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Subvarieties of varieties generated by graph algebras 

EMIL W. KISS, R E I N H A R D PÖSCHEL and PÉTER PRÖHLE 

1. Introduction. Graph algebras have been invented by C . SHALLON [14] to 
obtain examples of nonfinitely based finite algebras (see G. MCNULTY, C . SHALLON [5] 
for an account on these results, and K. BAKER, G. MCNULTY; H. WERNER [1] on the 
newer developments). To recall this concept, let G=(V,E) be a (directed) graph 
with vertex set V and edges EQVX V. Define the graph algebra A(G) corresponding 
to G to have underlying set VU where » i s a symbol outside V, and two basic 
operations, a nullary operation pointing to °° and a binary one denoted by juxta-
position, given by uv=u if (u,v)ZE and uv=°° otherwise. One of the first examples 
of a nonfinitely based finite algebra has been a particular three element graph algebra, 
called Murskii's groupoid after its discoverer (see [6]). Here is its multiplication 
table and the picture of the corresponding graph G0. 

It has been observed by S. OATES-WILLIAMS and M. VAUGHAN-LEE [7] that the 
lattice of subvarieties of the variety generated by Murskii's groupoid is also very 
interesting. According to the main result of S. OATES-WILLIAMS [10], this lattice con-
tains a chain isomorphic to that of the real numbers, hence it is uncountable, and 
satisfies neither the minimum nor the maximum condition. 

Very little is known about lattices of subvarieties in general. An unexpected 
restriction has been revealed by W. A. LAMPE [3], and strengthened in the locally 
finite case by tame congruence theory (see R. MCKENZIE [4]). However, even the 
following two questions are open. 
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Prob lem 1.1 (S . OATES-WILLIAMS and M . VAUGHAN-LEE [7]). Does there 
exist a finitely generated variety such that its lattice of subvarieties satisfies the de-
scending chain condition but not the ascending chain condition? 

P rob lem 1.2 ( T . E . HALL). IS the intersection of two finitely generated varieties 
always finitely generated? 

Notice that the second question also depends only on the lattice of subvarieties, 
since a locally finite variety is finitely generated iff it is not a union of a proper as-
cending chain of its subvarieties. By the results of S. Oates-Williams mentioned above, 
it seemed reasonable to look for examples answering these problems among graph 
algebras. 

Def in i t ion 1.3. For a class ^ of graphs let be the class of all graphs H for 
which ^ ( i / )€HSP {A(G): G£&}. We call (S a graph variety if V = 

Obviously, V is a closure operator. In order to translate algebraic questions to 
the language of graphs, we need an internal characterization of graph varieties. For 
undirected graphs, this has been accomplished independently by E. W. Kiss [2] and 
in a preliminary version of R . POSCHEL, W . WESSEL [13] (see Section 2 for the exact 
definitions). 

Theorem 1.4. A class of undirected graphs is a graph variety if and only if it is 
closed under direct products, induced subgraphs, disjoint and directed unions. 

In E . W. KISS [2] this theorem is applied to obtain an easy proof of the result of 
S. OATES-WILLIAMS [10] mentioned above about the variety generated by Murskii's 
groupoid. Theorem 1.4 has-been generalized for the directed case by R. POSCHEL [11]. 

The aim of this paper is twofold. In Section 2 we introduce a technique of in-
vestigating identities of graph algebras by using homomorphisms of graphs. This 
technique enables us to obtain in Section 3 the following result. 

Theorem 1.5. Let 'S be a class of graphs. Then the lattice of subvarieties of 
HSP {A(G): G£<3} is isomorphic to the lattice of subvarieties of 

Let ^ be a fixed graph variety. For a subvariety <S' of ^ define q>((§') = 
= H S P {A(G): GZ&'}. Then cp is an order-preserving map from the lattice of sub-
varieties of 'S to the lattice of subvarieties of "V=<p('&). By the definition of a graph 
variety, cp is one-to-one, and is clearly onto the poset of all subvarieties of ^ t h a t 
are generated by their graph algebras. Since an order preserving bijection from a lattice 
to a poset is a lattice isomorphism, this argument shows that in order to prove Theo-
rem 1.5 it is sufficient to establish the following assertion. 
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Theorem 1.6. Every subvariety of a variety generated by graph algebras is also 
generated by its graph algebras. 

Theorem 1.5 enables us to investigate lattices of graph varieties instead of 
varieties of algebras. In Section 4 we provide machinery that makes it easier to 
determine these lattices, and give some examples. We shall obtain Theorem 1.4 as 
a corollary of these methods. 

As an application of this machinery, in connection with Problem 1.1, we investi-
gate the descending chain condition for lattices of subvarieties of varieties generated 
by undirected graph algebras. Recall that an algebra is called critical, if it is not 
contained in the variety generated by its proper subalgebras and homomorphic 
images. In Section 4, one of our basic tools will be the analogous concept of a strongly 
critical graph (see Definition 4.1). In the paper of S. OATES-WILLIAMS and M . VAU-
GHAN-LEE [7] it is shown that a locally finite variety has finitely many subvarieties iff 
it has finitely many critical algebras iff it satisfies the ascending and the descending 
chain condition for subvarieties. 

We are going to prove that undirected graph algebras cannot provide an example 
requested in Problem 1.1, by determining all varieties of undirected graphs that 
satisfy the descending chain condition for subvarieties. There are seventeen of them, 
and all these indeed have only finitely many subvarieties. To formulate our result we 
have to define these graph varieties. 

