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Endomorphism monoids in minimal quasi primal varieties 

M. E. A D A M S and D . M. C L A R K 

In this paper we address the following question: Given a finitely generated 
variety of algebras, how closely is an arbitrary algebra B determined by its endomor-
phism monoid, End (5)? A survey of the literature reveals a spectrum of possible 
answers which focus at two extremes. We begin by citing some of these examples. 

Independently, K. D. MAGILL [20], C. J. MAXSON [21] and B. M. SCHEIN [29] 
have shown that nontrivial Boolean algebras are determined up to isomorphism by 
their endomorphism monoids. T. K. Hu [15] proved that the variety generated by a 
primal algebra is equivalent, as a category, to the variety of Boolean algebras. It 
follows that nontrivial algebras in any primal variety are also determined up to 
isomorphism by their endomorphism monoids. The same is true of median algebras 
(H. J. BANDELT [3]), distributive lattices with 0 and distributive lattices with 1 (B . M. 
SCHEIN [29]). The conclusion is slightly weaker for distributive lattices (without 
bounds): SCHEIN [29] showed that if End ( L ^ End (Z.2), then Lx is isomorphic 
either to L2 or to the lattice obtained by inverting the order in Lz. The same result for 
bounded distributive lattices was proven by R . MCKENZIE and C. TSINAKIS [22]. 

At the other extreme, a number of authors have found finitely generated varieties 
for which there are monoids that are isomorphic to the endomorphism monoid of a 
proper class of nonisomorphic algebras (c.f. A. PULTR and J . SICHLER [26], V . KOUBEK 

and J . SICHLER [18], P . GORALCI'K, V . KOUBEK and P . PROHLE [11], or the text A. 
PULTR and V . TRNKOVA [27]). A striking case of this dichotomy was discovered in 
[1] and [2]: By K. B. LEE [19] the varieties of pseudocomplemented distributive lattices 
form an co + 1 chain 

where are the varieties of trivial, Boolean and Stone algebras, respecti-
vely. In [1] and [2] it is shown that nontrivial algebras in (like and are 
determined up to isomorphism, in (like distributive lattices) they are determined 
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to within two, while for n g 3 contains a proper class of nonisomorphic algebras 
with isomorphic endomorphism monoids. 

Where in this spectrum would one expect the variety generated by a randomly 
chosen finite algebra to fall? In this study we consider varieties generated by a mini-
mal quasi primal algebra. In the sense of R. O. D A VIES [10] and V. L. MURSKII [23] 
(see also R. W. QUACKENBUSH [28]), almost all finite algebras are minimal quasi 
primal and, consequently, are addressed by the results presented here. We will show 
that in such a variety an algebra is almost always uniquely determined by its endo-
morphism monoid. 

To make this assertion precise, we refer again to the case of distributive lattices. 
How can we construct, from a distributive lattice L, the lattice obtained by inverting 
the order in LI One way to do it begins by representing Las a. sublattice of a power of 
A =({0, 1}, A, V). Now apply pointwise the permutation P=(0, 1) to each member 
of L to obtain a new sublattice of the same power of A. This approach can be extended 
to an arbitrary algebra using weak automorphisms. If P is a weak automorphism of A 
and B is a subalgebra of a power of A, then applying pointwise to the members 
of B will yield a new subalgebra Bp of the same power of A. For any algebra A, the 
automorphism group Aut (A) forms a normal subgroup of the group of weak 
automorphisms WAut (A). Weak automorphisms P and 5 of A which are in the same 
coset of Aut (A) produce isomorphic algebras Bp and Bs. In general Bp and Bs are 
not isomorphic, but we will show that their endomorphism monoids always are. 

We now state our main result which is established in Section 3. 

Theorem 1. Let Q be a minimal quasi primal algebra. For nontrivial algebras 
B and C in the variety generated by Q, End (B) = End (C) if and only if there is a 
weak automorphism P of Q such that C=Bf. 

Thus, from Theorem 1 and the comments preceding it, it follows that for the 
variety generated by a minimal quasi primal algebra Q the number of nonisomorphic 
algebras in the variety with a given endomorphism monoid is bounded by the (neces-
sarily finite) index of Aut (Q) in WAut (Q). 

