The numerical ranges and the smooth points of the unit sphere

FRANK PIETSCHMANN and ADOLF RHODIUS

I. Let S_{p} be the unit sphere of a complex Banach space (E, p). The set of all smooth points on S_{p} will be denoted by F_{p}. The element $x \in S_{p}$ is a smooth point if and only if the Gâteaux derivative p^{\prime} at x exists. We denote by $V_{D_{p}}(T)$ the spatial numerical range of T. If the unit sphere is smooth, then the relation

$$
V_{D_{p}}(T)=\left\{p^{\prime}(x, T x)-i p^{\prime}(x, i T x): x \in S_{p}\right\}
$$

holds. We assume that the set F_{p} is dense in the unit sphere S_{p}, e.g. this holds for separable or reflexive Banach spaces. We prove that for continuous operators T the closure of the set

$$
\left\{p^{\prime}(x, T x)-i p^{\prime}(x, i T x): x \in F_{p}\right\}
$$

is the closure of a Lumer numerical range of T.
II. Let D_{p} be the mapping of S_{p} into the power set of the dual E^{\prime} of E defined by

$$
D_{p}(x)=\left\{f \in E^{\prime}: f(x)=1,|f(y)| \leqq p(y),(y \in E)\right\} .
$$

We consider the continuous operator $G: E \rightarrow E$ with the domain $D(G) \subseteq S_{p}$. For a mapping Q_{p} of $D(G)$ into the power set of E^{\prime} with

$$
\emptyset \neq Q_{p}(x) \cong D_{p}(x) \quad(x \in D(G))
$$

the set

$$
V_{Q_{p}}(G)=\left\{f(G x): f \in Q_{p}(x), x \in D(G)\right\}
$$

is called the numerical range of G corresponding to Q_{p}. (See [7].) If card $Q_{p}(x)=1$ $(x \in D(G))$ holds, then $V_{Q_{p}}(G)$ is a Lumer numerical range. $V_{D_{p}}(G)$ is called the spatical numerical range of G.

Theorem 1. Let T be a continuous operator of S_{p} into E. If $V_{Q_{p}}(T \mid A)$ is a numerical range of the restriction of T to the subset A of S_{p} with $\mathrm{cl} A=S_{p}$, then there exists an extension Q_{p} of \widetilde{Q}_{p} to the unit sphere S_{p}. such that

$$
\mathrm{cl}{\dot{Q_{⿹}^{p}}}(T \mid A)=\mathrm{cl} V_{Q_{p}}(T) .
$$

Received August 4, 1986.

Proof. Let $x \in S_{p} \backslash A$. Then there are sequences $\left(x_{n}\right)$ in A and (f_{n}) with $f_{n} \in \tilde{Q}_{p}\left(x_{n}\right)$ and $p\left(x_{n}-x\right) \rightarrow 0$. Since the unit ball of E^{\prime} is weak ${ }^{*}$-compact, we can choose subnets $\left(f_{\beta}\right)_{\beta \in B}$ of $\left(f_{n}\right)$ and $\left(x_{\beta}\right)_{\beta \in B}$ of $\left(x_{n}\right)$ and an $f_{x} \in E^{\prime}$ such that

$$
\left(f_{\beta}\right)_{\beta \in B} \text { is weak }{ }^{*} \text {-convergent to } f_{x} \text { and } p\left(x_{\beta}-x\right) \rightarrow 0 .
$$

The inequalities

$$
\left|f_{n}(y)\right| \leqq p(y) \quad(y \in E, n \in N)
$$

imply

$$
\left|f_{x}(y)\right| \leqq p(y) \quad(y \in E) .
$$

But since

$$
f_{\beta}\left(x_{\beta}\right)=f_{\beta}\left(x_{\beta}-x\right)+f_{\beta}(x) ; \quad\left|f_{\beta}\left(x_{\beta}-x\right)\right| \leqq p\left(x_{\beta}-x\right)
$$

we deduce $f_{\beta}\left(x_{\beta}\right) \rightarrow f_{x}(x)$ and $f_{x}(x)=1$. So we have $f_{x} \in D_{p}(x)$. Now we extend the mapping \tilde{Q}_{p} by the definition

$$
Q_{p}(z)=\left\{\begin{array}{lll}
\widetilde{Q}_{p}(z) & \text { for } & z \in A, \\
\left\{f_{z}\right\} & \text { for } & z \in S_{p} \backslash A .
\end{array}\right.
$$

It is clear that the relation $\mathrm{cl}_{\bar{Q}_{p}}(T \mid A) \subseteq \mathrm{cl} V_{Q_{p}}(T)$ holds. It remains to show that the scalar $f_{x}(T x)$ is a cluster point of $V_{\bar{Q}_{p}}(T \mid A)\left(x \in S_{p} \backslash A\right)$. By the construction there are nets $\left(x_{\beta}\right)_{\beta \in B}$ of A and $\left(f_{\beta}\right)_{\beta \in B}$ with $f_{\beta} \in \widetilde{Q}_{p}\left(x_{\beta}\right)$ such that

$$
f_{\beta}(y) \rightarrow f_{x}(y)(y \in E) \text { and } p\left(x_{\beta}-x\right) \rightarrow 0 .
$$