Let D„ be the undirected cycle (without loops) of length n^3, R„ the undirected 
(loopless) path o f « edges (n^O), and L„ the undirected path of n + 1 vertices with a 
loop at every vertex (nS0). Denote by % the graph variety generated by L2 and 
J?3, and by the corresponding variety of graph algebras. We have computed the 
attice of subvarieties of V'0, it is shown on Figure 6 at the end of the paper. 

Theorem 1.7. Let "V be a variety generated by a class of undirected graph al-
gebras. The lattice of subvarieties of "V satisfies the descending chain condition i f f "V 
is one of the seventeen subvarieties of ir'0. Hence the descending chain condition im-
plies the ascending chain condition for varieties generated by undirected graph algebras. 

There is no obvious relationship between the finite basis property and critical 
algebras. In the paper [7] an example is given of a finitely generated variety that is 
not finitely based, but which has only finitely many subvarieties. This variety is 
congruence permutable, but it is not inherently nonfinitely based. 

In the paper K. BAKER, G. MCNULTY, H. WERNER [1] the finite basis property is 
investigated among varieties generated by undirected graph algebras. It turns out 
that there are only eleven such varieties that are finitely based and all the others are 
in fact inherently nonfinitely based. These eleven varieties are exactly the subvarie-
ties of 7^', which is the variety corresponding to the graph variety generated by 
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Lx and R2. Since ^ is a subvariety of %, the lattice of subvarieties of % (calculated 
in [1]) is also shown on Figure 6 as an ideal in the lattice of subvarieties of %. Thus 
the six remaining subvarieties of % have only finitely many subvarieties, but are 
inherently nonfinitely based. 

Coro l l a ry 1.8. Among inherently nonfinitely based varieties generated by un-
directed graph algebras, there are exactly six which have only finitely many subva-
rieties. Two of these six, the variety generated by the graph algebra of R3 and the variety 
generated by the graph algebra of L2, have the property that each of its subvarieties is 
finitely based. 

We conclude this section by two open questions. 

P rob lem 1.9. Settle Problems 1.1 and 1.2 for varieties generated by graph 
algebras (or equivalently, for graph varieties). 

Our proof of Theorem 1.6 is based on Lemma 3.1, which actually claims that 
every critical algebra in a variety generated by graph algebras is a graph algebra. 
The methods in Section 4 might therefore be sufficient to describe all critical algebras 
in these varieties. 

P rob lem 1.10. Describe those graphs for which the corresponding graph 
algebra is a critical algebra. 

2. Terms and identities. In this section we relate graphs to terms in the language 
of graph algebras and express the meaning of identities by graph theoretic properties. 
The proofs of the main results in later sections are all based on this translation. First 
we review our graph theoretic terminology. 

By a graph we mean a pair G=(V, E) with E^VXV, where V is the set of 
vertices and E is the set of edges, we shall write V(G) for V and E(G) for E. Thus our 
graphs are directed without multiple edges, but may contain loops. A graph G is 
undirected if (u,v)£E implies that (v,u)£E. If v£V(G), then we denote by 
[y) or by [y)G the set of all vertices of G that are accessible from v via a directed path. 
A root of a graph G is a vertex v of G such that [v)=V(G). A graph G is rootable if 
it has a root. A rooted graph (G, t>) is a pair, where G is a graph and v i s a roof of G. 
The root of the rooted graph (G, v) is v. 

Now let us review the basic graph theoretic constructions. Throughout the 
paper we shall assume that all classes of graphs are closed under isomorphisms. 

Direct products. Let Gi=(Vi, £,) (/€/) be graphs. The product of these graphs, 
G=(V, E)=TI{Gi: /€/} is defined by /£/} and (u ,v)£E iff (ui5 v , ) ^ 
for all i f f , where uf is the z-th component of u. 
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Induced subgraphs. Let G=(V, E) be a graph. A. subgraph of G is a graph / /wi th 
V(H)QV(G) and E(H)QE{G). If WQV is any subset, then the induced subgraph 
of G on W, denoted by G\ W, is (W, EC\(WX W)). 

Disjoint unions. Let Gi=(Vr, E-) (/£/) be graphs. The disjoint union of these 
graphs, G=(V,E) = U*{Gi:ia} is defined by V={(g,i): gZlQ and 
E={((u, /), (v, /)): i£l, (u, v)£/s,}. Informally: consider isomorphic copies of our 
graphs on pairwise disjoint underlying sets and take the union of these graphs. 

Directed unions. We do not wish to provide a complicated formal definition, since 
it will be sufficient to say that a class 'S of graphs is closed under directed unions if 
and only if it has the following property: an arbitrary graph G is in ^ if and only if 
all finite induced subgraphs of G are elements of 

Homomorphisms. A homomorphism / : G=(V, E)—H=(W, F) is a mapping 
/: V— W carrying edges to edges, that is, for which (u ,v)£E implies ( / (u) , / (v))f f . 
Thus, an edge can be collapsed only to a vertex that has a loop. 

Next we relate rooted graphs to terms. Let T(X) be the set of all terms over a 
set X of variables in the type of graph algebras. A term is called trivial if the nullary 
operation °° occurs in it, these terms evaluate to <=> in every graph algebra. For 
t£T(X), let L(t) denote the leftmost variable of the term t. 

D e f i n i t i o n 2.1. For a nontrivial t£T(X) let G(t)=(V(t), E(t)) be the graph 
associated to t, defined as follows. The vertex set V(t) is the set of variables occurring 
in t, and the set E(t) of edges is defined inductively by £ ( / ) = 0 if t is a variable in 
XQT(X), and E(ts) =E(t)UE(s)U{(£(/), £(J))}. The rooted graph corresponding 
to t is (G(t), L(t)). 

t = (x(uv))(((yu)y)x) GO): 

X 

Figure 2 

The following lemma has its precursor in the papers [5], [2], [13], [11]. 

