Some problems and results on the local behaviour of arithmetical functions

I. KÁTAI

1. Let $s(n)=\sum(n-p)^{-1}$ where p runs over the set of primes less than n. Erdős and De Brujus (see [1]) proved that
(1.1)-(1.2) : $c_{1}<\frac{1}{N} \sum_{n<N} s^{2}(n)<c_{2}, \quad c_{1}<\frac{1}{\pi(N)} \sum_{p<N} s^{j}(p)<c_{2} \quad(j=1,2)$ hold with suitable positive constants $c_{1}, c_{2}>0$.

In [2] it was proved that

$$
\begin{equation*}
\sum_{n<N} s^{k}(n)=O(N), \quad \sum_{p<N} s^{k}(p)=O(\pi(N)) \tag{1.3}
\end{equation*}
$$

hold for every fixed $k \in \mathbf{N}$. The sums

$$
E(N):=\sum_{n \leq N}(s(n)-1)^{2}, \quad F(N)=\sum_{p<N}(s(p)-1)^{2}
$$

have been considered in [3], [4], [5] under the unproved density hypothesis assumed in the form

$$
\begin{equation*}
N(\sigma, T)<c T^{2(1-\sigma)}(\log T)^{2} \tag{1.5}
\end{equation*}
$$

where $N(\sigma, T)$ denotes the number of zeros ϱ of $\zeta(s)$ in the rectangle $\operatorname{Re} \varrho \geqq \sigma$, $|\mathrm{Im} \varrho| \leqq T$.

In [5] we deduced from (1.5) that
(1.6)-(1.7) $\quad E(N) \ll \frac{N}{\log N}(\log \log N)^{2}, \quad F(N) \ll \frac{N(\log \log N)}{(\log N)^{3 / 2}}$:

The proof was based on the inequality

$$
\begin{gathered}
\int_{-\Delta}^{\Delta}|T(z)|^{2} d y \ll N(\log N)^{-1}, \quad z=\frac{1}{N}+i y \\
T(z)=\sum_{e} z^{-\ell} \Gamma(\varrho), \quad \Delta=(\log N)^{-7}
\end{gathered}
$$

Received February 3, 1987.
due to Yu. V. Linnik [6], [7]. We can prove that $s(n)=1+o(1)$ holds for almost all n under the assumption

$$
\begin{equation*}
\sup _{X^{s} \leqq h<X} \frac{1}{X h^{2}} \int_{X}^{2 X}\left|\sum_{y \leqq m \leqq y+h} \Lambda(m)-h\right|^{2} d y=: \varrho_{X, z} \rightarrow 0 \quad(X \rightarrow \infty) \tag{1.8}
\end{equation*}
$$

for every $\varepsilon>0$.
It is not known whether (1.8) is true, but it can be deduced from the densityhypothesis

$$
\begin{equation*}
N(\sigma, T) \ll_{\varepsilon} T^{2(1-\sigma)+\varepsilon}, \quad 1 / 2 \leqq \sigma \leqq T \tag{1.9}
\end{equation*}
$$

Let $a(m), m \in \mathbf{N}$, be any sequence of complex numbers,

$$
\begin{gathered}
A(y):=\sum_{m \leq y} a(m), \quad B(y)=\sum_{m \leq y}|a(m)|, \\
\alpha(X, h)=X^{-1} \sum_{y=X}^{2 X-1}|A(y+h)-A(y)|^{2}, \quad \beta(X, h)=X^{-1} \sum_{y=X}^{2 X-1}|B(y+h)-B(y)|^{2} .
\end{gathered}
$$

Assume that

$$
\begin{equation*}
\sup _{X^{c} \leqq h \leqq X} \frac{\alpha(X, h)}{\beta(X, h)}=: \varrho_{X, e} \rightarrow 0 \quad \text { as } \quad X \rightarrow \infty \tag{1.10}
\end{equation*}
$$

holds for all $\varepsilon>0$. Let

$$
\begin{gather*}
S_{H}(n):=\sum_{1 \leqq m \leqq n-H} \frac{a(m)}{n-m} \tag{1.11}\\
E(X, H):=\sum_{X \leqq n<2 X}\left|S_{H}(n)\right|^{2} \tag{1.12}
\end{gather*}
$$

We should like to give an upper-estimate for the sum (1.12) in terms of $\beta(x, \cdot)$ under assumption (1.10) . It is clear that

$$
\begin{equation*}
\left|S_{X / 4}(n)\right| \leqq(4 / 3 X) B(2 X) \tag{1.13}
\end{equation*}
$$

