi \rangle^{1/(r-1)} \langle \varphi, b_{rM} \rangle^{1/(rM-1)}]^{rMN-1}$$

(so that $0 < |\mu| < 1$). Therefore i=j, a contradiction.

J. Guyker

The verification of Theorem 3 depends upon a reformulation of the usual multinomial theorem, which subsequently determines how often powers of φ have nonzero coefficients.

Lemma. Let

$$f(z) = a_{10} + \sum_{i=1}^{\infty} \sum_{j=0}^{p-1} a_{1,ip+j} z^{ip+j}$$

be a formal power series where a_{10} is nonzero, and for j=0, 1, ..., define

$$\hat{a}_{1j} = a_{1,p+j}$$
 and $\hat{a}_{mj} = \sum_{k=0}^{j} a_{1,p+k} \hat{a}_{m-1,j-k}$ $(m > 1)$.

Then for every positive integer n,

$$f(z)^{n} = a_{10}^{n} + \sum_{i=1}^{\infty} \sum_{j=0}^{p-1} a_{n,ip+j} z^{ip+j}$$

where

$$a_{n,ip+j} = \sum_{m=1}^{i} \binom{n}{m} a_{10}^{n-m} \hat{a}_{m,(i-m)p+j}$$

In particular, for fixed i and j, either $a_{n,ip+j}=0$ for all $n \ge 1$, or $a_{n,ip+j}=0$ for at most i-1 values of $n \ge 1$. If $a_{1p} \ne 0$, then $a_{n,ip}=0$ for at most i-1 values of $n \ge 1$.

The following estimate in H^{∞} is essential to the proof of Theorem 4, and may be of independent interest.

Proposition. If $\varphi^{(i)}(\alpha) = 0$ for every i=1, ..., r-1, then

$$\|C_{\varphi}^{n}b_{m}\|_{\infty} \leq \left\|\frac{\varphi-\alpha}{1-\varphi\tilde{\alpha}}\right\|_{\infty}^{m(r^{n}-1)/(r-1)}$$

for all nonnegative integers m and n.

Acknowledgments. I am grateful to Professor M. A. KAASHOEK for his support and encouragement during my sabbatical at the Free University, at which time this work was completed. Also, I am indebted to Professors L. DE BRANGES and C. C. COWEN for their lectures and conversations concerning composition operators.

Proof of Theorem 1. Let \mathscr{M} reduce C_{φ} . By [4, Theorem 4.1], the kernel of $1-C_{\varphi}$ consists of just the constant functions. Thus we may assume that constants belong to \mathscr{M} , and hence so does $C_{\varphi}^{*n} 1 = [1-z\overline{\varphi_n(0)}]^{-1}$ (n=1, 2, ...).

Let f be orthogonal to \mathcal{M} . Then f vanishes on the set $\Omega = \{\varphi_n(0): n \ge 1\}$. If $\varphi_m(0) = \varphi_{n+m}(0)$ for some positive integers m and n, then $\varphi_m(0)$ is a fixed point of φ_n . But α is also a fixed point of φ_n , and φ_n is not a rotation about a fixed point since otherwise φ would be inner and hence by [7; Theorem 3.17] φ would be a Möbius transformation. Thus it follows that $\varphi_m(0) = \alpha = \varphi_m(\alpha)$, and since φ_m is univalent, we have that $\alpha = 0$, a contradiction. Hence, the set Ω consists of distinct points which must cluster in the closure of the disk. However, by Schwarz's lemma,

$$\left|\frac{\varphi_n(z)-\alpha}{1-\varphi_n(z)\bar{\alpha}}\right| \leq \left|\frac{z-\alpha}{1-z\bar{\alpha}}\right|$$

for every z in the disk. Setting z=0, we conclude that Ω must cluster inside the disk. Therefore, f is identically zero.