Lemma 2.2. Let G=(V,E) be a graph, t,s£T(X) and h: X^A(G) an 
evaluation of the variables. Let the same h denote the unique extension of this evaluation 
to the algebra T(X) of all terms. 
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(1) If t£ T(X) is nontrivial, then (G(t), L(tj) is a finite rooted graph. Conversely, 
for every finite rooted graph (G, v) there exists tf T(V(G)) with G(t)=G and 
L(t) = v. 

(2) If t is a trivial term, or i f h takes the value °° on X, then h(t) = °°. Other-
wise, if h: G(t)-*G is a homomorphism of graphs, then h(t)=h(L(t)), and if h is 
not a homomorphis of graphs, then h(t)=°°. 

(3) The identity s=t is true in every graph algebra i f f either both s and t are 
trivial terms, or none of them is trivial, G(s)=G(t), and L(s)=L(t). 

Proof . Let (G, v) be a finite rooted graph. We define the term t(G, v) by induc-
tion on the number of edges of G. The set of variables V(t) of t(G, v) is V(G). If 
E(G) =0, then set t(G,v)=v. If E(G)^0, then there is an edge (v,u)£E(G). Let 
H be the graph obtained by throwing this edge out and set t(G, v)—t(H\[v)H, v)-
•t(H\[u)a,u). An easy induction shows that G(t(G,v))—G and L(t(G, v)) = v, 
proving the second statement of (1). The rest of (1) and (2) can also be proved by a 
straightforward induction, it is left to the reader. 

To show (3) assume first that G(s)=G(t) and L(s)—L(t) for a pair of non-
trivial terms s and t. Then (2) shows that s=t holds in every graph algebra. Con-
versely, assume that s=t holds in every graph algebra, and that t is nontrivial. Let 
G=G(t) and h the identity map of V(t). Then (2) shows that h(t)=h(L(t))=L(t)^ 

co in the graph algebra A(G). Hence, h(s)=h(t)?±°°. Therefore s is nontrivial, 
V(s)QV(t), and the identity map from V(s) to V(t) is a graph homomorphism 
from G(s) to G(t). By interchanging the role of t and s we see that G(s)=G(t). 
Hence, L(t)=h(L(t))=h(t)=h(s)=h(L(sj)=L(s) and the proof of Lemma 2.2 is 
complete. 

Our next aim is to give an equational base for the variety generated by all graph 
algebras. For two sets I and I ' of identities we say that I graph implies 1 ' if for 
every algebra A in the variety generated by all graph algebras A\=Z implies that 
A I'. We call I and I ' graph equivalent if they graph imply each other. 

Lemma 2.3. Every identity in the language of graph algebras is graph equivalent 
to a finite set I of identities, such that each element of I belongs to one of the following 
types: 

(a) Identities of the form s=t with V(s)=V(t), E(s)QE(t), and L(s)=L(t); 
(P) Identities of the form s=t, with G(s)=G(t); 
(y) Identities of the form s = °° with s nontrivial. 

Condition (y) can be replaced by 
(y') The identity xx=°° (where x is a variable). 

We shall prove this lemma after Lemma 2.6. It is very significant, because, com-
bined with Lemma 2.2 (2), it explains very clearly and informally which properties of 
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graphs can be expressed by identities in their graph algebras. Identities of type (a) 
say that if a certain configuration (that is, a homomorphic image of G(s)) exists in 
our graph, then certain other edges (those of G(t)) must also be in our graph. For 
example, the identity xy=x(yx) expresses that our graph is .undirected. Identities 
in (/?) claim that a certain configuration (an image of G(J)) can exist only if two given 
vertices (the two leftmost variables) are collapsed. The identity x(yx)—y(xy), 
expressing that our graph has no undirected edges other than loops, is of this kind. 
Finally the identities in (y) say that a certain configuration cannot exist at all. In 
particular, xx=°° requires our graph to be loopless. These observations will be 
utilized in the proof of the forthcoming characterization of graph varieties. 

To obtain graph implied identities we use substitutions. Let t£T(X) and 
sv£T(X) for certain variables v£Y^X. Then by t[v^sv: Y] we denote the 
term in T(X) obtained from t by substituting sv into the variable u, and leaving all 
other variables of t intact. The following lemma can be proved by an easy induction 
on the complexity of t. 

Lemma 2.4. With the notation above, 

K(/[i>-s„: v£V(/)]) =U{V(s„): v£V(t)}, 

E(t[v — s„: o€K(0]) = {(L(sj, L(sJ): (u, v)€£(/)}U(U{E(sv): v£V(/)}), 

£(/[»-s„: v£V(t)]) = £(si(I)). 

For every variable v and terms p, q, r the identity p—r implies in every algebra, hence 
graph implies the identity p[v—q]=r[v^>-q\. 

Def in i t i on 2.5. Let s, t£T(X) be nontrivial terms. For v£V(s), let s" be 
any term (according to Lemma 2.2 (1)) with G(ili)=G(5)([o)C(s) and L(sc) — v. 
For set s"=v. Define / [ J J ^ / ^ - J " : v£V(t)]. 

The following statement is an obvious consequence of Lemma 2.4. 

Lemma 2.6. Let s,t£T(X) be nontrivial terms. Then 

K(i[s]) = K(0U(U{K(su): t>€K(0nP(s)}), 

£(i[s]) = £(0U(U{£(s"): v£V{y)ViV(s)}), 

L(t[s)) = L(t). 

