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On reducing subspaces of composition operators 

JAMES GUYKER 

If cp is an analytic function mapping the unit disk into itself, RYFF [10] has 
shown that (p induces a bounded linear operator C^ on Hardy space H2 defined by 
Cvf=fo<p. Many of the basic properties of C9 depend on the fixed points of cp in 
the closure of the disk (see [4], [9] for references). If cp is not a rotation about a fixed 
point, then by the Denjoy—Wolff theorem ([6], [13]) <p has a unique fixed point a 
such that |<j»'(a)|sl. In this paper, the reducing subspaces of classes of C9 are 
characterized when |ot|«= 1 and either <p is univalent or some positive integral power 
of C9 is compact. The complementary case when A=0 and <p is inner follows from 
results of NORDGREN [8] and BROWN [2]. 

Not ion . We will assume henceforth that <p is neither a constant nor a Mobius 
transformation of the disk onto itself, that a is the Denjoy—Wolff fixed point of (p, 
and that | a |< l . Then \q>'(a)\^ 1, and there is a natural basis of H2 with respect 
to which C9 is lower triangular with diagonal [1, <p'(a), <p'(z)2,...]. Indeed, let 

. , N ( l - l a l 2 ) * / 2 f z-a 1" . , , = (» = 0,1,. . .), 

then for i ^ j , 
, r , t \ / l-|a|» f ?(*)-»(«) Vf 1-*« Vf ] H 1 \ 
(C" bj'b,) ~ \ 1 — <p(z)a I J 1 1 —<p(z)a. J r r ^ i i ' - J - * / ' 

which is <p'(a)' whenever /=/, and is 0 when /•<=/. 
Moreover, if / is inH2, then / = 2 (/> b„)b„ where 

</' = ¡¿0 ( 3 - W2)l+(1/2)-

This follows directly by writing / in terms of its Taylor series, expanding 
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by the binomial theorem, and by observing that ((z—oc)\ z"/(l —za)n+1) is 0 when-
ever n^k, and is 1 when n=k, since the adjoint of multiplication by z/(l— za) 
on H2 maps h(z) into (h(z)-h(<xj)/(z-ct). 

We recall that a subspace Ji reduces an operator T on a Hilbert space JF if 
both Ji and ^C QJi are invariant under T, or equivalently, if the orthogonal 
projection onto Ji commutes with T. If the only subspaces that reduce T are {0} 
and itself, then T is said to be irreducible (otherwise T is reducible). 

Theorem 1. If <p is univalent and a^O, then C^ is irreducible. 

When a=0, the constants reduce C9. In fact, by [4, Theorem 4.1], the kernel 
of 1— C9 contains only the constant functions, so it follows in this case that Ji 
reduces C^ if and only if Jt =JiQ®Ji1, where Ji0 is either {0} or the space of 
constants, and Jix reduces the restriction of C9 to zH2. A complete description (Theo-
rem 2) of the subspaces Jix may be obtained under a compactness condition, with 
univalence weakened to (p'(a)^0. The study of compact composition operators 
was initiated by SCHWARTZ in [11] , and continued by several authors ( [3 ] , [5], [ 12 ] ) . 

In particular, CAUGHRAN and SCHWARTZ [3 , Theorem 2 ] have shown that when 
some positive integral power of Cv is compact, the Denjoy—Wolff point always lies 
inside the disk. Note that C^C^ where <pN is defined inductively by (fli=(p and 
(Pn+l = (P°<Pn-

Theorem 2. Suppose that is compact for some positive integer N, and that 
(p'(a)yi0. Then is reducible if and only if a=0. Moreover, if a=0, then the 
restriction of Cv to zH2 is reducible if and only if there exists an H™ function W which 
is bounded by one, and a nonnegative integer p^l, such that <p(z)=zf(zp); in this 
'case, a subspace Ji reduces C^ restricted to zH2 if and only if Ji = \J {bip+J: i s 0, 
j^r} where T is an arbitrary subset of {1, ..., p) ({1,2, ...} if p=0). 