Proof of the lemma. The formula is obvious for n=1, so by induction, we assume it is valid for some *n*. Multiplying $f(z)^{n+1}=f(z) \cdot f(z)^n$, we have that

$$a_{n+1,ip+j} = a_{10}a_{n,ip+j} + \left[\sum_{k=0}^{(i-2)p+j}a_{1,p+k}a_{n,(i-1)p+j-k}\right] + a_{1,ip+j}a_{10}^{n} = \\ = \left[\sum_{m=1}^{i} \binom{n}{m}a_{10}^{n-m+1}\hat{a}_{m,(i-m)p+j}\right] + \left[\sum_{m=2}^{i} \binom{n}{m-1}a_{10}^{n-m+1}\hat{a}_{m,(i-m)p+j}\right] + a_{10}^{n}a_{1,ip+j} = \\ = \sum_{m=1}^{i} \left[\binom{n}{m} + \binom{n}{m-1}\right]a_{10}^{n-m+1}\hat{a}_{m,(i-m)p+j} = \sum_{m=1}^{i} \binom{n+1}{m}a_{10}^{(n+1)-m}\hat{a}_{m,(i-m)p+j}.$$

Thus, the form of $f(z)^n$ follows for every *n*.

Fix *i* and *j*, and let $n \ge i$. Then $(na_{10}^n)^{-1}a_{n,ip+j}$ is a polynomial in *n* of degree at most i-1. Suppose that $a_{k,ip+j}=0$ for some *k* such that $1\le k\le i-1$. It follows that the sum of the first *k* terms of $(na_{10}^n)^{-1}a_{n,ip+j}$ is equal to

$$\sum_{m=1}^{k} \frac{1}{m!} \left[\frac{(n-1)!}{(n-m)!} - \frac{(k-1)!}{(k-m)!} \right] a_{10}^{-m} \hat{a}_{m,(i-m)p+j},$$

which is divisible by n-k. Since each of the last i-k terms contains a factor of n-k, we have that n-k divides $(na_{10}^n)^{-1}a_{n,ip+j}$. Therefore, either all of the coefficients of $(na_{10}^n)^{-1}a_{n,ip+j}$ $(n \ge i)$ are zero, or $a_{n,ip+j}=0$ for at most i-1 values of $n \ge 1$.

Finally, suppose that $a_{1p} \neq 0$. Then the leading coefficient of $(na_{10}^n)^{-1}a_{n,ip}$ $(n \ge i)$ is $(i! a_{10}^i)^{-1}\hat{a}_{i0} = (i! a_{10}^i)^{-1}a_{1p}^i \neq 0$. Hence, $a_{n,ip} = 0$ for at most i-1 values of $n \ge 1$.

Proof of Theorem 3. Let $\alpha \neq 0$, and suppose that \mathcal{M} is a nontrivial closed span of b_n 's $(n \ge 0)$ which reduces C_{φ} . Since \mathcal{M}^{\perp} is of the same form, we may assume that b_0 is in \mathcal{M} . Let *n* be the greatest integer such that b_m belongs to \mathcal{M} for every m=0, ..., n. Since \mathcal{M} is invariant under C_{φ} , we have that $f=C_{\varphi}\sum_{n=1}^{n}(-\bar{\alpha})^{n}\times$.

 $\times (1-|\alpha|^2)^{-1/2} b_m$ is in \mathcal{M} and $\langle f, b_{n+1} \rangle = 0$. However, by induction,

$$f'(z) = -(n+1)(-\overline{\alpha})^{n+1}\varphi'(z)[1-\varphi(z)\overline{\alpha}]^{-n-2}[\varphi(z)-\alpha]^n$$

and

$$f^{(n+1)}(\alpha) = -(n+1)!(-\bar{\alpha})^{n+1}(1-|\alpha|^2)^{-n-2}\varphi'(\alpha)^{n+1}.$$

Therefore,

$$\langle f, b_{n+1} \rangle = (-\bar{\alpha})^{n+1} (1-|\alpha|^2)^{-1/2} [1-\varphi'(\alpha)^{n+1}] \neq 0,$$

a contradiction. Thus, *M* must be trivial.

Next, let $\alpha=0$ be a zero of φ of order r, and let \mathscr{M} be a nontrivial closed span of vectors $b_n = z^n$ $(n \ge 1)$ which reduces the restriction of C_{φ} to zH^2 . Let us write $\varphi(z) = z^r \Psi(z)$ for some H^{∞} function Ψ . If Ψ is a constant function, then the proposed forms of φ and \mathscr{M} clearly follow with p=0. Henceforth, using the notation of the lemma, we assume that $\Psi(z) = \sum \langle \Psi, b_n \rangle b_n = a_{10} + a_{1q} z^q + a_{1,q+1} z^{q+1} + \dots$ where a_{10} and a_{1q} are nonzero. Observe that if \mathscr{M} contains z^n , and $a_{n,rq} \neq 0$, then \mathscr{M} also contains z^{n+q} . Indeed, $\varphi(z)^n = z^{rn} \Psi(z)^n$ is in \mathscr{M} , and $\langle \varphi(z)^n, z^{r(n+q)} \rangle \neq 0$; therefore, by the given form of \mathscr{M} , $z^{r(n+q)}$ belongs to \mathscr{M} . Since z^{rm} is orthogonal to \mathscr{M} whenever z^m is, we have that \mathscr{M} contains z^{n+q} .