In particular, if V(s)QV(t), then V(t[s])=V(t), E(t[s))=E(t)\JE(s), and if 
V(t)^V(s) and E(t)QE(s), then G(t[s])=G(sLi'>). 

The term t[s] can therefore be considered as the "union" of the terms t and s. 
It is important to mention that if p, q, r are nontrivial terms, and p=r holds in a 
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graph algebra, then it does not follow in general that q[p\=q[r] holds in the same 
graph algebra. 

The proof of Lemma 2.3. Let p=r be any identity of graph algebras. If 
both terms are trivial, or if p=r holds in every graph algebra, then this identity is 
equivalent to the empty set of identities. So assume that, say, p is nontrivial. If r is 
trivial, then p=r is equivalent to p — °°, which is of type (y). If not, then both p 
and r are nontrivial. If V(p)?±V(r), then without loss of generality we may assume 
that there is a variable z£V(r), z^V(p). By making the substitution in the 
identity p=r we obtain p = °°, which is therefore a consequence of p=r in the 
variety generated by all graph algebras (in other words, p=r graph implies p = <»). 
Hence, by transitivity, p=r is graph equivalent to {p = °°, r=°°}. 

The other possibility is that V(p)—V(r). Since p[r] is defined by substitution, 
p—r graph implies p[r]=r[r] and p[p]=r[p]. On the other hand, p[p\ and p 
induce the same rooted graph by Lemma 2.6, and hence p[p]=p, as well as r[r]=r 
holds in the variety generated by all graph algebras by Lemma 2.2 (3). Thus, p—r 
graph implies p[r~\=r, hence it graph implies p=p[r] by transitivity. Therefore, 
again by transitivity, p=r is graph equivalent to the set [p=p[r], p[r)=r[p], 
r=r[/>]}. Of these identities, the first and third ones are of type (a) and the second 
one is of type (/?) by Lemma 2.6. 

To conclude the proof of Lemma 2.3 we have to show that the set (y) can be 
replaced by the set ( / ) . Let be an identity with i nontrivial, G' the complete 
graph on v(s) (that is, with E(G')=V(s)XV(sj), and s ' a term with G{s')=G' 
and L(s')=L(s). Then s=°° graph implies s[s'] = «>, but in all graph 
algebras. Hence s=°= is graph equivalent to (s=s', /=«>}. The first identity is 
clearly of type (a), and the second one is equivalent to xx=°°. Indeed, by identi-
fying all variables, s' = °° yields xx=o° by Lemma 2.4. Conversely, if xfV(s'), 
then by Lemma 2.6 we have =s' in the variety generated by all graph algebras, 
SO I , '[AX]=I'[°O] = OO. 

3. The proof of Theorem 1.6. First we show that it is sufficient to establish the 
following lemma. 

Lemma 3.1. Let A be an algebra in a variety generated by graph algebras and 
let p=r be an identity which fails in A. Then there exists a graph algebra D6HS (A) 
such that p=r fails in D. 

Indeed, assume that this lemma holds, let "f be a subvariety of a variety generated 
by graph algebras, and let i f be the variety generated by the graph algebras belonging 
to i f . To show =if let us assume that there is an algebra A f f , which is not 
in i f . Then there is an identity p=r which holds in if but fails in A. By Lemma 
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3.1, there is a graph algebra D in HS (A)Q"f such that p=r fails in D. Therefore 
— if contradicting to the definition of i f . 

To prove Lemma 3.1 let A be an algebra in a variety generated by graph algebras 
and p=r an identity that fails in A. Let s—t be an identity satisfying the following 
conditions. 

(a) The identity s—t fails in A. 
(b) The identity p—r graph implies s = t . 
(c) The term s is nontrivial, and either t=°° or V(s)—V(t) and E(s)QE(t). 
(d) For any identity s'=t' satisfying (a), (b), and (c) we have | f ( j ' ) l = 1^(^)1 

and if |F(s ') | = |F( j ) | then ^ ( O l ^ l ^ i ) ! -
The existence of such an identity s=t can be seen as follows. By Lemma 2.3 

we obtain an equation s=t satisfying (a), (b), and (c). Among these we select those 
with |F ( j ) | being minimal, and among these one with |£( i ) | being maximal. 

For the rest of this section we fix an identity s=t satisfying (a), (b), (c), and (d). 
By (a) there exists an evaluation h: V(s)->~A of the variables of s into A showing 
that s=t fails in A. Denoting by the same h the unique extension of h to a homomor-
phism T(V(s))—A we therefore have h(s)^h(t) in A. We fix this mapping h also. 

L e m m a 3.2. For any nontrivial term q with V(q)QV(s) and variable z(LV(s), 
the equality h(q[s])=h(sz) implies that E(q)QE(s). 

Proo f . Consider the term i '= i [z—^[i ] , v-*s": v£V(s), v^z], and let t' 
be obtained from t by the same substitution. Then /i(ijr[s])=:/j(sz) implies that 

h(s') = h(s[z - 5Z, v - sv: v£V(s), v ^ z]) = /i(i[j]) = h(s), 

and similarly h(t')=h(t[s§. Condition (c) yields (using Lemma 2.2 (3) and Lemma 
2.6) that holds in every variety generated by graph algebras. Hence we have 
h(t')=h(t)^h(s)=h(s'), so the identity s'=t' satisfies (a). As s=t graph implies 
s'=t', the identity s'=t' satisfies (b). Let us calculate, using Lemmas 2.4 and 2.6, 
the graphs G(s') and G(t'). First, it is clear from (c) that if t is trivial, then so is t', 
and if t is nontrivial, then V(s')=V(t') and E(s')^E(t'), since we have made the 
same substitution on both sides. Therefore s'=t' satisfies (c), too. It is also clear 
that V(s')QV(s). So we must have equality here by (d), in particular, z£V(s'). 
Hence z£V(q) or z£V(sD) for some v^z. In either case, every edge (z, u)£E(s) 
is also in E(s'). On the other hand, if (v, u)£E(s) with v^z, then (v,u)£E(sv)Q 
QE(s'). Hence, E(s)QE(s'). So by (d), we have E(s)=E(s'). But clearly E(q)Q 
QE(s'), proving our lemma. 