The reducing subspaces of more general composition. operators are formed 
from cyclic subsets of basis vectors as follows. Let 1, p ^ 0 , and r s l be integers 
such that if / » 0 , then j^p and p is relatively prime to r. Let j0 =j and jn+1 = 
=rj„—inp (n=0,1,...) where i„ is the unique integer which is 0 if p=0, and satis-
fies i„p<rj„^(i„+l)p if /?>0. The set {y„: nsO} will be called the (r,p)-cyc\e 
generated by j . Let p>0. Then since for all 77, the terms of the sequence 
j„ repeat. It follows easily that if jm+i—jn+1 (m=~ri), then j'm=j„; and hence 
jm-„=j. Therefore, j is the first term.to reappear. Moreover, the set {1,...,/?} 
({1,2,...} if p=0) may be written as a disjoint union of (r, />)-cycles. With no addi-
tional conditions on <p, we have 

Theorem 3. If a^O, then no nontrivial closed span of basis vectors b„ (nSO) 
reduces Cv.If a=0, and is of order r, then a nontrivial closed span, Ji' of vectors b„ 
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(n^l) reduces the restriction of Cv to zH2 if and only if there exists a nonnegative 
integer p^l, which is relatively prime to r whenever p^O, such that (p(z)=zfW(zp) 
for some Hm function W which is bounded by one, and J( = V{blp+J: /S0, j^T} 
where r is a union of (r, p)-cycles. 

In view of the above results, a natural question is: when either (p is univalent 
or Cy is compact, are all the reducing subspaces of C9 closed spans of basis vectors? 
The related step in the proof of Theorem 2 follows by expressing the span of the 
first n basis vectors (n=0, 1, ...) in terms of the kernel of some element of the von 
Neumann algebra generated by 1, and C*. A similar argument may be used 
in the following example. 

Example 1. Let cp=X6 where A is a constant (0<|A|<1) and 6 is an inner 
function such that 0(O)=O. By ([1, Theorem 20], [8, Theorem 1], or [10, Theorem 
3]), Ce is an isometry, so that is a diagonal operator with diagonal 
(1, |A|, |A|2, ...). Therefore, V 6,.=ker ¿J (CiC„-|A|'') (n=0, 1, ...), and it follows 

0 0 
that the reducing subspaces are closed spans of b„'s and are thus described by The-
orem 3. 

Further evidence is provided by the following result which implies that reducing 
subspaces are (at least) closed spans of finite linear combinations of basis vectors. 

Theorem 4. Suppose that ||<jo||«,-=l and (p'(a)=0. If X commutes with C9 and 
(Ay) is the matrix of X with respect to {bn}, then A0j=0 (j= 1,2, ...) and there 
exists an integer M such that Xi]=0 (/=1,2, . . . ) for every j^Mi. 

Theorem 4 suggests an alternative approach to answering the above question 
in the affirmative, as illustrated by 

Example 2. Let a = 0 be of order r > 1, and suppose that (p is a polynomial 
of degree rM such that ||9>W||<»<1 for some positive integers M and N. Then the 
reducing subspaces of Cv are given by Theorem 3: Let P be the projection onto a 
reducing subspace. Since P commutes with C*n, it follows from Theorem 4 that 
Pb„ is a polynomial for every n; thus, it suffices to show that the degree of Pb„ does 
not exceed n for every n. Suppose that n<deg Pbn for some n, and let i be the least 
such integer. Setting y'=deg Pbt, we have that 

(PCZc^bi, bj) = (C^C^Pbi, bj), 

and hence by straightforward calculations, fi'=fiJ where 

m = vYK'-Hv, 6 r«)1/ ( rM-1)]'Mi '-1 

(so that 0<:|/i|< l). Therefore i=j, a contradiction. 
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The verification of Theorem 3 depends upon a reformulation of the usual 
multinomial theorem, which subsequently determines how often powers of <p have 
nonzero coefficients. 

Lemma. Let 

№ = < * 1 0 + 1 '£ th..iP+jz"+J 
i = l ]—0 

be a formal power series where a10 is nonzero, and for j=0, 1, ..., define 

J 
&U = altP+J and &mJ = 2 <h.,+k&m-i.j-k (m > !)• 

k = 0 

Then for every positive integer n, 

f(zT = a»10+2 "2 anttp+jZ»+] 

i=l 0 
where 

° n , i p + y — 2 l/w)a"o mâm,(i-m)p+j-

In particular, for fixed i and j, either anip+J=0 for all n^l, or antip+J=0 
for at most i— 1 values of nël. If alp^0, then an ip=0 for at most i— 1 values 
of n = \. 

