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Boolean algebras of factor congruences 

DAVID BIGELOW and STANLEY BURRIS1) 

We want to examine algebras A whose factor congruences form a distributive 
sublattice of the congruence lattice of A (and hence the factor congruences can be 
thought of as forming a Boolean algebra). This concept appeared in the paper [8] 
of CHANG, J6NSSON and TARSKI as an equivalent formulation of the strict refinement 
property (which, they noted, implies the refinement property, and hence the unique 
factorization property). Later this same concept was introduced by COMER in [10] 
to generalize the Pierce sheaf construction for rings. Comer applied his results to the 
study of cylindric algebras, and later BULMAN-FLEMING, KEIMEL and WERNER [4], 
[16] extended this to arbitrary discriminator varieties. 

In §1 we state the basic characterizations of algebras with Boolean factor con-
gruences which appear in CHEN [9] and SWAMY and MURTI [18], and note that every 
variety with the Fraser—Horn—Hu property2) has Boolean factor congruences. Next 
we look at an example of Chen and show that the only nontrivial variety of semi-
groups with Boolean factor congruences is the variety of semilattices. It turns out 
that the property of having Boolean factor congruences is a Mal'cev property of 
varieties — but we have been unable to find a corresponding Mal'cev condition. § 2 
contains some technical lemmas about factor congruences of Boolean products 
which are used in § 3 where we characterize the Boolean products which arise as 
Pierce sheaves of algebras with Boolean factor congruences. PIERCE [17] was particu-
larly interested in sheaf representations where the stalks were directly indecompos-
able. We show that if all the Pierce sheaves in a variety with Boolean factor congru-
ences have directly indecomposable stalks then the directly indecomposable members 
of V form a universal class. In conclusion we show that the complete description of 
finite 5-separating groups by APPS [1] carries over to the finite Z?-separating algebras 
in a variety with Boolean factor congruences. 

l ) Research supported by NSERC Grant No. A7256. 
*) We have used the phrase 'Fraser—Horn property' prior to this paper, and we are indebted to 

Professor Walter Taylor for pointing out Hu's independent work on this property. 
Received April 24, 1987 and in revised form July 11, 1988. 
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1. Basic results 

Our terminology and notation follow that of BURRIS and SANKAPPANAVAR [6]. 
For A an algebra, a pair of congruences 8, D of A which satisfies 9C\B=AA and 
0oB=VA is called a pair of factor congruences. FC(A) denotes the set of factor con-
gruences of A. An algebra A has Boolean factor congruences (BFC) if the factor 
congruences of A form a distributive sublattice of the congruence lattice Con (A) 
of A. A class of algebras has BFC if every member does. 

Given congruences 0,£Con (Af), / = 1,2, the product congruence 0XX02 on 
A1XA2 is defined by: 

0iX02 = {««!, a2>, (bx, b2)): afi.b,, i = 1, 2}. 

A congruence 0 of AxXA2 is skew if it is not a product congruence. A variety V has 
the Fraser—Horn—Hu property if each A 1 XA 2 £F has no skew congruences. 

Given a homomorphism a: A—B and 0£Con (A) let 

a(0) = {(afa), a(a2)): ( a l t a2)£0}. 

We note that for a surjective, a(0) is a congruence iff it is a transitive relation on B. 

Given a product of algebras JJ A; let jtf denote the projection homomorphism 
>e/ 

from JJ A, to A,. More generally, for JQI let itj be the projection homomor-
m 

phism from J] A; to JJ A ; . The notation A s JJ A, means A is a subdirect 
HI izj s d ¡6/ 

product of the A, , i.e., each projection map 7i, maps A onto A(. 

Lemma 1.1. Let Aj and \ 2 be algebras of the same type. Then for <p,, 
0 ;€Con (A,), / = 1 , 2 we have: 

(81Xd2)o((p1X(p2) = (di°(Pi)X(d2o(p2), 

(e1xe2)A((p1X(p2) - (01A(p1)x(02A<p2), 

(01X02)y((PlX(Pi) = (91y<p1)X(92y(p2). 

P r o o f . (Routine.) 