Now set B—{h(s"): let C be the subalgebra of A generated by B 
and 0=C—B. Consequently, every element of B can be expressed as f ° r 

some term q with V(q)QV(s). Let 9 be the equivalence relation on C such that O 

5 
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is a block of 9, and all other blocks (containing the elements of B) are singletons. To 
conclude the proof of Lemma 3.1 it is sufficient to establish the following claim. 

Lemma 3.3. 77te relation 9 is a congruence of C and D=C/9 is a graph al-
gebra in which the identity s=t fails. 

Proof . First notice that Indeed, if h(sv) = °° for a certain v£V(s), 
then oo=/i(i[J])=A(s) and °°=/i(/|j |)=A(0 would yield h(s)=h(t). Thus for 
every trivial term q we have /i(^[s])=<=°€0. Let q be nontrivial with V(q)Q 
QV(s). Then by the last statement of Lemma 2.6 and by Lemma 3.2 we have 

if E(q)QE(s) then /j(9[i])=/i(s t<«)eB, 
if E(q)%E(s) then % [ * ] ) £ 0 . 

Now let c=/i(g[j]) and c'=h(q'[s]) be arbitrary elements of C. Then cc' = 
=h((qq')[s]). If q or q' is trivial, then so is qq', hence cc'f O. If both terms are 
nontrivial, then E(q)UE(q')QE(qq'). Therefore if c or c'£0, then E(qq')%E(s), 
thus cc'£0. This proves that 9 is a congruence, and that D=C/9 satisfies 
= <x>x=oo (where the value of the operation in D is the equivalence class O = °°/9). 
If both c and c' are in B, then either E(qq')QE(s), in which case cc'=h((qq')[s]) = 
=h(sL<qq'))=h(sL(q))=c, or E{qq')%E(s), and then cc'fO. Therefore D=C/9 
satisfies (x, <»}, so it is a graph algebra. 

Finally we show that s=t fails in D. We have h(s)=h(s[s])=h(sLU))fB, 
since E(s)QE(s). Hence h(s) sits in a singleton block of 9. So if h(s) and h(t) 
are congruent modulo 9, then h(s)=h(t), and this is impossible since h(s)?±h(t) 
in A. Thus the proof is complete. 

4. Graph varieties. In this section we investigate graph varieties. The concept 
of critical groups has proved useful in dealing with varieties of groups. We shall 
introduce an analogous concept in a slightly stronger form. 

D e f i n i t i o n 4.1. A finite graph G is called strongly critical, if it is not contained 
in the variety generated by all graphs H£Y(G) for which either \V(H)\<\V(G)\ or 
\V(H)\=\V(G)\ and \E(H)\^\E(G)\. 

Lemma 4.2. Every graph variety is generated by its strongly critical members. 

Proof . Suppose not, let f be a graph variety and iV the subvariety of "f gene-
rated by its strongly critical members. Since every graph variety is generated by its 
finite members (see Proposition 4.5 below), there exists a finite graph in "T, which is 
not in "W. Choose one with minimal \V{H)\, and among these one with minimal 
|E(iO|. Then H is strongly critical, so which is a contradiction. 

T h e o r e m 4.3. Let & be a class of graphs and G a strongly critical member of 
V(@). Then G is an induced subgraph of a direct product of members of 
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To prove this result we have to introduce concepts that make it easier to recognize 
graph varieties. 

D e f i n i t i o n 4.4. Let G=(V, E) be a graph. Define the equivalence relation 
e(G) on V by calling two vertices equivalent if they have identical neighbourhoods; 
In notation: (u, v)£q(G) iff for every vertex x we have (u,x)£E iff (t>, x)€ and 
(x,u)£E iff (x,v)£E. For an equivalence relation 9Qg(G) define G/9 to be 
(V/9, E% where (u/9, v/fytE' iff (u, v)£E. 

Furthermore, define the equivalence relation X(G) by (u, v)£r(G) iff (u, v)£ 
£q(G) and either u=v or there is no directed path from u to v. Finally, let (u, v)d 
£CR(G) iff (u, v)£q(G) and either u=v or u is not a root of G. We say that G is 
reduced if R(G)=OV and strongly reduced if O(G)=0V. 

Clearly, T(G)QO(G). To see that these are indeed equivalence relations notice 
that for any block B of G(G), if there is a directed path in G from a vertex of B to 
another vertex v of G, then there is a directed path from any vertex of B to v by the 
definition of e(G). On Figure 3 a graph G is shown with vertices (w, v)£<t(G)—t(G) 
and (u% v')£t(G). 

Recall that a graph G is called rootable if it has a vertex from which all other 
vertices can be accessed by a directed path. The following result not only implies 
Theorem 4.3 directly, but also enables us to decide in many cases whether a given 
graph belongs to a certain variety of graphs. 