Let z^n be in \mathcal{M} . By the lemma, there exists an integer K such that $a_{k,rq} \neq 0$ for every $k \ge r^K n$. Now, $z^{r^K n}$ is in \mathcal{M} . And, if $z^{r^K n+mq}$ is in \mathcal{M} for some $m \ge 0$, then $a_{r^K n+mq,rq} \ne 0$, and, by the above argument, \mathcal{M} contains $z^{r^K n+(m+1)q}$. Thus, by induction, $z^{r^K n+mq}$ is in \mathcal{M} for every m=0, 1, ..., and hence, in particular, $z^{r^K(n+q)}$ is in \mathcal{M} . Consequently, \mathcal{M} contains z^{n+q} whenever it contains z^n .

For integers *i* and *j*, let $i \wedge j$ denote the greatest common divisor of *i* and *j*. Let q(1)=q, and for t=2, 3, ..., define $q(t)=[r \wedge q(t-1)]^{-1}q(t-1)$. Since $\{q(t)\}$ is a monotonically decreasing sequence of positive integers, there exists a least integer *T* such that q(T+1)=q(T), i.e., $r \wedge q(T)=1$. Note that $q(T)=r^{-T}\varrho q$ where $\varrho = \prod_{i=1}^{T} [r \wedge q(t)]^{-1}r$. If z^n belongs to \mathcal{M} , it follows that $z^{n+q(T)}=z^{r^{-T}(r^Tn+\varrho q)}$ belongs to \mathcal{M} . Similarly, the orthogonal complement of \mathcal{M} in zH^2 is invariant under multiplication by $z^{q(T)}$. Therefore, there exists a subset Γ_1 of $\{1, ..., q(T)\}$ such that \mathcal{M} is the closed span of vectors of the form $z^{iq(T)+j}$ ($i \ge 0$; $j \in \Gamma_1$). Furthermore, if *j* is in Γ_1 , then $iq(T) < rj \le (i+1)q(T)$ for some integer *i*, and rj-iq(T) is in Γ_1 . Hence, Γ_1 is a union of [r, q(T)]-cycles.

If $\Psi = \Psi(z^{q(T)})$, let p = q(T) and $\Gamma = \Gamma_1$; otherwise, let p(1) = q(T). Suppose that for some integer $s \ge 1$, a positive integer p(s), relatively prime to r, is defined such that $\mathcal{M} = \bigvee \{z^{ip(s)+j}: i \ge 0, j \in \Gamma_s\}$ for some union Γ_s of [r, p(s)]-cycles, and $\Psi \neq \Psi(z^{p(s)})$. Let $I = \min \{i: a_{1,ip(s)+j} \neq 0$ for some j such that $0 < j < p(s)\}$, and let $J = \min \{j > 0: a_{1,Ip(s)+j} \neq 0\}$. By the lemma, $a_{n,Ip(s)+J} = na_{10}^{n-1}a_{1,Ip(s)+J} \neq 0$ for every n = 1, 2, As above, $z^{rn+Ip(s)+J}$, and hence z^{rn+J} , belong to \mathcal{M} whenever z^n belongs to \mathcal{M} . Let z^n be in \mathcal{M} . Then n=ip(s)+j where j is in Γ_s and $i \ge 0$. Since Γ_s is a union of cycles, there exists an element j' in Γ_s and an integer i' such that j=rj'-i'p(s). Thus, n+J=(i-i')p(s)+(rj'+J), so that z^{n+J} is in \mathcal{M} . Similarly, $zH^2 \ominus \mathcal{M}$ is invariant under multiplication by z^J .