Let $1 / 2>\delta>0$ be fixed, $H=H_{0}=X^{\delta}$. Let the sequence H_{k} be defined as follows :

$$
H_{k}=(1+\delta)^{k} H_{0}, \quad k=1,2, \ldots, k_{0}
$$

where $\quad H_{k_{0}}<X / 4<(1+\delta) H_{k_{0}}, \quad H_{k_{0}+1}=X / 4$, let

$$
\begin{equation*}
S^{(k)}(n)=\sum_{H_{k} \leqq n-m<H_{k+1}} \frac{a(m)}{n-m} \quad\left(k \leqq k_{0}\right) . \tag{1.14}
\end{equation*}
$$

Then

$$
S_{H_{0}}(n)=\sum_{k=0}^{k_{0}} S^{(k)}(n)+S_{X / 4}(n)
$$

By the Cauchy-Schwarz inequality we get that

$$
\begin{equation*}
\left|S_{H_{0}}(n)\right|^{2} \leqq\left(k_{0}+2\right)\left(\sum_{k=0}^{k_{0}}\left|S^{(k)}(n)\right|^{2}+\left|S_{X / 4}(n)\right|^{2}\right) \tag{1.15}
\end{equation*}
$$

Furthermore, we have

$$
\begin{aligned}
\left|S^{(k)}(n)\right| \leqq & \left(\frac{1}{H_{k}}-\frac{1}{H_{k+1}}\right)\left(B\left(n-H_{k}\right)-B\left(n-H_{k+1}\right)\right)+ \\
& +\frac{1}{H_{k}}\left|\left(A\left(n-H_{k}\right)-A\left(n-H_{k+1}\right)\right)\right|
\end{aligned}
$$

and hence we get that

$$
\begin{equation*}
\left|S^{(k)}(n)\right|^{2} \leqq \frac{2 \delta^{2}}{H_{k+1}^{2}}\left|B\left(n-H_{k}\right)-B\left(n-H_{k+1}\right)\right|^{2}+\frac{2}{H_{k}^{2}}\left|A\left(n-H_{k}\right)-A\left(n-H_{k+1}\right)\right|^{2} \tag{1.16}
\end{equation*}
$$

Summing for $n \in[X, 2 X]$, from (1.13), (1.15), (1.16) we deduce that

$$
\begin{align*}
& E\left(X, H_{0}\right) \leqq\left(k_{0}+2\right) \cdot 2 \delta^{2} \sum_{k=0}^{k_{0}} \frac{1}{H_{k+1}^{2}} \sum_{X \leqq n<2 X}\left|B\left(n-H_{k}\right)-B\left(n-H_{k+1}\right)\right|^{2}+ \tag{1.17}\\
+ & 2\left(k_{0}+2\right) \sum_{k=0}^{k_{0}} \frac{1}{H_{k}^{2}} \sum_{X \leqq n<2 X}\left|A\left(n-H_{k}\right)-A\left(n-H_{k+1}\right)\right|^{2}+\frac{16\left(k_{0}+2\right)}{9 X} B^{2}(2 X)
\end{align*}
$$

Let us assume now that X is large enough. Then

$$
k_{0} \leqq \frac{\log X}{\log (1+\delta)}<\frac{2}{\delta} \log X
$$

Furthermore $X^{\delta} \leqq H_{k}<X / 3, H_{k+1}-H_{k}=\delta H_{k} \geqq \delta X^{\delta}$. So by (1.10) $)_{\delta / 2}$ we get for every large X,

$$
\begin{equation*}
E\left(X, H_{0}\right) \leqq\left[4 \delta+\frac{4}{\delta} \varrho_{X / 2, \delta / 2}\right](\log X) \cdot T+\frac{64}{9 \delta} \frac{\log X}{X} B^{2}(2 X) \tag{1.18}
\end{equation*}
$$

where

$$
\begin{equation*}
T=X \sum_{k=0}^{k_{0}} H_{k}^{-2}\left(\beta\left(X-H_{k+1}\right), H_{k+1}-H_{k}\right)+\beta\left(2\left(X-H_{k+1}\right), H_{k+1}-H_{k}\right) \tag{1.19}
\end{equation*}
$$