Lemma 1.2. Let 0,6Con (A,), /=1 ,2 , and suppose AxX A2 has no skew 
factor congruences. Then 

e.XO^FC(AjXA,) i f f 0 f 6FC(A¡) , 1 ,2 . 

Proof . The direction (<=) follows immediately from Lemma 1.1. So suppose 
0jX02 is in FCiAjXAa). Choose q>iXcp2 such that 01X02 and (piX<p2 form a pair of 
factor congruences of AjXAa. Then by Lemma 1.1 it easily follows that 0£, <pf form 
a pair of factor congruences of A ;, /=1 ,2 . 
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Propos i t i on 1.3. For A an algebra the following are equivalent: 
(a) A has BFC. 
(b) <p, 0£FC(A)=xp =(#> V0)A(<pV0) where 6, B is a pair of factor congruences 

of A. 
(c) A = A j X A2=>-A1X A2 has no skew factor congruences. 
(d) A^A 2 XA 2 and fleFCfAiXAa) imply n1(6)xAAiQ6. 

Furthermore, A has BFC implies that the factor congruences of A permute. 

Proof . The details for the equivalence of (a)—(c) and the last sentence can be 
found in CHEN [9] and SWAMY and MURTI [18]. Then it is easy to see that (d) is equi-
valent to (c). 

Coro l l a ry 1.4. A variety with the Fraser—Horn—Hu property has BFC. 

P roo f . Use 1.3 (c). 

This corollary covers the well known cases of congruence distributive varieties 
and the variety of rings with 1. 

Coro l l a ry 1.5. Any expansion of an algebra with BFC has BFC. 

Proof . Use 1.3 (c). 

P r o p o s i t i o n 1.6. The only nontrivial variety of semigroups with BFC is the 
variety of semilattices. 

Proof . First we know from CHEN [9] that semilattices have B F C . Then using the 
description of the minimal varieties of semigroups given by Theorem 2 . 6 of KALICKI 

and SCOTT [15], as well as the description of the lattice of varieties of idempotent 
semigroups due (independently) to BIRYUKOV [3], FENNEMORE [11] and GERHARD [13], 

one can easily show that any nontrivial variety of semigroups which is not the variety 
of semilattices contains an algebra A which is isomorphic to either (Zp, + ) , for p 
a prime, or to one of the following: 

a two-element semigroup satisfying x-y—y, 
a two-element semigroup satisfying x-y=x, 
a two-element semigroup satisfying x - y = u - v . 

In any of these cases A x A does not have a Boolean algebra of factor congruences. 

Remark . Since semilattices do not have the Fraser—Horn—Hu property, we see 
that the latter property of varieties is different from having BFC. 

Theo rem 1.7. The property of having BFC is a Mal'cev property of varieties. 

Proof . Let K be the class of varieties having BFC. We will verify the four 
conditions of TAYLOR in Theorem 4 . 2 of [19] : 
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(i) Clearly K is closed under the formation of equivalent varieties. 
(ii) Clearly K is closed under the formation of subvarieties. 

(iii) Let Vt, V2£K, and let A=A X ® A2, where A£V;, / = 1,2. Let 0 ,9 be a 
pair of factor congruences of A. Then, since all congruences on AJ® A2 decompose 
into a product of congruences, we have 6=D1X02, B=B1xB2. Then it is easy to 
see that 0 ; , 0,- is a pair of factor congruences of A,, / = 1 , 2 . Since the calculations of 
V and A of congruences of A1igi A2 are done coordinatewise, it follows that AI® Az 

has BFC. 

(iv) Let I be a set of equations defining a variety in K. We need to show that 
some finite subset of I defines a variety (with the same language £C) in K. To do this 
we mimic an argument in Taylor's paper. Let Rx, Rlt R2, R2 be four binary relation 
symbols, and let $ be a set of sentences which assert that R}, defines a pair of 
factor congruences, for / = 1,2, on an i?-algebra. Let IT be a sentence which says that 
Ri permutes with R2 and R2, and 

R1 = (R1oR2)n(R1oR2). 

By 1.3 (b) and the last sentence of 1.3 we have ZU <P|=<7, so for some finite = 
U 4> o. Thus i 0 defines an if-variety with BFC. 