Unlike most work on quasi primal varieties which relies on sheaf representations, 
our proof of Theorem 1 is based on topological dualities. Starting with the topologi-
cal duality of M. H. STONE [32] for Boolean algebras, topological dualities for quasi 
primal varieties have been developed in several steps by K. KEIMEL and H. WERNER 
[16], then B. A. DAVEY and H. WERNER [9] and simultaneously [7]. Our main tool will 
be a result from the latter two papers which states that the variety generated by a 
minimal quasi primal algebra is equivalent, as a category, to a category of structured 
Boolean spaces. 

In most familar cases Aut (A) has a small index in WAut (A). For example, if A 
is a lattice the index is one unless A=(A, A, V)=(A, V, A), in which case it is two. 
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If A is an abelian group it is always one. Nevertheless, we can find minimal quasi 
primal algebras A for which the index is arbitrarily large. In the Section 4 we prove 

Theorem 2. For 0 t h e r e exists a minimal quasi primal algebra A, an 
algebra B in the variety generated by A and a weak automorphism P of A such that 
BF^Bf' for 

As will be seen, the algebra B in the statement of Theorem 2 is, by necessity, 
infinite (see Proposition 3.3). 

We conclude in Section 5 with some examples. 
We would like to acknowledge the very helpful discussions with A. Higgins and 

J. Sichler concerning this topic. 

1. Preliminaries 

We begin by fixing some notation and terminology, and reviewing some recent 
results that will be the basis of our work. For more extensive background we refer 
the reader to standard texts such as S. BURRIS and H . P. SANKAPPANAVAR [6] or 
G. GRATZER [12]. 

We use an arbitrary set Op of Unitary operation symbols to determine a similarity 
type. Relative to Op we construct the set Tm of terms in a fixed denumerable sequence 
of variables. B=(B,fB)fe0p is an algebra of type Op if B is a nonempty set (the 
carrier of B) and for each w-ary operation symbol /6Op, fB: B"—B. In this case 
each n-ary term /£Tm also defines an n-ary term function tB:B"-*B on B. The 
clone of B is the set of all tB where /f Tm. A nonempty subset C of B determines a 
subalgebra of B if it is closed under the operations of B. Here we denote by C the 
subalgebra determined by C. B is a trivial algebra if it has only one element. It is 
minimal if it is finite, nontrivial and every proper subalebra of B is trivial. Given a 
class Ji of (possibly topological) algebras of type Op, we denote by HJl, Ui, SM 
and VJi the classes of (continuous) homomorphic images, (homeomorphic) iso-
morphic images, (closed) subalgebras (with the relative topology) and products 
(with the product topology) over nonempty index sets of members of Ji, respectively. 
V„//=HSP^// is the variety or equational class generated by a class Ji. 

A finite nontrivial algebra Q is quasi primal if every operation on the set Q 
which preserves the subalgebras and isomorphisms between subalgebras of Q is a 
term function of Q. This notion, introduced by A . F . PIXLEY [24], [25], is equivalent 
to the assertion that the ternary discriminator, t(x, y, z)=z if x=y else x, is a 
term function of Q. In particular a quasi primal algebra has only simple subalgebras. 

A slight reformulation of the definition of minimal quasi primal algebra will 
more directly suit our needs. Given a finite nontrivial algebra Q, let G be the set of 



40 M. E. Adams, D. M. Clark 

automorphisms of Q and let E(Q) be the set of e£ Q which determine trivial subal-
gebras of Q. Then 

Q = (Q, A ^ e W . e e E i e ) 

is an algebra with |G| unary operations, \E(Q)\ nullary operations (constants) and the 
same carrier as Q. If Q is a minimal algebra, then the homomorphisms 

/ : Q" - Q 

are exactly the n-ary operations on Q which preserve all subalgebras and isomorphisms 
between subalgebras of Q. Thus we have 

Lemma 1.1. Let Q be a minimal algebra, Q as above. Then Q is quasi primal if 
and only if the homomorphisms f '-Qn—Q are exactly the n-ary term functions of Q 
for each «< co. 