The following estimate in H°° is essential to the proof of Theorem 4, and may 
be of independent interest. 

P ropos i t ion . If a )=0 for every i=l, ..., r— 1, then 

l i e ; 6 j - ^ 

for all nonnegative integers m and n. 

(p—a 
1 — (pa. 

m ( r " - l ) / ( r - l ) 

Acknowledgments. I am grateful to Professor M. A. K A A S H O E K for his support 
and encouragement during my sabbatical at the Free University, at which time this 
work was completed. Also, I am indebted to Professors L . D E B R A N G E S and C . C . 

C O W E N for their lectures and conversations concerning composition operators. 

Proof of Theorem 1. Let J t reduce C v . By [4, Theorem 4.1], the kernel of 
1— C9 consists of just thé constant functions. Thus we may assume that constants 
belong to M, and hence so does C*"l =[l—z<p„(0)]-1 (« = 1,2,...). 

Let / be orthogonal to M. Then / vanishes on the set £2={<pn (0) : « = 1}. 
If <pm(0)=(pn+m(0) for some positive integers m and«, then <pm(0) is a fixed point 
of <p„. But a is also a fixed point of <p„, and <p„ is not a rotation about a fixed point 
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since otherwise <p would be inner and hence by [7, Theorem 3.17] <p would be a 
Möbius transformation. Thus it follows that ç>m(0)=a=ç>m(a), and since (pm is 
univalent, we have that a=0, a contradiction. Hence, the set Q consists of distinct 
points which must cluster in the closure of the disk. However, by Schwarz's lemma, 

z—a 
l-<pn(z)ä 1 — zot 

for every z in the disk. Setting z=0, we conclude that Q must cluster inside the 
disk. Therefore, / is identically zero. 

Proof of the lemma. The formula is obvious for n = 1, so by induction, 
we assume it is valid for some n. Multiplying /(z)"+1 =/(z) • f(z)n, we have that 

(l-2)p+j 
an + l,ip+J ~ a10an,ip+j+[ 2 al,p + ka«,(i-l)p+j-k\+al,ip + ja10 = 

Jfc=0 

= m i [ ( ; ) + [m-1)]«icr+1am,ii-m)P+J = 1 ("m 1 )< + 1 ) - m < ( i - m ) p + i -

Thus, the form of f(z)n follows for every n. 
Fix/and j, and let »Si. Then (ni^0)_1a„,ip+y is a polynomial in n of degree 

at most /'—1. Suppose that aktip+j=0 for some A: such that l^k^i—l. It follows 
that the sum of the first k terms of («aj0)_1a„>ip+y is equal to 

j , 1 r (» — !)! ( f c - D ' 1 ^ 
Am\{(n-m)\ (k-m)\\ai0 

which is divisible by n—k. Since each of the last i—k terms contains a factor of 
n—k, we have that n—k divides (naj0)-1i/niip+/. Therefore, either all of the 
coefficients of (WAJ0)-1an>ip+J (hS/) are zero, or an ip+J=0 for at most /'—1 values 
of » S i . 

Finally, suppose that a l p ^0. Then the leading coefficient of (naj0)-1fln,ip 

(nS/) is (/!oi,))-1^i0=(/!aj0)-1ajp7i0. Hence, a„,ip=0 for at most / - 1 values of 
»SI. 