Let $p(s+1)=p(s)\wedge J$. Then p(s+1) is relatively prime to r, and there exist integers u and v such that p(s+1)=up(s)+vJ. It follows that \mathcal{M} and the orthogonal complement of \mathcal{M} in zH^2 are invariant under multiplication by $z^{p(s+1)}$, and hence, as above, there exists a union Γ_{s+1} of [r, p(s+1)]-cycles such that $\mathcal{M} = \bigvee \{z^{ip(s+1)+j}: i \ge 0, j \in \Gamma_{s+1}\}$. Therefore, p(s+1) (s=1, 2, ...) may be defined recursively provided $\Psi \neq \Psi(z^{p(s)})$ for every s. But this is impossible since $\{p(s)\}$ is a strictly decreasing sequence of positive integers. Consequently, there exists an integer S such that $\Psi = \Psi(z^{p(s)})$, and the forms of φ and \mathcal{M} follow by setting p=p(S) and $\Gamma = \Gamma_S$. Note that $p \neq 1$ since \mathcal{M} is nontrivial.

Conversely, suppose that $\varphi(z) = z^r \Psi(z^p)$ where $r \wedge p = 1$ if $p \neq 0$, and that $\mathcal{M} = \bigvee \{z^{ip+j} : i \geq 0, j \in \Gamma\}$ for some union Γ of (r, p)-cycles. If p = 0, then clearly \mathcal{M} is invariant under C_{φ} ; so we assume that p > 1. If z^n belongs to \mathcal{M} , then so does z^{rq+mp} for every $m \geq 0$. Indeed n = ip+j where j is in Γ and $i \geq 0$ and there exists an integer i' such that $i'p < rj \leq (i'+1)p$. Hence, rj = i'p+j', where j' is in Γ by the definition of (r, p)-cycle. Therefore, $z^{rn+mp} = z^{(ri+i'+m)p} z^{j'}$ is in \mathcal{M} , and thus, so is $\varphi(z)^n = z^{rn} \Psi(z^p)^n$. It follows that \mathcal{M} is invariant under C_{φ} .

Finally, \mathcal{M}^{\perp} is invariant under C_{φ} since it is the closed span of vectors of the form z^{ip+j} ($i \ge 0$; $j \in \Gamma'$), where Γ' is the complement in $\{1, ..., p\}$ ($\{1, 2, ...\}$, if p=0) of Γ and is hence the union of (r, p)-cycles.

Proof of Theorem 2. Since $C_{\varphi}^{*^{N}} = C_{\varphi_{N}}^{*}$ is compact with nonzero eigenvalues $\overline{\varphi'(\alpha)}^{mN}$ (m=0, 1, ...), it follows from [4, Theorem 4.1] that $\overline{\varphi'(\alpha)}^{m}$ is an eigenvalue of C_{φ}^{*} of multiplicity one for every *m*. Thus, by the matrix of C_{φ}^{*} with respect to $\{b_{n}\}$, we have that $\bigvee_{0}^{n} b_{m} = \ker \prod_{0}^{n} [\overline{C_{\varphi}^{*}} - \overline{\varphi'(\alpha)}^{m}]$ for every n=0, 1, ... Therefore, by induction, either b_{n} belongs to \mathcal{M} or is orthogonal to \mathcal{M} for each *n*, and hence the form of \mathcal{M} is given by Theorem 3.

Proof of the proposition. Using induction on *n* with *m* fixed, the case n=0 is obvious, so we assume that the inequality holds for some *n*. Since $\varphi(\alpha) = \alpha$ and $\varphi^{(i)}(\alpha) = 0$ (i=1, ..., r-1), we have that $\varphi_n^{(i)}(\alpha) = 0$ for every $i=1, ..., r^n-1$. Hence, $C_{\varphi}^{n+1}b_m = C_{\varphi}f$ where $f = b_m(\alpha, \varphi_n) = [(z-\alpha)/(1-z\overline{\alpha})]^{mr^n}g$ for some H^{∞} function *g*. Therefore, $\|C_{\varphi}^{n+1}b_m\|_{\infty} = \|(\varphi-\alpha)/(1-\varphi\overline{\alpha})\|_{\infty}^{mr^n}\|g(\varphi)\|_{\infty}$ where $\|g(\varphi)\|_{\infty} \leq \|g\|_{\infty} = \|f\|_{\infty} \leq \|(\varphi-\alpha)/(1-\varphi\overline{\alpha})\|_{\infty}^{m(r^n-1)/(r-1)}$ by the induction hypothesis. The case n+1 now follows by combining the above inequalities.