The key tool in our investigation will come from the topological duality theory • 
developed in [7] and, independently, in B. A. DAVEY and H. WERNER [9]. We review 
here the necessary theorem. For a minimal quasi primal algebra Q, ISPg is identical 
with \Q if Q has a one element subalgebra and otherwise consists of the nontrivial 
members of VQ. Let Q be defined as above, but augment it with the discrete topology. 
The category ISPQ contains structured Boolean spaces X having the same type as Q. 
It is easy to check that, for each such X in ISPQ, the hom set 

Hom (X, Q) Q Qx 

of continuous homomorphisms from X into Q determines a subalgebra of Qx. 
We denote this algebra by (P(X). 

Propos i t ion 1.2. ([7], [9]). If Q is a minimal quasi primal algebra, then 

<P: ISPQ - ISPO 

is a dual category equivalence (i.e., a full and faithful contravariant functor such that 
every algebra in ISPQ is isomorphic to the image of some algebra in ISPQ,). 

2. Weak automorphisms 

The primary object of this section is to establish the more direct part of Theo-
rem 1. We will show how weak automorphisms can generate nonisomorphic algebras 
with the same endomorphisms (Corollary 2.4), and we will give a bound on the 
number of algebras that can so arise (Lemma 2.6). In this section A=(A,fA)fiQp 

will denote a fixed but arbitrary algebra. For each permutation /? of its carrier A, let 

f}A = (A,f^)/i0p 
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be the unique algebra such that P is an isomorphism from A onto ft A. More explicitly, 
ffiA=PfA(P~1)n where 03_1)„ is the pointwise application of y?-1 to A", ft is an auto-
morphism of A exactly when A=fiA. More generally, ft is a weak automorphism if A 
and PA have the same clone. J. R. SENFT [30] showed that the weak automorphisms 
of A form a group WAut (A) which contains the automorphism group Aut (A) as a 
normal subgroup. (See also J. SICHLER [31]). Given a set I and a nonempty subset 
BQA1, let 

B0 = {p-*x\xZB}^Al. 

L e m m a 2.1. If B determines a subalgebra of A1 and P is a weak automorphism, 
then Bp also determines a subalgebra B® of A1. 

Proo f . Suppose BQA1, / 6 O p is H-ary and P'1:x0, P^x^ ..., jg-1x„_1€5 /J. 
Since fpA is in the clone of A, there is a term t^Jm such that tA=fpA, Then for 
each if J , 

f^ifi^xo, 1)(0 =fA(P~1x0(i), ...,P-Ixa-I(i)j= 

= p-ipfA(p-*x0(i),..., p-'x^AO) =p-1f'A(x0(i),*„-x (0) -

= p~hA(x0(i),..., Xn^(i)) = p-^'ixo,..., xn^)(i). 
Thus, 

fA'(p-lx0,..., r ^ - j e r ^ = B 
Bf is not, in general, isomorphic to B. For example, if j4=({0, 1}, f\A, \/A) 

is the two element lattice, then P=(0, 1) is a weak automorphism where ApA = \JA 

and \/pA = /\A. For a lattice BQA1, Bp is the lattice obtained by reversing the order 
on B. Although B^B" in general, in this case it is clear that End (fi) = End (Bp). 
To see that End (Bp) is always isomorphic to End (B), we will give an alternative 
construction fB for Bp. 

L e m m a 2.2. Let p CM Aut (A}, B^A1. 
(i) B determines a subalgebra A1 if and only if it determines a subalgebra of 

(pA)1 (which will be denoted by 11B). 
Moreover, in this case 
(ii) B and11B have the same clone and (therefore) the same endomorphism monoid. 

L e m m a 2.3. If P£WAut(A) and BQA1, then Be^B. 