Proof of Theorem 3. Let a^O, and suppose that Jt is a nontrivial closed 
span of b„'s (n sO) which reduces C9. Since JtL is of the same form, we may assume 
that ¿0 is in Jt. Let « be the greatest integer such that bm belongs to Jt for every 

. n '• . 
m=0, ...,». Since Jt is invariant under C9, we have that a)mX, 
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X(1 — |a|2)-1/26m is in Jt and (f,b„+1)=0. However, by induction, 

/ ' ( z ) = - ( n + l)(-a)"+V(z)[l-<p(z)ot]-»-2[<p(z)-a]" 
and 

/ f + i ) ( a ) =- („ + l ) ! (_a)»+ 1 ( l - | a | 2 ) - ' , - 2 ^ ' (a ) n + 1 . 
Therefore, 

(f, bn+1> = (—a)n+1(l — |a|2)_1/2[l—(¡»'(a)"+1] * 0, 

a contradiction. Thus, Jt must be trivial. . 
Next, let a = 0 be a zero of q> of order r, and let Jt be a nontrivial closed span 

of vectors bn=z" (n^ l ) which reduces the restriction of C9 to z//2. Let us write 
<p(z)=zr 'F(z) for some H°° function f . If is a constant function, then the proposed 
forms of cp and Jt clearly follow with p=0. Henceforth, using the notation of the 
lemma, we assume that 5 /(z)=_2(?r, b„)b„=a10+alqzt+ahq+1zq+1 +... where 
a10 and alq are nonzero. Observe that if Jt contains z", and an rq^0, then Jt also 
contains zn+q. Indeed, '(p(z)n=z""P(z)n is in Jt, and (cp(z)n, zr(n+9))^0; there-
fore, by the given form of Jt, zr(n+4) belongs to Jt. Since z"" is orthogonal to Jt 
whenever z™ is, we have that Jt contains z"+q. 

Let z" be in Jt. By the lemma, there exists an integer K such that akrq^0 for 
every k^rKn. Now, fKn is in Jt. And, if zrK"+mq is in Jt for some m^O, then 
a^n+mq.rt^^ and, by the. above argument, Jt contains z

rK"+<-m+1)q. Thus, by in-
duction, ¿K"+mq is in Jt for every m=0, 1,..., and hence, in particular, zrK(n+q) 

is in Jt. Consequently, Jt contains z"+4 whenever it contains z". 

For integers i and j, let iAj denote the greatest common divisor of i and j. 
Let q(l)=q, and for t=2,3,..., define 1). Since {q(t)} 
is a monotonically decreasing sequence of positive integers, there exists a least in-
teger T such that q(T+l)=q(T), i.e., rAq(T) = l. Note that q(T)=r~Tgq 
where Q=JI[rAq(t)]~1r. If z" belongs to Jt, it follows that z

n+qm=zr'T(rTn+M) 

i 
belongs to Jt. Similarly, the orthogonal complement of Jt in zH2 is invariant under 
multiplication by z , ( r ) . Therefore, there exists a subset of {1, ...,q(T)} such that 
Jt is the closed span of vectors of the form ziq(-T)+J (/SO; yd/I). Furthermore, 
if j is in r l 5 then iq(T)<rj^(i+l)q(T) for some integer /, and rj—iq(T) is in 
r1 . Hence, is a union of [r, g(T)]-cycles. 

If !f=!P(z«(T)), let p=q(T) and r = r i ; otherwise, let p(\)=q(T). Suppose 
that for some integer j s l , a positive integer p(s), relatively prime to r, is defined 
such that Jt = \J{zim+J: /SO, j€r s} for some union Ts of [r, ;?(s)]-cycles, and 

'(zp(s)). Let /=min {/: a1>ipM+J^0 for some j such that 0</</>(.?)}, and 
let 7=min { j>0: a1 ( J j , ( j ) +^0}. By the lemma, an,/p(S)+j=«ai0

_lai./p(S)+j^0 

for every »=1 ,2 As above, z" ,+ip(5)+J, and hence z" + J , belong to Jt when-
ever z" belongs to Jt. 
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Let z" be in Jt. Then n=ip(s)+j where j is in Fs and zs0. Since rs is a union 
of cycles, there exists an element j' in Ts and an integer V such that j=rj'—i'p(s). 
Thus, n+J=(i-i')p(s)+(rj'+J), so that zn+J is in Jt. Similarly, zH2QJt is 
invariant under multiplication by zJ. 