The inequality $\left|f_{\beta}\left(T x_{\beta}-T x\right)\right| \leqq p\left(T x_{\beta}-T x\right)$ and the continuity of T imply $f_{\beta}\left(T x_{\beta}-T x\right) \rightarrow 0$. Hence from the relation

$$
f_{\beta}\left(T x_{\beta}\right)=f_{\beta}(T x)+f_{\beta}\left(T x_{\beta}-T x\right)
$$

follows $f_{\beta}\left(T x_{\beta}\right) \rightarrow f_{x}(T x)$.
Remark 1. The proof of Theorem 1 shows that there exists an extension Q_{p} of \tilde{Q}_{p} satisfying the condition card $Q_{p}(x)=1 \quad\left(x \in S_{p} \backslash A\right)$.

Theorem 2. Let T be a continuous operator of S_{p} into E. If F_{p} is dense in S_{p}, then the set

$$
\operatorname{cl}\left\{p^{\prime}(x, T x)-i p^{\prime}(x, i T x): x \in F_{p}\right\}
$$

is the closure of a Lumer numerical range of T corresponding to a mapping Q_{p} defined on the whole S_{p}.

Proof. We applicate Theorem 1 putting $A=F_{p}$. There exists exactly one mapping \tilde{Q}_{p} of F_{p} into the power set of E^{\prime} with $\emptyset \neq \tilde{Q}_{p}(x) \cong D_{p}(x)\left(x \in F_{p}\right)$. By [6$]$ holds

$$
V_{\chi_{p}}\left(T \mid F_{p}\right)=\left\{p^{\prime}(x, T x)-i p^{\prime}(x, i T x): x \in F_{p}\right\} .
$$

Hence by Theorem 1 the conclusion follows.

Corollary 1. Let T be a linear continuous operator of S_{p} into E. If F_{p} is dense in S_{p}, then for the numerical radius $v_{p}(T)$ the following relation holds:

$$
v_{p}(T)=\sup _{x \in F_{p}}\left|p^{\prime}(x, T x)-i p^{\prime}(x, i T x)\right| .
$$

Remark 2. The condition $\mathrm{cl} F_{p}=S_{p}$ is fulfilled for separable Banach spaces (see [5]), and for reflexive Banach spaces (see [3]).

Remark 3. Let E be a separable Banach space and let T be a linear continuous operator of S_{p} into E. While the set

$$
\operatorname{cl}\left\{p^{\prime}(x, T x)-i p^{\prime}(x, i T x): x \in F_{p}\right\}
$$

is the closure of a Lumer numerical range of T defined on the whole S_{p}, in general it is not the closure of the spatial numerical range of T. We consider the following example.

Let c_{0} be the Banach space of all complex null sequences $x=\left(x_{i}\right)$ equipped with the norm $p(x)=\max \left|x_{i}\right|$. Then $x \in S_{p}$ is a smooth point on S_{p} if and only if the relation $\left|x_{i}\right|=1$ holds for exactly one coordinate x_{i} of x; let be $\left|x_{i(x)}\right|=1$. Using the functional f_{x} defined by

$$
f_{x}(y)=y_{i(x)} \bar{x}_{i(x)} \quad\left(y=\left(y_{i}\right)\right)
$$

it follows $\tilde{Q}_{p}(x)=\left\{f_{x}\right\} \quad\left(x \in F_{p}\right)$. For the operator T with

$$
T x=\left(x_{1}, 1 / 2 x_{2}, 1 / 3 x_{2}, \ldots, 1 / n x_{n}, \ldots\right) \quad\left(x \in c_{0}\right)
$$

one obtains $V_{\widehat{\chi}_{p}}\left(T \mid F_{p}\right)=\{1,1 / 2,1 / 3, \ldots, 1 / n, \ldots\}$. Therefore the set $\{1 / n: n \in \mathbf{N}\} \cup\{0\}$ is the closure of a Lumer numerical range of T defined on the whole S_{p}. The closure of the spatial numerical range of T is the interval $\{\lambda \in \mathbf{R}: 0 \leqq \lambda \leqq 1\}$.

References

[1] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lect. Note series, 2 (Campbridge, 1971).
[2] F. F. Bonsall and J. Duncan, Numerical Ranges. II, London Math. Soc. Lect. Note series, 10 (Cambridge, 1973).
[3] J. Lindenstrauß, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 967-970.
[4] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961), 29-43.
[5] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math., 4 (1933), 70-84.
[6] A. Rhodius, Der numerische Wertebereich für nicht notwendig lineare Abbildungen in lokalkonvexen Räumen, Math. Nachrichten, 72 (1976), 169-180.
[7] A. Rhodius, Über zu Halbnormen gehörende numerische Wertebereiche linearer Operatoren, Math. Nachrichten, 86 (1978), 181-185.