P r o o f . The pointwise extension p of p to A1 is clearly a bijection from Bp onto 
PB. Moreover, if / 6 O p and yk=P~1xk where xk£B for k-^n, we have 

VA'(yo, •••> % - i ) ( 0 = Pf^P^Xoii), P^Xn-M = 

= fPA(x0(i), ..., xn^(i)) =PAI(X0, ..., *„_!)(/) -
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Starting with B we can change the carrier but retain the operations to obtain 
Be or, alternately, change the operations but retain the carrier to obtain PB. For 
•example, in case 

B = (B, AB, VB) g ({0, 1}, AA, VAy, 
we obtain Bf by applying /?=(0, 1) pointwise to members of B while eB=(B, V®, 
AB); these are clearly isomorphic. 

Algebras C and D will be called clone equivalent if there is a .BgSPyi and a 
weak automorphism /? of A such that C^B and From Lemmas 2.2 and 
2.3 we conclude 

C o r o l l a r y 2.4. Clone equivalent algebras have isomorphic endomorphism 
monoids. 

As will be seen, weak automorphisms induce clone equivalences which impose 
an absolute limit on our ability to retrieve an algebra from its endomorphism monoid. 
But, as remarked prior to Theorem 1 and established below (Lemma 2.6), this limit 
is ammeliorated by the automorphisms of A. 

Lemma 2.5. If P and 5 are permutations of A, then (P5)A=P(5A). 

Proof . Let f(iOp be «-ary. Then 

p»>a = №fA(m~% = mA(z-%)(P-\ =fP(SA). 
Lemma 2.6. Let A be an algebra. For p, <5£ WAut (A), the following are 

equivalent: 
(i) eB=5B for every BeSPA. 
(ii) pA=5A. 

(iii) P and 8 are in the same coset of Aut (A). 

Proof . For (i)—(ii), take B=A. (ii)—(i) is trivial. To prove (ii)-»(iii), we have 

(P~1S)A = p-\5A) = P'HPA) = (P~1P)A = A 

so that p~1d£Aut (A). For (iii)—(ii), let / € O p be n-ary and assume (iii). Then 
P-18A=A and therefore 

J~SA _J-<PP-1)SA =J-P(P-UA) =J~PA 

C o r o l l a r y 2.7. If P, <5£WAut (A) are in the same coset of Aut (A) and 
BQA1, then Be^Bs. 
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3. Proof of Theorem 1 

Throughout this section Q will denote a fixed minimal quasi primal algebra and 
-B^ISPQ will represent a fixed algebra whose endomorphism monoid is given ab-
stractly. Our goal is to retrieve from End (B) an algebra that is clone equivalent to B, 
demonstrating that this is the only possibility for an algebra with endomorphism 
monoid isomorphic to End (B). 

Let G be the set of automorphisms of Q, E(Q) the set of elements of Q which 
form a one element subalgebra, and 

Q = ( 2 , e ) „ 6 G , e € E ( Q ) 

the dual topological structure. As given in Proposition 1.2, there exists X^ISPQ 
such that B^<P(X) and End (B) is anti isomorphic to End (X)=Horn (X, X). 

The topological duality [7] and B. A. DAVEY and H. WERNER [9] will play an 
integral and essential role in our argument. This contrasts with conventional applica-
tions of duality in which one transfers a problem to a dual category, solves it there, 
and then transfers back. It is also the first instance we are aware of in which the 
duality representation, rather than the Boolean sheaf representation of S. BULMAN-
FLEMING, K . KEIMEL and H. WERNER [5], [16J, has been used to solve a nontrivial 
algebraic problem for quasi primal varieties. 

We begin by examining the structure of the members of ISPQ. Let E(Q) be the 
subalgebra of Q determined by E(Q), and let 

6' = (G, MW 

be the unary algebra determined by G (where, for ju, y£G, n(y) is the product /iy 
in G). 

Lemma 3.1. (i) Each X^ISPQ is the disjoint union of an isomorphic copy of 
E(Q) determined by its constants and a collection of isomorphic copies of G'. The union 
of its copy of £(2) and any set of these copies of G' is a subalgebra of X, and these are 
its only subalgebras. 

(ii) If P£ISPQ is finite, TQP contains exactly one member of each copy of G', 
then P is ISPQ-freely generated by T. 