2. Factor congruences of Boolean products 

In this section we present some technical results concerning the impact of BFC 
on Boolean products. The Boolean product operator F on a class of algebras K is 
defined by: A^T(K) iff for some Boolean space X and indexed family ( A J ^ ^ 
of algebras from K, 

(i) A n N 
sd x(.X 

(ii) (equalizers are open) for / , g£A the set £ / = # ] = : { x ^ : / (x )=g(*)} is 
an open subset of X, and 

(iii) (patchwork property) for N a clopen subset of X and f,G£A we have 
/ U U ^ l x - i v M . 
For A^T(K) we denote the base space A'by X(A). We obtain the operator f if we 
replace (ii) by 

(ii°) (equalizers are clopen) for f,g£A, [ / = g | is clopen. 

The Boolean product was introduced by BURRIS and WERNER [7] as an (equi-
valent) alternative to Boolean sheaves. Given an algebra A we say that B is a Boolean 
product representation of A with stalks from K if A ^ B ^ r ( K ) . 
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L e m m a 2.1. For A^T(K) such that A has BFC let 8 be a factor congruence of 
A. Then for (f,g)£d, for h^A, and for N a clopen subset of X=X(A) we have 

< / U U A | x _ w , g | w U / . | z _ K > € 0 . 

P r o o f . If N is 0 or Xthen the claim is obvious. So suppose W^N^X. Then let 
Ax—A|jv, A2=A|x_jy, and let a : A — A aXA2 be the natural isomorphism. From 
1.3 (c) there are congruences 0;€Con (A;), / = 1 , 2 , with a ( 6 ) = d 1 X d 2 , and elements 

fi,gi,i= 1,2, with 

« ( / ) = O i , / i > « ( f l ) < g i , g . > = «(g). 

Let a(h)=(h1,h2). Then f161g1 and h26zh2, so 

</i, h2)a(e)(gl, h2). 

Applying a - 1 we get the desired conclusion. 

L e m m a 2.2. For A £T(K) such that A has BFC let 6, B be a pair of factor 
congruences of A. Then nx(&), nX(B) is a pair of factor congruences of Ax, for 
each x^X(A). 

P r o o f . Let x£X(A) be given. First we need to show that nx(9) is transitive for 
06Con (A) — for then nx(6)£Con (A J . (The same argument will apply to xx(B).} 
Let (a, b), (c,d)£0 with nx(b)=nx(c). We want to show {nx{a), nx{d))£nx(Q). 
Choose a clopen set N such that 

(*) xZNQlb = cl 

Then, selecting an element e of A, we have by 2.1 

<o|j»Ue|x-w , 6 |*Ue | x _ w >6f l , <c | »Ue | x _ w , d\„Ue|x-w>€0. 

Since fc|NUe|x_jV=c|JVUe|x_JV we have 

and thus (nx(a), nx(d))dnx(d). Thus nx(6) is transitive. 
Now choose B to be the complement of 6 in FC(A). Then 6oB—VA easily 

yields 

«xiflonM = V ^ ; 

and using 2.1 we can also show 
nx(0)Anx(B) = AAX. 

This proves the lemma. 

For A £ T ( K ) and cp, Con (A) we define 

l<p = 0] = (x€X(A): nx((p) = 71,(0)}, fa * 0] = {x€X(A): nx(cp) * nx(6)}. 
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L e m m a 2.3. Suppose A^ra(K). If Con (A) then pM^l] is an open set. 

P r o o f . For x^ld^AJ choose (f,g)£d such that f(x)^g(x). As JC£[[ f ^g l 'g 
it follows that [9^AJ is open. 

For A£T(K) and N a clopen subset of A'(A) let A—A|N be the projection 
map from ]J Ax to J] Ax restricted to A. Then we have a factor congruence of 

A given by 

k e r ( 4 ) = {</, g)€AxA: NQ{f = g]}. 

If every factor congruence of A is of this form then we say A is factor transparent. 

P r o p o s i t i o n 2.4. Suppose A 6 r a ( K ) is such that A has BFC and no trivial 
stalks. If 0£FC(A) is such that on a dense subset D of X(A) we have Izx(9)£ {AA , VA } 
then 9 = ker (rt^) for some clopen subset N. 