P r o p o s i t i o n 4.5. Let IS be a class of graphs and "V = V(^). 
(1) G^y i f f every finite induced subgraph of G belongs to "V\ 
(2) G£"V i f f every rootable induced subgraph of G belongs to "V. 
(3) G^-fiff the reduced graph G/r(G) belongs to V. 
(4) If G is finite, rootable, and strongly reduced, then G£ir i f f G is an induced 

subgraph of a direct product of graphs from <S. 
(5) If G is strongly critical, then it is finite, rootable, and strongly reduced. 

Before proving this proposition, we collect some well-known or elementary 
facts about homomorphisms of graphs. The proofs are left to the reader. 

L e m m a 4.6. Let G be a graph and & a family of graphs. 

Figure 3 

5* 
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(1) The graph G is an induced subgraph of a direct product of members of <3 if 
and only if there exists a nonempty set $ of graph homomorphisms from G to members 
of 'S satisfying, the following two conditions. 

(a) For every two different vertices u arid v of G there is /€ <P such that /(«) and 
f(v) are different. 

(b) For every non-edge (u, v) of G there is fd $ such that (/(«),/(y)) is also a 
non-edge. 

(2) Let 9Qq(G) be an equivalence relation and f : G—G/9 the natural homo-
morphism. Then for any graph Hand mapping h: V(H)-*V(G), h is a graph homomor-
phism from H to G if and only i f f oh is a graph homomorphism from H to G/9. Conse-
quently, if an identity s=t of type (a), (p), or (y) holds in A(G/9) but fails in A(G) 
under an evaluation map h:V(s)—G, then G(s)=G(t), h is a homomorphism, 
u = h(L(s))^h(L(t)) = v, and (u, v)£9. 

Now we prove Proposition 4.5. By Lemma 2.3, (1) and (2) are clear, since all 
graphs corresponding to terms are finite and rootable. To see (3) notice first that 
A (G/9) is a homomorphic image of A(G) for every 9Qq(G). Conversely, assume 
that an identity s = t of type (a), (j?), or (y) holds in A(G/t(G)) but fails in A(G). 
Apply Lemma 4.6 (2) with 9=t(G), Since there is a directed path in G(s) from L(s) 
to L(t), there is one in G from u to v, since h is a graph homomorphism, and this 
contradicts to (u, v)£R(G). Thus (3) is proved. 

One direction of the statement in (4) is well-known. Induced subgraphs corres-
pond to subalgebras, and the graph algebra corresponding to a direct product of 
graphs can be obtained as a homomorphic image of the direct product of the corres-
ponding graph algebras, this construction is described first in the paper of S. OATES-

WILLIAMS and M. VAUGHAN-LEE [7]. For the other direction suppose that G is a finite, 
rootable, strongly reduced graph belonging to "V. In order to embed G as an induced 
subgraph of a product of members of we apply Lemma 4.6 (1). First let (u, v) be 
a non-edge of G and G' the graph obtained by adding (u, v) to G. Since G is finite and 
rootable, there exists terms t, t' with the same leftmost variable such that G=G(t) 
and G'=G(t'). The identity map of V(G) shows by Lemma 2.2 (2) that t=t' fails 
in A(G). Hence it fails in a member of too, yielding a homomorphism / o f G=G(t) 
into that member, which must carry the non-edge (u, v) into a non-edge. Hence con-
dition (b) of Lemma 4.6 (1) is satisfied. 

Now let u and v be two vertices of G that are collapsed by every homomorphism 
occurring in (b). If (u, x) is a non-edge, then there is a homomorphism / such that 
(f(u),f(x)) is also a non-edge. But f(u)=f(v), hence (v, x) must also be a non-edge 
since / is a homomorphism. Similarly, if (x, u) is a non-edge, then (x, v) is also a 
non-edge. Hence, (u, v)€q(G). But G is strongly reduced, hence w, as well as v, are 
roots of G. Let tu, tv be terms (according to Lemma 2.2 (1)) with G(tU)=G(tV)=G, 
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L(tu)=u, L(tB)=v. Then tu—tu fails in A(G), hence it fails in a member of <$. 
Therefore there exists a homomorphism/of G into that member such that f(u)^f(v). 

To conclude the proof of (4) we have to ensure that the set $ of homomorphisms 
is not empty. If it is empty, then G has no non-edges, hence it is a complete graph, 
and has no two different vertices, hence G is the one element complete graph. In that 
case, the identity xx=«> fails in G, hence it fails in a member of RS. Therefore that 
member has at least one loop, so G is an induced subgraph of it. 

Finally we have to prove (5), so let G be strongly critical. By (1), (2), and (3) we 
see that G is finite, rootable, and reduced. If G is not strongly reduced, then there 
exist different vertices u and v of G such that (u, v)£q(G), but u is not a root of G. 
Let iS,=Gf[w)c, # the equivalence relation with single nontrivial block {w, i>}, and 
F=G/9. It is sufficient to prove that G is in the variety generated by S and F (which 
is a contradiction, since G is strongly critical). 

Suppose otherwise. Then by Lemma 4.6 (2) there is identity s=t that holds in 
F and S but fails in G, moreover, G(s)=G(t), and u=h(L(s))?ih(L(t)) = v holds 
for a graph homomorphism h: G(s)—G. Now h maps G(s) into [u)=V(S), and 
this yields an evaluation showing that s=t fails in S. This contradiction finishes the 
proof of Proposition 4.5. 

Let G be undirected, finite, and connected. Then every vertex is a root, hence G 
is strongly reduced. Thus Theorem 1.4 is an easy corollary of Proposition' 4.5. 

We introduce some notation for graphs that provide important examples. First, 
we deal with the directed case. Let P„ be the directed (loopless) path of n +1 vertices, 
that is, of length n, and let C„ be the directed cycle of n certices. Furthermore, let 
G (n, k, m) denote the graph obtained by connecting a vertex of C„ to a vertex of Cm 

by a directed path of length k (see Figure 4 below). Thus, G(n, k, m) has n+k+m—1 
vertices and n + k + m edges. 