Proof , (i) If fi£G is not the identity, then the set of fixed points of n is either 
empty or is a proper subalgebra of Q and therefore consists of exactly one element in 
E(Q); in particular, ft has at most one fixed point. It follows that, for a, %(LG and 
x£X not a constant element, 

ox — ix implies a — x. 

Thus {ox | o£G) determines an isomorphic copy of G. The remainder follows easily. 
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(ii) Next, let 

f : T - Y where /£ISPQ. 

If x£T and ox=xx, then (7=T so that afx=xfx. This shows that/extends to a 
homomorphism. 

Lemma 3.2. X is finite if and only if End (X) is finite. 

Proof . Suppose XQQ' is infinite. For /£/, let 7r,:X—Q be the projection 
with kernel Then | /£/} must be infinite. By Lemma 3.1 (ii) there is an embed-
ding / : Q—X. Whence 0; is the kernel o f f n i so [fni | /£/} is an infinite subset of 
End (X). 

Propos i t ion 3.3. If B is finite, then it is determined up to isomorphism by 
|End (5)|, the cardinality of End (B). 

Proof . If B is finite, then so is X and therefore End (X) and End (B). Suppose 
X consists of a copy of E(2) augmented by m copies of G as in Lemma 3.1 (i). Then X 
is IPSQ-free on m generators so that 

|End(5)| = |End(X)| = \X\" = (l^(G)i + m |C|)m. 

This number determines m, X and therefore B. 
In the remainder of this section we assume that B, and therefore X, is infinite. 
Our next objective is to identify a subset X* of End (X) that corresponds to a 

copy of X and a subset A* of X* that corresponds to a copy of Q. That is to say, we 
will establish the existence of a one-to-one function # : X— Z*^End (X) and 
identify, in Lemma 3.6, A* and X* as subsets of End (X). We remark that it is 
appropriate that we can only identify sets corresponding to Q and X. Indeed, were 
we able to determine the accompanying algebraic and topological structures, B 
would be determined up to isomorphism. As shown in the next section, this need not 
be the case. 

According to Lemma 3.1 (i) there is an jkco such that Q is isomorphic to 
E(Q) augmented by n copies of G', and is free on n generators. Since X is infinite, it 
is the disjoint union of a copy E(X) of E ( 0 and infinitely many isomorphic copies 
of Q. 

Lemma 3.4. Every finite PQjX is a retract of X, i.e., the image of X under an 
idempotent surjection. 

Proof . Choose a finite subset JQI so that the projection nX—QJ is one-
to-one on P. Since TtjX is finite, Lemma 3.1 shows that there is a retraction g from 
%jX onto TtjP. Let h be the isomorphism from njP onto P such that hnjy—y for 
y£P. Then f=hgiij retracts X to P. 
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We can identify such a retract from within End (X): 

Lemma 3.5. Let f£M—End (X), m<<u. Then f is a retraction of X onto the 
union ofE(X) and m copies of G' if and only if p=f and \fMf\ =(\E(Q)\ +m\G\)m. 

P roo f . If p—f, \fMf \ is the number of endomorphisms of /(X). If / (X) is 
infinite, then by Lemma 3.2, End (/(X)) is also infinite. Otherwise, |End (/(X))| = 
= |/(X)|r where / (X) is free on r generators (Lemma 3.1(ii)). 

Using Lemmas 3.1(i), 3.4 and 3.5 we now choose a fixed retraction / o f X onto 
a copy A of Q: 

f . A g x , p = f . 

Let 7i denote an isomorphism from Q onto A which is fixed for the remainder of this 
section: n: Q->-A. Again using Lemma 3.5 we can choose a fixed retraction g of X 
onto a copy G of E(g) augmented by one copy of G': 

g : X - G g X, g2 = g. 

G is free on one generator by Lemma 3.1 (ii). Let x0 be any free generator of G. For 
each x£X let x* be the unique hg in End(X) where h(x0)=x. Then * : X-~X* 
is a bijection which takes A onto a subset A* of X*. Both X* and A* can be identified 
inside M=End (X) as sets: 

Lemma 3.6. X*=Mg and A*=fMg. 