P r o o f . Let B be the complement of 0 in FC(A). If, for some x, nx(9)$ {AA , V^ }, 
then by 2.2 we have 7rx(0)$ {AA , VA }. Thus by 2.3 we can find a clopen set N such 
that 

xdN<gl9^A]C\lB?iAl. 

However, for y£DP\N we have nr(0)£{AA , VA }, which gives a contradiction. 
Thus 

[0 = d ] U [0 = VJ = -XX A). 

Then by 2.2 [9=AJ = IB^AJ, so [6=A} is open by 2.1. Consequently [ 0 = J ] is 
clopen. Letting 2V=|[0=,d]] we have 

0 =.{</, g)eAxA: i\rg[/=g]}. 

3. The Pierce sheaf 

PIERCE [17] utilized the fact that the central idempotents of a ring form a Boolean 
ring to represent the ring as a Boolean sheaf, or, in our terminology, as a Boolean 
product. Comer's generalization, again in our terminology, says that if an algebra 
has BFC then one can let X be the Stone space of maximal ideals Jl of FC(A), 
with a basis of clopen sets obtained by taking all subsets of X of the form N^ = 
= {Jt£X: cp£Jt}, for <p£FC(A). Then the natural map v: A— ¡J A / U M MiX 
is an embedding which gives a Boolean product representation v(A) of A. A detailed 
proof that v(A) is in r ({A/U. / / : Jt^X}) can be found in Chap. IV § 8 of [6], along 
with the fact that v(A) gives a /""-representation iff each (a, b) in AxA belongs to 
a smallest member of FC(A). In the following we denote v(A), the Pierce sheaf of A, 
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by PSh(A): (This is an abuse of the word 'sheaf' since we really mean the Boolean 
product associated with the Pierce sheaf.) Pierce was particularly interested in obtain-
ing a Boolean sheaf representation with directly indecomposable stalks. As we shall 
see this imposes a strong condition on a variety with BFC. 

In order to study the Pierce sheaf of a Boolean product we introduce the notion 
of two Boolean products being essentially the same, namely if A, B(Lr(K) we write 
A = B if there is an isomorphism a: A—B and a homeomorphism ft: X(A)—X(B) 
such that for each x£X(A) the relation ax = {{/(x), of (fix)): f£A} defines an 
isomorphism from Ax to B ^ . 

If A e r ( K ) let Triv (A)={x£X(A) : \AX\ = 1}, the trivial part of A. A is 
reduced if it is factor transparent and Int (Triv (A))=0, i.e., the interior of the trivial 
part of A is empty. (This is more general than COMER'S definition in [10] — he re-
quires that the trivial part of A be empty.) The following characterization of Pierce 
sheaves is an extension of Theorems 3.7 and 4.2 of COMER [10] since it includes al-
gebras for which the Pierce sheaf has some trivial stalks. 

Lemma 3.1. Suppose A has BFC. If (p^FC(A) and (a,b)£VA — q> thenthereis 
an such that (a,b)$\JJ(. 

Proof . Let #" = {0£FC(A): (a, b)tQ). Then 3F is a filter in the Boolean 
algebra of factor congruences of A, and . Thus we can extend to an ultrafilter 

with (p^Jll. Consequently J( = FC(A)—°U is a maximal ideal, and Ji^N^. 
Clearly {a,b)il)Jt. 

Propos i t ion 3.2. (a) If A has BFC then PSh(A) is reduced. 
(b) Let A be a reduced Boolean product. Then A = PSh (A). 

Proof . For (a) let v: A—PSh (A) be the canonical isomorphism. Then, using 
3.1, we see that for e/>€FC(A), 

(a, i ) e ? « ^ g [ v ( f l ) = » ( i ) ] . 

Thus v(<p)=ker (n^ ), so A is factor transparent. And for FC(A) with <p^V 
there is, by 3.1, an " j i ^ X with <p£J( such that | A / U ^ | > 1 , so iV„<£Triv (A). 
It follows that Int (Triv (A)) = 0. 