Assume that (1.9) is satisfied. A theorem due to K. Ramachandra [8] gives that

$$
\begin{align*}
& \sum_{y=X}^{2 X-1}\left[\sum_{y \leq m<y+h} \Lambda(m)-h\right]^{2} \ll h^{2} e^{-(\log X)^{1 / 6}}+X^{\varepsilon}, \tag{1.20}\\
& \sum_{y=X}^{2 X-1}\left[\sum_{y \leq m<y+h} \lambda(m)\right]^{2} \ll h^{2} e^{-(\log X)^{1 / 6}}+X^{\varepsilon}, \tag{1.21}\\
& \sum_{y=X}^{2 X-1}\left[\sum_{y \leq m<y+h} \mu(m)\right]^{2} \ll h^{2} e^{-(\log X)^{1 / 6}}+X^{\varepsilon}
\end{align*}
$$

hold for all $\varepsilon>0$, uniformly as $1 \leqq h \leqq X$. The constant implied by \ll, may depend on ε. Let $a(m)=\Lambda(m)-1$, and consider the function

$$
S_{A}(n):=\sum_{m<n} \frac{a(m)}{n-m}=\dot{U}(n)+S_{H}(n)
$$

where

$$
U(n)=\sum_{1 \leqq n-m<H} \frac{a(m)}{n-m}
$$

and $S_{H}(n)$ is defined by (1.11). Since in our case $B(y+h)-B(y) \geqq h$, from (1.20) we get immediately that (1.10) holds. Furthermore $B(X) \ll X$, and from standard sieve result we get that

$$
B(y+h)-B(y) \ll h+h \log y / h
$$

So by (1.18), (1.19) we get easily that

$$
\begin{equation*}
E(X, H) / X(\log X)^{2} \rightarrow 0, \quad H=X^{\delta} \tag{1.22}
\end{equation*}
$$

Let us consider the sum

$$
F(X, H):=\sum_{X \leqq n<2 X} U^{2}(n)
$$

Since

$$
|U(n)| \leqq V(n)+\sum_{1 \leqq n-m<H} \frac{1}{n-m}, \quad V(n)=\sum_{1 \leqq n \rightarrow m<H} \frac{\Lambda(m)}{n-m},
$$

we have

$$
\begin{equation*}
F(X, H) \leqq 2 F_{1}(X, H)+X(\log H+O(1))^{2} \tag{1.23}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}(X, H)=\sum_{X \leqq n<2 X} V^{2}(n) \tag{1.24}
\end{equation*}
$$

To estimate (1.24) we can use standard sieve result, namely that

$$
\sum_{x \leq m<2 X} \Lambda(m) \Lambda(m+k) \ll X \prod_{p \mid k}\left(1+\frac{1}{p}\right),
$$

squaring out $V^{2}(n)$, we get easily that

$$
\begin{equation*}
\frac{F_{1}(X, H)}{X \log ^{2} X} \leqq r(\delta), \tag{1.25}
\end{equation*}
$$

where $r(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. Hence and from (1.22) we get that

$$
\begin{equation*}
\sum_{X \leqq n<2 X} S_{\Lambda}^{2}(n)=o\left(X \log _{1}^{2} X\right) \tag{1.26}
\end{equation*}
$$

After some obvious observation, hence we get that

$$
\begin{equation*}
\sum_{n<x}(s(n)-1)^{2}=o(x), \quad s(n)=\sum_{p<n} \frac{1}{n-p} . \tag{1.27}
\end{equation*}
$$

Let us consider now

$$
S_{\lambda}(n):=\sum_{m<n} \frac{\lambda(m)}{n-m}
$$

Let

$$
R(n)=\sum_{n-m<H} \frac{\lambda(m)}{n-m}, \quad H=X^{\delta} .
$$

Since $R(n) \leqq \log H+O(1)$, from (1.21), (1.18), (1.19), we get that

$$
\begin{equation*}
\sum_{n \leqq X} S_{\lambda}^{2}(n)=o\left(X \log ^{2} X\right) \tag{1.28}
\end{equation*}
$$

Similarly, we can deduce from (1.9) that

$$
\begin{equation*}
\sum_{n \leqq X} S_{\mu}^{2}(n)=o\left(X \log ^{2} X\right), \quad S_{\mu}(n):=\sum_{m<n} \frac{\mu(m)}{n-m} \tag{1.29}
\end{equation*}
$$

So we have proved the following
Theorem 1. Under the unproved hypothesis (1.9) the inequalities (1.27), (1.28), (1.29) hold.