Now there do exist unique algebraic and topological structures X* and A* 
on X* and A* such that *: X—X* and *: A—A* are isomorphisms. Although we 
•do not have access to these structures, the next lemma shows that we are able to 
determine Horn (X*, A*) as a subset of (A*)x*. For each endomorphism k : X—X 
we define k*:X*-~X* by 

k*(x*) = (k(x))* 

to obtain the commuting diagram 

X * 
k\ I 4 * 

X-2-* X* 

Next we observe that each k* and Horn (X*, A*) can be defined within M=End (X): 

Lemma 3.7. (i) Horn (X, A)=fM. 
(ii) If k£M and hgdX* =Mg, then k*(hg)=khg. 

(iii) * : End (X)—End (X*) is an isomorphism ', and takes Horn (X, A) onto 
Horn (X*, A*). 
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Proof , (i) is easy. For (ii), let x=h(x0) and, thus, x*=hg. Then k*(hg) = 
=k* (x*)={k(x))* =(khg(x0))* =khg. 

Finally, the first part of (iii) follows from (ii) and the fact that k* = *k*~l. The 
second part is seen from the following list of equivalent statements: k(x)£A~r 

fk(x)=k(x); fkhg(x0)—khg(x0); fkhg=khg; khgZA*; k*(x*)£A*. 
Now let A and A* be the unique algebras such that the maps 

Q^Ua^A* 

are both isomorphisms. Then, in the category ISPg of algebras we have 

B^$(X) = Horn (X, Q) ^ Horn (X, A) ^ Horn (X*, A*) g (A*)x* 

where the second isomorphism is induced by n and the third is the restriction of * . 
If we could, at this point, discover the correct structure on the set A*, then 
Horn (X*, A*}, would determine a subalgebra of (A*)x* isomorphic to B. As already 
noted, this need not be possible. Suppose, however, that we could identify which 
maps / : (A*)"-» A* are in the clone of A*. Since Q is given, we could then impose 
any algebraic structure on A* that made it isomorphic to Q (and therefore to A*} 
and gave it the same clone as A* to obtain a weak isomorph of A*. We would then 
be finished, since this algebraic structure would lift pointwise to Horn (X*, A*} 
to determine an algebra clone equivalent to B. 

Thus our final objective in this section is to identify the maps from (A*)" into A* 
which are in the clone of A*. Since A* is minimal quasi primal, an w-ary operation is a 
term function if and only if it is a morphism from (A*)" into A* (Lemma 1.2). To 
identify such morphisms, we will pick out a copy P* of (A*)" inside X* and use our 
access to Horn (X*, A*) to identify the morphisms from P* into A*. Finally, we will 
use the category-theoretic definition of product to back these morphisms up to the 
morphisms from (A*)n into A*. 

Lemma 3.8. The homomorphisms from a finite substructure P*QX* into a 
finite substructure P^QX* are exactly the restrictions to Px of members of End (X*) 
which take P* into P%. 

Proof . Use Lemma 3.4 and the fact that * : X—X* is an isomorphism. 

Let 0<«<co. By Lemma 3.4 the finite substructures of X are determined by 
the finite subsets of the form kX where k2=k. It follows that the finite substructures, 
of X* can be identified as being determined by the finite subsets of the form 

k* X* = k*(Mg) = kMg 

where k2=k. By Lemma 3.1 (i) there is a copy of (A*)" contained in X*. We cam 
identify such a structure P* as determined by any set P*~kMg where k2—k and 
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|.P*| = |(,4*)"|. Thus P*^(A*)n. The projections ni:(A)"-+A, have the 
property that for any Y and ¿¡: Y—A, i<n, there is a unique S:Y—(A)n such that 
each <5,-=7rj<5. Since P*^(A)n, P* must have the same property. Taking Y=P* 
and using Lemma 3.8, we can find a set of n "projection homomorphisms", 
{p* | /< n], whose restrictions to P* take P* onto A* in such a way that for any 
choice of n homomorphisms d*: P* — A*, i<n, there is a unique homomorphism 
d*: P*—P* such that for each /<«, d* and p*d* agree on P*: 

A* 

p* / 

Now define h:P*^(A*)n by 

Hx*) = (PoX*, ptx*, ...,p*_lX*). 