'(b) Let A be a reduced Boolean product. Then, since the only factor congruences 
of A are of the form ker (n^) for N clopen, they form a Boolean algebra. Since 
Int (Triv (A))=0, distinct clopen sets N give rise to distinct factor congruences 
ker (n^). Thus there is a bijection between the maximal ideals Jl of FC(A) and 
ultrafilters 11 of clopen subsets of X(A) such that if Jl and % correspond then 
y/={ker (7t^): N f ^ } . Consequently U Jl gives the stalk congruence ker (n^), 
where ={x}. Then with a: A-»PSh (A) the natural map and ¡I: X(A)— 

2 
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—-Y(PSh (A)) given by /?(*)={ker (7$): x N clopen}, it is routine to check that 
A = PSh (A). 

Recall that an algebra A is directly indecomposable if |FC(A) | s2 . 

C o r o l l a r y 3.3. Suppose Aera(K) is such that A has BFC, the stalks of A 
are directly indecomposable on a dense subset of X(A), and Tr iv(A)=0. Then 
A = PSh (A). 

P r o o f . From 2.2 and 2.4 we see that A is reduced, so 3.2 applies. 

Given an algebra A and a Stone space X let A[Z]* be the subalgebra of A* 
consisting of all continuous functions from X to A, giving A the discrete topology. 
A [A1]* is called a Boolean power of A. If B is a Boolean algebra, let A[B]* be A [A'J* 
where X=B*, the Stone space of B. 

T h e o r e m 3.4. Let V be a variety with BFC such that the Pierce sheaf of each 
member ofV has directly indecomposable stalks. Then VDI, the class of directly inde-
composable members of V, is a universal class, i.e., it is an elementary class which can 
be axiomatized by universal sentences. 

P r o o f . Suppose VDI is not closed under subalgebras. Choose A0^AdVDI 

with A0(£ VD1. Let x0 be a point in the Cantor discontinuum C, and let D be the sub-
algebra of A[C]* with 

D - { / € A [ C f : /(*0)6A0}. 

Then D x = A for x?±x0, and D^^AQ. Thus by 3.3 it follows that a stalk of the 
Pierce sheaf of D will be isomorphic to A0. This contradicts our assumption on the 
Pierce sheaves in V, so VDI must be closed under subalgebras. (We note that a similar 
argument was applied to the case of rings by BURGESS and STEPHENSON [5].) 

Next we want to show that VDI is closed under ultraproducts. Let A¡£VDI for 
/€/, and let 0, B be a pair of factor congruences of JJ A;. Then, using 1.2, we con-

fer 
elude that each 7r, (0), ^¡(0) is a pair of factor congruences of A(, i£l. Consequently 
0=ker (7ij) where J = \ 0 = A \ . This leads to a bijection between the maximal ideals 
M of FC (77 and the ultrafilters % on I such that for corresponding Ji and % 
we have ' M={ker (jtj): J^tfl). Since JJ A ( / L U / = 77 AJ%, the stalks of 

•ex ¡6i 
PSh (77 A,) are the ultraproducts JJ AJfy. Thus, since we are assuming the 

16/ m 
stalks of the Pierce sheaves in V to be directly indecomposable, it follows that VDI 

is closed under ultraproducts. This suffices to prove that VDI is a universal class. 

An algebra A is B-separating if for any Boolean algebras Bj and B2 we have 

A[BX]* - A[B2]* =• B, - B2. 

* 
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In the following we show that the characterization of the finite B-separating members 
in a variety with BFC is the same as that obtained by A P P S [1] for groups. (For a 
through survey of the results on 5-separating algebras see BIGELOW [2].) 

T h e o r e m 3.5. Let V be a variety with BFC. Then 
(a) for A1; ..., Ak nontrivial directly indecomposable members of V which are 

pair-wise nonisomorphic we have AxXA l*X...XAn
k
k is B-separating for any choice of 

natural numbers nz, ...,nk; and 
(b) for A a finite member ofVwe have A is B-separating i f f A is isomorphic to 

AjXA^X. . . XAJJ", where the Ai are, for l^i^k, directly indecomposable pair-
wise non-isomorphic members of V. 

P r o o f . For (a) let Ax, ..., Ak be nontrivial directly indecomposable pairwise 
nonisomorphic members of V, and given natural numbers n2, ..., nk let A be the 
direct product A ^ A ^ X . - . X T h e n for B a Boolean algebra we have A [ B ] * 

is isomorphic to 

A I [B]* X A 2 [B" 2 ]* X . . . X A J B " * ] * . 