Proof of Theorem 4. Since $\|\varphi\|_{\infty} < 1$, C_{φ} is compact by [11, Theorem 5.2].

Therefore, by [4, Theorem 4.1], the kernel of $1-C_{\varphi}^*$ is one-dimensional, and since it is invariant under X^* , we have that $\lambda_{0i}=0$ $(j \ge 1)$.

Suppose that $\varphi^{(m)}(\alpha) = 0$ (m=1, ..., r-1) and $\varphi^{(r)}(\alpha) \neq 0$. By direct computations, there exist constants $\mu_{i'} = \mu_{i'}(n)$ such that for every $i \ge 0$,

$$b_{i} = \bar{\mu}^{-i(r^{n}-1)/(r-1)} C_{\varphi}^{*^{n}} b_{ir^{n}} + \sum_{i' < i} \mu_{i'} b_{i'}$$

where $\mu = (1 - |\alpha|^2)^{r-1} \varphi^{(r)}(\alpha) (r!)^{-1}$. Moreover, since $\|\varphi\|_{\infty} < 1$, it follows that $\|(\varphi - \alpha)/(1 - \varphi \bar{\alpha})\|_{\infty} < 1$, and hence there exists an integer $M \ge 1$ such that $\|(\varphi - \alpha)/(1 - \varphi \bar{\alpha})\|_{\infty}^M < |\mu|$. Thus,

$$\lambda_{ij} = \langle Xb_j, b_i \rangle_2 = \mu^{-i(r^n-1)/(r-1)} \langle XC_{\varphi}^n b_j, b_{irn} \rangle_2 + \sum_{i' < i} \overline{\mu}_{i'} \lambda_{i'j}$$

and consequently by the proposition, for $j \ge Mi$ we have that

$$\left|\lambda_{ij}-\sum_{i'< i} \bar{\mu}_{i'}\lambda_{i'j}\right| \leq \|X\|_2 \left(\left\|\frac{\varphi-\alpha}{1-\varphi\bar{\alpha}}\right\|_{\infty}^M |\mu|^{-1}\right)^{i(r^n-1)/(r-1)}$$

Therefore, the theorem follows by induction on $i \ge 1$, and the separate case i=0, since the right hand side converges to zero as n tends to infinity.

References

- [1] L. DE BRANGES and J. ROVNYAK, Square Summable Power Series, Holt, Rinehart, and Winston (New York, 1966).
- [2] A. BROWN, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723-728.
- [3] J. G. CAUGHRAN and H. J. SCHWARTZ, Spectra of compact composition operators, Proc. Amer. Math. Soc., 51 (1975), 127-130.
- [4] C. C. COWEN, Composition operators on H², J. Operator Theory, 9 (1983), 77-106.
- [5] J. A. DEDDENS, Analytic Toeplitz and composition operators, Canad. J. Math., 24 (1972), 859-865.
- [6] A. DENJOY, Sur l'itération des fonctions analytiques, C. R. Acad. Sci. Paris Sér. A., 182 (1926), 255-257.
- [7] P. L. DUREN, Theory of H^P Spaces, Academic Press (New York, 1970).
- [8] E. A. NORDGREN, Composition operators, Canad. J. Math., 20 (1968), 442-449.
- [9] E. A. NORDGREN, Composition operators on Hilbert spaces, in: *Hilbert Space Operators*, Lecture Notes in Math., 693, Springer-Verlag (Berlin, 1978), pp. 37-63.
- [10] J. V. Ryff, Subordinate H^p functions, Duke Math. J., 33 (1966), 347-354.
- [11] H. J. SCHWARTZ, Composition Operators on H^P, Thesis, (University of Toledo, 1969).
- [12] J. H. SHAPIRO and P. D. TAYLOR, Compact, nuclear, and Hilbert—Schmidt composition operators on H³, Indiana Univ. Math. J., 23 (1973), 471–496.
- [13] J. WOLFF, Sur l'itération des fonctions, C. R. Acad. Sci. Paris Sér. A., 182 (1926), 42-43, 200-201.

.

DEPARTMENT OF MATHEMATICS

SUNY COLLEGE AT BUFFALO BUFFALO, NEW YORK 14227 U. S. A.