Lemma 3.9. h is an isomorphism from P* onto (A*)n. 

Proof . Since |P*| = |(^*)"| = |g"|, by Lemma 3.1 there is an isomorphism t 
from Q" onto P*. For each n let qt be the z-th projection from Q" onto Q and let 
df=*nqit~1. Then there is a unique map d* which makes the diagram 

commute for each i<n . 
We first claim that d* is one-to-one. Suppose x,y£Q" where d*t(x)=d*t(y). 

Then df t(x)=d*t(y) for each /<«. It follows that x=y and t(x)=t(y). 
Now we show that h is one-to-one. Let x*,y*£P* where h(x*)=h(y*). Since 

d* is one-to-one, it is also onto so that there are w, v£Q" such that d*t(u)=x* 
and d*t(v)=y*. From the diagram we see that for each /<«, qi(u)=qi(v). Thus 
u=v and x*=y*. 

Since |i>*| = |(y4*)n|, h is an isomorphism onto. 

Finally, because h is concretely given, we can give a criterion to test if k is in 
the clone of A* which can be checked from within End (X). 

Lemma 3.10. For a map k: (A*)"-+A* the following are equivalent: 
(i) к is in the clone of A*. 

(ii) kh: P*—A* is a homomorphism. 
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Proof , (i) holds if and only if A:: (A*)"— A* is a homomorphism, which is 
•equivalent to (ii) by Lemma 3.9. 

Finally, given End (B), and therefore End (X), we construct X*, A*Q End (X) 
(Lemmas 3.5, 3.6) as well as the set Н о т (X*, A*) (Lemma 3.7). Next we use Lemmas 
3.8 and 3.10 to determine the (set of maps in) the clone of A*. Now we choose any 
algebraic structure ЛЦ on the set A* such that A% = Q=A* and A£ has the same 
clone as A*. Then the isomorphism from A% onto A* is a weak automorphism 
of A*, and Н о т (X*, A*) determines a subalgebra of (A£)x* (Lemma 2.2) which 
is clone equivalent to the subalgebra it determines of (A*)x*. But this subalgebra 
of (A*)x* is isomorphic to Ф(Х) and therefore to B. This completes the proof of 
Theorem 1. 

For a fixed positive integer n we take A = {0,1}". Let m and ' be the pointwise 
extension of the median ([x, y, z]={x\Jy)t\(z\Jy)h(y\/z)) and complementation 
operations on A respectively, and let t be the ternary discriminator operation on A. 
For a,b£A define 

4. Proof of Theorem 2 

a, if a — b 
a', if a 5* b 

For each element e£ A we define a binary operation [e] on A by 

Finally, let 
a[e]b — m(a, e, b). 

A = ({0, 1}", f , *, [e])e 

Lemma 4.1. (i) A is a minimal quasi primal algebra. 
(ii) Each element of A determines a trivial subalgebra. 

(iii) For each e£A, (A, [e]) is a meet semilattice with e as zero. 

Proof , (i) If a^b, a, b£A, then for any e£A we obtain 

a[e\(a*b) = a[e]a' = e 

is in the subalgebra generated by {a, b}. (ii) and (iii) are straight forward to verify. 

By way of example, we illustrate the meet semilattice ({0, l}3, [Oil]). 
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Next we define an action of each ft in the permutation group S„ on A by 

P(e0, ex, ..., e„_!) = (epo, epi, ..., e^-i)) 
for each e=(e0, elt ..., e„_1)£A. Then jS permutes the elements of equal height in 
the meet semilattice (A, [0, 0, ..., 0]). Moreover, each P£S„ is a weak automorphism 
of A as we see by checking that 

tP = t, *"=*, -[ef = [Pe] 
for each e£A. 

For each c£A, we construct a direct sum of <x> copies of A relative to c. Let 

Bc — is cofinite in a»}. ' 

By Lemma 4.1 (ii) Bc determines a subalgebra Bc of Aa. 

Lemma 4.2. For each d£A, the meet semilattice [Bc,[d]) has a zero if and only 
if d=c. 