From the unproved hypothesis (1.9) and the Main Theorem of Ramachandra [8], from (1.18), (1.19) we can deduce nontrivial estimate for some other functions as well. We shall state without proof

Theorem 2. Assume that (1.9) holds.
Let P_{k} run over the integers having exactly k prime factors. Then for each fixed k,

$$
\sum_{n \leq X}\left(S_{k}(n)-\frac{(\log \log n)^{k-1}}{(k-1)!}\right)^{2}=o\left(X(\log \log X)^{2(k-1)}\right)
$$

where

$$
S_{k}(n):=\sum_{P_{k}<n}\left(n-P_{k}\right)^{-1}
$$

Let z be any nonpositive complex number, $|z|=R$,

$$
S_{z}(n):=\sum_{m<n} \frac{z^{\omega(m)}}{n-m} .
$$

Then

$$
\sum_{n \leqq X}\left|S_{z}(n)\right|^{2}=o\left(X(\log X)^{2 R}\right) \quad \text { as } \quad X \rightarrow \infty .
$$

Let $0 \leqq l<k$, let $\mathscr{B}_{k, l}$ be the set of integers n satisfying the condition $\omega(n) \equiv l(\bmod k)$. Let

Then

$$
S_{k, 1}(n)=\sum_{\substack{m<n \\ m \in \mathscr{F}_{k, i}}}(n-m)^{-1}
$$

$$
\sum_{n \leqq X}\left(S_{k, l_{1}}(n)-S_{k, l_{2}}(n)\right)^{2}=o\left(X(\log X)^{2}\right) .
$$

2. Let $e(m)=1$ if m is a sum of two squares, and let $e(m)=0$ otherwise. Let us consider the sum

$$
\begin{equation*}
f(n):=\sum_{m<n} \frac{e(m)}{n-m} \tag{2.1}
\end{equation*}
$$

A classical result of Landau gives that

$$
\begin{equation*}
\sum_{m<x} e(m) \sim c x / \sqrt{\log x} \tag{2.2}
\end{equation*}
$$

with a suitable constant. Hence one can deduce that

$$
\sum_{n \leqq x} f(n)=\sum_{m<x} e(m) \log (x-m) \sim c x \sqrt{\log x}
$$

The Dirichlet-series

$$
F(s)=\sum_{m=1}^{\infty} \frac{e(m)}{m^{s}}
$$

can be written as

$$
F(s)=\frac{1}{1-1 / 2^{s}} \prod_{p \equiv 1(\bmod 4)} \frac{1}{1-1 / p^{s}} \prod_{p \equiv-1(\bmod 4)} \frac{1}{1-1 / p^{2 s}}=\sqrt{\xi(s) L(s, \chi)} v(s)
$$

where $L(s, \chi)$ is the Dirichlet L-function corresponding to the nonprincipal character $\bmod 4, v(s)$ is a function which has a Dirichlet-series expansion

$$
v(s)=\sum_{n} a_{n} / n^{s}
$$

that is absolute convergent in the halfplane $\operatorname{Re} s>1 / 2$.
Let $N(\sigma, T, \chi)$ denote the number of roots ϱ of $L(s, \chi)$ in the domain $\operatorname{Re} \varrho \geqq \sigma$, $|\operatorname{Im} \varrho| \leqq T$.

Theorem 3. Assume that (1.9) holds, and that

$$
\begin{equation*}
N(\sigma, T, \chi) \ll_{\varepsilon} T^{2(1-\sigma)+\varepsilon} \tag{2.3}
\end{equation*}
$$

holds for all $\varepsilon>0$. Then

$$
\begin{equation*}
\sum_{n \leq x}(f(n)-c \sqrt{\log n})^{2}=o(x \log x) \quad(x \rightarrow \infty) \tag{2.4}
\end{equation*}
$$

with the c occuring in (2.2).

Proof. The Main Theorem [8] under the conditions (1.9), (2.3) guarantee the fulfilment of the inequality $(1.10)_{\varepsilon}$ with $a(m)=e(m)-C(\log x)^{-1 / 2}$. By using the inequalities (1.18), (1.19) and some standard sieve results, namely that

$$
\sum_{x \leqq m<2 X} e(m) e(m+k) \ll \frac{x}{\log x} \prod_{p \mid k}\left(1+\frac{2}{p}\right)
$$

(see Halberstam-Richert [10]), we get (2.4) easily.
As an example of further conditional results that can be deduced similarly, we mention without proof the next