Let p(s+l)=p(s)AJ. Then p(s+1) is relatively prime to r, and there exist 
integers u and v such that />0+l)=w/?(s)+u/. It follows that Jt and the orthogonal 
complement of Jt in zH2 are invariant under multiplication by z i ( s+1V and hence, 
as above, there exists a union rs+1 of [r,p(j+l)]-cycles such that Jt = \J {zip(s+1)+J: 
/SO, j£Ts+1}. Therefore, + 1) ( j = 1 , 2 , ...) may be defined recursively provided 
W?±xF(zp<-s)) for every s. But this is impossible since {/?(.?)} is a strictly decreasing 
sequence of positive integers. Consequently, there exists an integer S such that 
S /=3 ,(zp(S)), and the forms of cp and Jt follow by setting p=p{S) and r=Ts. 
Note that p^l since Jt is nontrivial. 

Conversely, suppose that <p(z)=zr¥(zp) where rAp = l if p^O, and that 
Jt=y{z,p+J: /'SO, jer} for some union r of (r,/?)-cycles. If p=0, then clearly, 
Jt is invariant under C^; so we assume that p> 1. If z" belongs to Jt, then so does 

+mp | - Q r e v e r y m s 0 . Indeed n—ip+j where j is in F and / ' S O and there exists 
an integer V such that + l)p. Hence, rj=i'p+j\ where j' is in r 
by the definition of (r, p)-cycle. Therefore, f+mP=z

<-ri+i'+m'>Pzr is in Jt, and thus, 
so is (?(z)n=?n W(zp)n. It follows that Jt is invariant under C„. 

Finally, Jt-1- is invariant xmder C9 since it is the closed span of vectors of the 
form zip+J (/SO; j^T'), where T' is the complement in {1, ...,/?} ({1,2, ...}, if 
p=0) of r and is hence the union of (r,/>)-cycles. 

Proof of Theorem 2. Since C*"=C*N is compact with nonzero eigenvalues 
<p'(a)mN (m=0, 1, ...), it follows from [4, Theorem 4.1] that <p'(a)m is an eigenvalue 
of C* of multiplicity one for every m. Thus, by the matrix of C* with respect to {£„}, 

n n . 
we have that \f bm=ker JJ [G* — (p'((x)m] for every «=0 ,1 , . . . . Therefore, by 

o 0 
induction, either bn belongs to Jt or is orthogonal to Jt for each n, and hence the 
form of Jt is given by Theorem 3. 

Proof of the p ropos i t ion . Using induction on n with m fixed, the case 
n=0 is obvious, so we assume that the inequality holds for some n. Since <p(a)=a 
and <p(i)(a)=0 (z = l, ..., r - 1 ) , we have that <p®(a)=0 for every / = 1,..., r"~ 1. 
Hence, Cl+1bm=C„f where f=bm(a, (pn)=[(z-a)/(l-zd)]mr"g for some H°° func-
tion g. Therefore, ||C£+16JU=\\(<p-a)/(l-<p«№'"\\g(<p)\\- where ||g(<p)|U^ 
^ lk l l~ = ll/ll~^ll(?>-a)/(l-<?a)ll™(r"~1)/(r_1) by the induction hypothesis. The 
case n + 1 now follows by combining the above inequalities. 

Proof of Theorem 4. Since |MU<1, Cv is compact by [11, Theorem 5.2]. 
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Therefore, by [4, Theorem 4.1], the kernel of 1 — C* is one-dimensional, and since 
it is invariant under X*, we have that X0}=0 (y'sl). 

Suppose that <p(m)(a)=0 (m = l,...,r— 1) and (p(r)(cc)^0. By direct compu-
tations, there exist constants ni.=fii.(n) such that for every i s 0 , 

b^ii-n-M-vcZb^+Ztobe i'-ci 
where Moreover, since ||<p||„< 1, it follows that 
||(<j<>—oc)/(l—<pa)|U< 1, and hence there exists an integer A f s l such that 
| | (9-a)/(l-<pa)K<|M | . Thus, 

Ay = (Xbj, b,)2 = birn\+ 2 Mr h-i 

and consequently by the proposition, for j ^ M i we have that 

M V(r"-l)/(r-:l) 
1 —(pa. 

Therefore, the theorem follows by induction on / s i , and the separate case i=0, 
since the right hand side converges to zero as n tends to infinity. 
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