Proof . If d=c, the constant (c, c, c, ...) is a zero. Suppose d^c and choose 
any element z£Bc. Let x£Bc be obtained from z by replacing one occurrence of c 
by d. Then x[d]z—x^z so that z is not a zero. 

Lemma 4.3. pBc^Bp-lc for each P£S„. 

Proof . Let p - 1 be the pointwise extension of to Bc. Clearly p _ 1 is a bijec-
tion from Bc onto Bp-ic which preserves both t and * . To see that it preserves [e], 
let x, y£Bc. Then 

P ~ M e Y y ) = -)t/5e]0'o, Ji, •••)) = 
= P_1(m(x0,13e, y0), m(xPe, yx), ...) = 

= (/S^mOo, Pe, y0), Pe, jx), ...) = 
= (my-1*, e, p-iyo), mifi-ix» e, ft-1 yd, •••) = 

= ( P ^ X o M p - 1 Jo, P ^ X M P - ^ X , •••) = P - ^ H P - V -

4 
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Let c=( 1, 0, 0, 0, ..., 0)6,4 and let P be the «-cycle (0, 1, 2, 3,... , n-1). Sup-
pose By Lemma 4.3, B0.rc^Bfi.,c. From Lemma 4.2 it follows that 
P~rc—P~sc so that r is congruent to s modulo n. This completes the proof of Theo-
rem 2. 

5. Two examples 

Our first example is somewhat of a prototype. A relatively complemented distri-
butive lattice is a distributive lattice L=(L, AL, VL,rL) augmented by a ternary 
operation rL satisfying 

i[CM(xVz))V(xAz)]Ar(x, y, z) = xAz 
^ l[(jA(xVz))V(xAz)]Vr(x, y, z) = xVz 

Here rL(x, y, x) is the complement of y projected into the interval [xALz, x\JLz], 
H. WERNER [34] noticed that the two element lattice 2?=({0, 1}, A, V, t), augmented 
by the ternary discriminator t, generates the variety of relatively complemented distri-
butive lattices. R has exactly one weak automorphism, P=(0, 1), which is not an 
automorphism. Thus, for L in the variety generated by R, there is at most one non-
isomorphic algebra LP for which End (L)^End (LP) and it is obtained by inverting 
the order in L. In case L is finite, LP=L is a Boolean lattice. 

Let £=({0, 1}, A, V, —) be the two element Boolean algebra. As stated earlier, 
Boolean algebras are uniquely determined by their endomorphism monoids ([20], 
[21], [29]). However, P=(0,1) is a weak automorphism of L which is not an auto-
morphism. Our second example (Proposition 5.2) shows how algebras can be uniquely 
determined by their endomorphism monoids even in the presence of proper weak 
automorphisms. 

Lemma 5.1. If every weak automorphism of A is a term function of A, then 
B^B for every fig SPA, 06WAut(,4). 

Proof . Let /?6WAut (A), BQA1, (J and p - 1 the pointwise extensions to A1. 
We first observe that (in general) p: B—A1 is an embedding of B into (PA)1. Let 
#60p be w-ary, x£B", and /'£/. Then 

PgB(x0, ..., xn_,)(i) = pgA{x0(i), ..., *„_!(/)) = 

= sM(P^(i),.... pxn-1(0) = g("A)I(Px0,..., Pxn_0(0. 

Now suppose each weak automorphism is a term function. Since B is a subalgebra 
of A1, p B ^ B , and since p-^WAut (A), fS^BQB. Thus B=QB and B^pB="B. 
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A quasi primal algebra is semi primal if the only isomorphisms between its sub-
algebras are identity maps. A semi primal algebra (like L above) is primal i f i t has no 
proper subalgebras. 

P ropos i t ion 5:2. If A is a minimál semi primal algebra and B, C£lSPy4 such 
ihat End (B)^End (C), then B^C. 

Proof . By Theorem 1, there is a weak automorphism /? of A such that 
A has at most one proper subalgebra which must be trivial, and therefore is preserved 
by each weak automorphism. Thus each weak automorphism is a term function and 
we use Lemma 5.1. 
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