Thus we can express A[B]* as a R°-Boolean product C over the base space 

B * U ( B " 2 ) * U . . . U ( B " * ) * 

with stalks A1; ..., Ak, and such that Ax appears precisely over B*. By 3.3 we have 
C = PSh ( C ) ; and as C ^ A [ B ] * it follows that C = PSh (A[B]*). Thus we can 
recapture B from PSh (A[B]*) as the Boolean algebra of all clopen sets in the base 
space X(PSh ( A [ B ] * ) ) which have all stalks above them isomorphic to A X . Thus A 
is .^-separating. 

For (b) we only need to show that any finite algebra not isomorphic to an algebra 
of the form described is not .B-separating. But this is true in general, and the argument 
is in APPS [1]. 

Thus we have a description of the finite 5-separating algebras in any congruence 
distributive variety and in any variety with a semilattice operation. 

References 

[1] A. B. APPS, Boolean powers of groups, Math. Proc. Camb. Phil. Soc., 19 (1982), 375—395. 
[2] D. BIGELOW, B-Separating Algebras, M. Math. Thesis, University of Waterloo, 1986. 
[3] A. P. BIRYUKOV, Varieties of idempotent semigroups, Alg. i. Logika, 9 (1970), 255—273. 
[4] S. BULMAN-FLEMING and H. WERNER, Equational compactness in quasi-primal varieties, 

Algebra Universalis, 7 (1977), 33—46. 
[5] W. D. BURGESS and W. STEPHENSON, Pierce sheaves of non-commutative rings, Comm. Algebra, 

4 (1976), 51—75. 

2» 



20 D. Bigelow, S. Burns: Boolean algebras of factor congruences 

[6] S. BURRIS and H. P. SANKAPPANAVAR, A Course in Universal Algebra. Graduate Texts in 
Math. 78, Springer-Verlag (New York, Heidelberg, Berlin, 1981). 

[7] S. BURRIS and H. WERNER, Sheaf constructions and their elementary properties, Trans. Amer. 
Math. Soc., 2 4 8 (1979), 2 6 9 — 3 0 9 . 

[8] C. C. CHANG, B. J6NSSON and A. TARSKI, Refinement properties for relational structures, Fund. 
Math., 5 0 (1964) , 2 4 9 — 2 8 1 . 

[9] C. C. CHEN, On the unique factorization property of algebras, Nanta Math., 10 (1977), 149—157. 
[10] S. COMER, Representations by algebras of sections over Boolean spaces. Pacific / . Math., 38 

(1971), 2 9 — 3 8 . 
[11] C. FENNEMORE, All varieties of bands, Semigroup Forum, 1 (1970), 172—179. 
[12] G. A. FRASER and A. HORN, Congruence relations in direct products., Proc. Amer. Math. Soc., 

2 6 (1970), 3 9 0 — 3 9 4 . 
[13] J. A. GERHARD, The lattice of equational classes of idempotent semigroups, J. Algebra, 15 

(1970) , 195—224 . 
[14] T.-K. Hu, On equational classes of algebras in which congruences of finite direct products are 

induced by congruences on their factors, Mimeographed, Southern Illinois University 
(1968?) . 

[15] J. KALICKI and D. SCOTT, Equational completeness of abstract algebras. Indag. Math., 17 
(1955), 6 5 0 — 6 5 9 . 

[16] K. KEIMEL and H. WERNER, Stone duality for varieties generated by quasi-primal algebras, Mem. 
Amer. Math. Soc., 1 4 8 (1974), 5 9 — 8 5 . 

[17] R. S. PIERCE, Modules over commutative regular rings, Mem. Amer. Math. Soc., 70 (1967). 
[18] U. M. SWAMY and G. S. MURTI, Boolean centre of a universal algebra, Algebra Universalis, 13 

(1981), 2 0 2 — 2 0 5 . 
[19] W. TAYLOR, Characterizing Mal'cev conditions, Algebra Universalis, 3 (1973), 351—397. 

DEPARTMENT OF PURE MATHEMATICS 
UNIVERSITY OF WATERLOO 
WATERLOO, ONTARIO N2L 3G1, CANADA 