Example 4.7. The only subvarieties of the variety "V generated by all P„ 
(n£(o) are the varieties V(Pm) (m£(o). The only subvarieties of V(C„) are the varie-
ties V(Pm) for m<n—1 and V(C„) itself. Hence the lattices of subvarieties of "V, 
\(Pn), and V(C„) (n£co) are all chains. 

P roo f . In any direct product of cpoies of Pm and C„ the out-degree of every 
vertex is at most one. Hence if wis an element of such a product, then [u) is isomorphic 
to some Pm or to C„. Hence, every strongly critical member is a path or a cycle. 

Example 4.8. We have G(n, k+\,m)£\{G(n, k, m)) but G(n,k,m)$. 
$y{G(n,k+\,m)) for n,k,m^ 1. Hence V(G(«, k, mj) does not satisfy the des-
cending chain condition for subvarieties. 

P roof . It is straightforward to check that every graph G(n, k, m) is finite root-
able, and strongly reduced. So by Proposition 4.5 (4) we may apply Lemma 4.6 (1). 
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G(6,3,3) 
Figure 4 

We show G(n, k, m)$\(G(n, k +1, m)) first. Let u be the only vertex of G(n, k, m) 
with out-degree two, v the only one with in-degree two, and let u' and v' be the vertices 
of G(n, k+1, m) defined analogously. Denote by x and y the endpoints of the edges 
starting from u and let f : G(n, k, m)~^G(n, k + l, m) be a homomorphism with 
f ( x ) ^ f ( y ) . Then f(u) has out-degree two, hence f(u)=u'. If x is the vertex on the 
first cycle of G(n, k, m) and y is the one on the intermediate path (cf. Figure 4), then 
there is a directed path from x to w, but there is no such path from y to u. Therefore 
f(x) must be on the first cycle of G(n, k+1, m), hence f ( y ) is not on this cycle. Since 
all vertices except u and u' have out-degree one, starting from y we see that all the 
elements of the intermediate path of G(n, k, m) are mapped to the intermediate path 
of G(n, k+ l j m). Thus f(v) is still on the intermediate path of G(n, k+l, m) and 
not on it's second cycle. This is impossible however, since in G(n, k, m) there is a 
directed path from v to v. This contradiction shows that there is no homomorphism 
from G(n, k, m) to G(n, k+l, m) that separates x and y, hence G(n k, m)$_Y(G(n, 
k+1, m)) indeed. 

To show that G(n, k+l, m)£V(G(n, k, m)) consider two homomorphisms from 
G(n, k+l, m) to G(n, k, m) the first of which collapsing the two out-neighbours of 
u' and the second one collapsing the two in-neighbours of v'. It is easy to check that 
these two homomorphisms separate all vertices and non-edges. 

Example 4.9. Let G be a directed cycle with a chord, that is, V(G)={ 1, ..., m) 
and E(G) = {(\,2), ...,(m-l,m), (m, 1), (1, &)} with If m-k+2 does 
not divide m, then V(G) does not satisfy the descending chain condition for sub-
varieties. 

Proof . Let n=m—k+2. It is sufficient to show by the previous example that 
G(n, k—1, n)£V(G). Let us introduce the notation ut = 1, u2=k, u3=k+l, ..., 
un—m, the induced subgraph on this set is isomorphic to C„. We define the subset 
U of GXG to be Ux\JU2iJU3 with 

C/i = {("1, "1), (w2, "2)> ••• ,(«„, «„)}> 

U2 = {(1, Uj), (2, w2), (3, u3), ..., (fc-1, uk_±), (k, 

U3 = {(m2, uk), (u3, uk+1), ..., (un, um), («!, Mm+1)}, 
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2 3 

m = t i n 

m - 1 = u n _ i 

k + 2 = t i 4 * + l = U 3 

Figure 5 

where the subscripts of u are understood modulo n. The condition that n does not 
divide m implies that and U3 are disjoint. Since the vertices 2, ..., k—1 of G 
occur only in U2 we see that i/jU i/2 = {(l, ux)} and U2C\ U3—{(k, uk)}. It is clear 
that the induced graph on XJx and U3 is C„ and on Uz is Pk. The union of these indu-
ced graphs is isomorphic to G(n, k— 1, n). To conclude the proof that (GXG)\U 
is isomorphic to G(n,k—l,n) therefore it is sufficient to check that there are no 
extra edges between elements of U. This follows easily from the fact that in the graph 
G every vertex has out-degree one, except 1=m15 and that the endpoint of one of 
the edges starting from ux, namely the vertex 2, occurs only in one of the pairs of U. 

These examples point in the direction of characterizing those graphs G for which 
V(G) satisfies the descending chain condition for subvarieties. We have completed 
this task in the case of undirected graphs. 

First we introduce names and recall some concepts. Let D„ be the undirected 
cycle (without loops) of length n S3, R„ the undirected (loopless) path of n edges 
(n a;0), and Ln the undirected path of n +1 vertices with a loop at every vertex (n SO). 
Finally, G0 denotes Murskii's graph (pictured on Figure 1), that is, the graph on {0,1} 

A graph G is called bipartite, if V(G) can be decomposed into the union of two 
disjoint subsets Z a n d 7 such that E(G)Q(XX F )U(FXZ) . If equality holds in-
stead of inclusion, then G is called bipartite complete. A graph is a linear one-factor, 
if every connected component is a (loopless, undirected) path of at most two vertices. 
Finally, a discrete graph is one without edges that are not loops. 