Theorem 4. Let $k \in \mathbf{N}$ be fixed and assume that

$$
N(\sigma, T, \chi) \ll_{\varepsilon} T^{2(1-\sigma)+\varepsilon} \quad(\sigma \geqq 1 / 2)
$$

holds for all character $\chi(\bmod k)$ for all $\varepsilon>0$. Let $l_{1}<l_{2}<\ldots<l_{\text {I }}$ be distinct residues $\bmod k,\left(l_{j}, k\right)=1(j=1, \ldots, t)$. Let \mathscr{E} denote the set of the integers n the prime factors p of which belong to the residue classes $\equiv l_{j}(\bmod k)(j=1, \ldots, k)$. Let e $(n)=1$ if $n \in \mathscr{E}$, and $e(n)=0$ if $n \notin \mathscr{E}$. Let

$$
f(n):=\sum_{m<n} \frac{e(m)}{n-m} .
$$

Then

$$
\sum_{n \leq x}\left(f(n)-c(\log n)^{s}\right)^{2}=o\left(x(\log x)^{2 s}\right), \quad s:=t / \varphi(k)
$$

with a suitable constant c.
3. One can prove similar theorems for the sums

$$
g(n):=\sum_{1 \leq h<n} \frac{a(n+h)}{h} .
$$

For example, from (1.9) we can deduce that

$$
\sum_{n<x}\left(\sum_{n<p<2 n} \frac{1}{p-n}-1\right)^{2}=o(x)
$$

and so we have
Theorem 5. If (1.9) is true, then

$$
\sum_{n<x} t^{2}(n)=o(x), \quad t(n)=\sum_{n<p<2 n}(p-n)^{-1}-\sum_{p<n}(n-p)^{-1} .
$$

Let us consider now the function

$$
S(n)=\sum_{m \equiv n-2} \frac{\Lambda(m)}{(n-m) \log (n-m)} .
$$

One can get easily that

$$
\sum_{n \leq x} S(n)=x \log \log x+O(x) .
$$

Assuming that with some suitable $\varrho_{X}, \varepsilon_{X}>0, \varrho_{X} \rightarrow 0, \varepsilon_{X} \rightarrow 0$,

$$
\begin{equation*}
\sup _{z_{x} \leq h \leq x} \frac{1}{h^{2} X} \int_{X}^{2 X}\left[\sum_{y<m \leqq y+h} A(m)-h\right]^{2} d y \leqq \varrho_{x}, \quad \log \log Z_{X}=\varepsilon_{X} \log \log X \tag{3.1}
\end{equation*}
$$

holds, we can get that

$$
\begin{equation*}
\sum_{n<x}(S(n)-\log \log n)^{2}=o\left(x(\log \log x)^{2}\right) . \tag{3.2}
\end{equation*}
$$

The inequality (3.1) holds if we assume somewhat more than (1.9), namely that

$$
\begin{equation*}
N(\sigma, T) \leqq c T^{2(1-\sigma)} \log ^{2} T . \tag{3.3}
\end{equation*}
$$

In [9] we proved that under the condition (3.3) the inequality (3.1) holds with $Z_{x}=(\log x)^{7.5} h(x), h(x) \rightarrow \infty$. So we have

Theorem 6. If (3.3) is true then (3.2) holds.
At present we are unable to prove that

$$
\sum_{n<x}\left(\sum_{m \leq n-2} \frac{\lambda(n)}{(n-m) \log (n-m)}\right)^{2}=o\left(x(\log \log x)^{2}\right)
$$

even under the Riemann conjecture.

References

[1] K. Prachar, Primzahlverteilung, Springer (Berlin, 1957).
[2] I. Kítar, On consecutive primes, Acta Math. Acad. Sci. Hungar., 30 (1977), 163-167.
[3] I. Kátal, Asymptotic formulas in number theory, Ann. Unio. Sci. Budapest, Eottōs Sect. Math., 6 (1963), 83-87 (in Russian).
[4] I. KÁtal, Investigation of a number-theoretical function, MTA III. Oszt. Kōzleményei, 16 (1966), 233-238 (in Hungarian).
[5] I. KÁtar, A result on consecutive primes, Acta Math. Acad. Sci. Hungar., 27 (1976), 153-159.
[6] Ю. в. Линник, Некоторые условные теоремы, касающиеся бинарвых задач с простыми чпсламп, Докл. Акад. Наук СССР. 77 (1951), 15-18.
[7] Ю. В. Линник, Некоторые условные теоремы, касающиеся биварной проблемы Гольдбаха, Изв. Акад. Наук СССР, 16 (1952), 503-520.
[8] K. Ramachandra, Some problems of analytic number theory, Acta Arith., 31 (1976), 313-324.
[9] И. Катаи, О разностях простых чпеел, Ann. Univ. Budapest. Eöttös Sect. Math., 8 (1965), 61-64.
\{10] h. Halberstam, h. Richert, Sieve methods, Academic Press (New York, 1974).