First we formulate a result that belongs to the folklore of graph theory. 

Lemma 4.10. If a finite, undirected, loopless graph contains a cycle of odd length, 
then it contains an induced subgraph, which is a cycle of odd length. The graphs con-
taining no cycle of odd length are exactly the two colorable, or bipartite graphs. 

with £«?„) = {(0,1), (1,0), (1,1)}. 
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P r o o f . Consider an odd cycle of minimal length. If the induced subgraph on 
this set is not a cycle, then this cycle has a chord that decomposes it into two smaller 
cycles, one of which must have odd length. The second statement is found in any 
standard textbook on graphs. 

E x a m p l e 4 . 1 1 . (S. OATES-WILLIAMS [8]). Let 3. Then Z)„+2V(£>„), and 
if n is odd, then X>„$ V(Z>„+2). Hence if n S 3 is odd, then V(D„) does not satisfy 
the descending chain condition for subvarieties. 

P roof . Our methods enable to present a quick proof. First observe that an 
undirected cycle of length four can be collapsed to an undirected path of length two, 
so it may happen that a homomorphic image of a cycle does not contain a cycle at 
all. However, every homomorphic image (with or without loops) of an undirected 
cycle of odd length contains an undirected cycle of odd length (possibly a loop, 
which is a cycle of length one). Indeed, the edge set of this homomorphic image can 
be decomposed into the union of disjoint cycles, some of which have length two. 
These degenerate cycles, however, swallow up an even number of edges. Therefore 
this homomorphic image has a cycle of odd length. This argument shows that if n 
is odd, then there is no homomorphism from D„ to Dn+2, hence D„$V(D„+2). On 
the other hand, consider the cycle {1, 2, ..., n+2} and identify / and /4-2 as well as 
/ + 1 and /4-3. This yields a homomorphism into D„. Doing this for all vertices i we 
obtain a separating family (actually, two of these homomorphisms will suffice). 

Some of the following three examples are well-known (see for example, the paper 
of G . M C N U L T Y , C . SHALLON [5]), and all of them have a straightforward proof based 
on Lemma 4.6 (1) and Lemma 4.5 (4). 

E x a m p l e 4.12. The variety V(G0) contains all loopless, undirected graphs. 

E x a m p l e 4.13. The variety V(Z2) contains all looped, undirected graphs. The 
variety V(IO) consists of all disjoint unions of complete looped graphs. Finally, V(L0) 
contains exactly the discrete looped graphs. 

E x a m p l e 4.14. The variety &=\(R3) is the class of all (loopless, undirected) 
bipartite graphs, and V ( I ? 2 ) = V ^ D J is the class of all (loopless, undirected) bipartite 
complete graphs. The variety V ( I ? J ) consists of the loopless graphs that are linear 
one-factors, finally V(i?0) consists of the loopless discrete graphs. Therefore all these 
classes of graphs are graph varieties. 

C o r o l l a r y 4.15. Let V be a variety of undirected graphs satisfying the descend-
ing chain condition on subvarieties, and let G-be a finite, connected member of "V. 
Then either G is loopless and bipartite, or it has a loop at every vertex. Hence 
QV{L2,R3}. 
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Proof . The graph G cannot contain G0 as an induced subgraph by 4.12 and 4.11, 
and since it is connected, it is either loopless or looped. In the first case it is bipartite 
by Lemma 4.10 and Example 4.11. 

Example 4.16. The strongly critical members of the variety %=V{L2,R3} 
are exactly L0, Llt L2, R0, Rx, R2, JR3. Hence % has finitely many subvarieties. 

P roof . Examples 4.13 and 4.14 show that the graphs listed are indeed strongly 
critical (since they generate different varieties). Conversely, let G be a strongly critical 
member of Then G is connected and is an induced subgraph of a direct product of 
copies of L2 and R3. If R3 occurs in none of the factors, then G is looped, otherwise it 
is loopless and bipartite, since it has a homomorphism to the bipartite graph R3. 
In the first case, G either contains L2 as an induced subgraph, and as G is strongly 
critical, G=L2 by Example 4.13, or G is complete. In the latter case either G=L0 

or G is in the variety generated by and hence, by criticality, G=LX. 
The other possibility is that G is loopless and bipartite, so it is in the variety 3%. 

If G has no edges at all, then G=R0. If G does not contain a path of length two, but 
contains an edge, then G=R1. Otherwise, R2 is a subgraph of G. As G is bipartite, 
it has no triangles, hence the induced subgraph on this path of length G=R 2 . If not, 
then R3 is an induced subgraph of G, hence G=R3. 

The p roof of Theorem 1.7. Let f " be a variety of undirected graphs. If 
then by Example 4.16, V has only finitely many subvarieties. If 1 

then V does not satisfy the descending chain condition on subvarieties by Corollary 
4.15. 

The lattice of subvarieties of % has seventeen elements, and is shown on Figure 6. 
The correctness of this picture follows from the following assertion, where the sign c 
means: contained and not equal. The simple proofs are based on Lemma 4.6 (1), 
and are left to the reader. 

P ropos i t i on 4.17. The following relations hold. 

(1) V W c Y(Ri) c \(R2) c \(R3). 

(2) V ( £ „ ) c V ( Z x ) c V(£2).-

(3) If L£V{Lj, Rk}, then L£Y {Lj}. 

(4) If RteV{Lo,Rk}, then R£V {Rk}. 

(5) R2£V {ZL5 RJ, R3$V {Lx, R2}, RAV{L2, R0}, R3e\(L2, RJ. 
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