On *-bases in lattices of finite length

ZSOLT LENGVÅRSŻKY

The notion of $*$-independence was introduced by G. CzÉdLI in [2] as an analogue of weak independence (see [1]). A subset H of a lattice L is called $*$-independent if for all $h, h_{1}, \ldots, h_{n} \in H$ satisfying $h=h_{1} \vee \ldots \vee h_{n}$ there is an $i \quad(1 \leqq i \leqq n$) such that $h=h_{i}$. A maximal $*$-independent subset is called a $*$-basis of L. Let L be a lattice of finite length. Then two basic examples of $*$-bases are maximal chains and the set of all join-irreducible elements of L.

In this note we extend the following result of [2]:
Theorem A. Every *-basis of a finite distributive lattice L has at least $\left|J_{0}(L)\right|$ elements $\left(J_{0}(L)\right.$ is the set of all join-irreducibles of $\left.L\right)$.

We also determine the class of lattices of finite length which have the property that any two *-bases have the same number of elements. This class turns out to be exactly the class of planar distributive lattices.

We will need the following well-known
Lemma B (see [3]). Let D be a finite distributive lattice. If for the elements $j, x_{1}, \ldots, x_{n} \in D$ we have $j \in J_{0}(D)$ and $j \leqq x_{1} \vee \ldots \vee x_{n}$ then $j \leqq x_{i}$ for some $i, 1 \leqq i \leqq n$.

Let L be a lattice of finite length. For any interval $[a, b]$ of length two in L let $N_{a, b}$ be a (possibly empty) set of new elements such that $N_{a, b} \cap N_{c, d}=\emptyset$ if $a \neq c$ or $b \neq d$. We define a new lattice \tilde{L} containing ${ }^{\prime}$ ' as a sublattice on the base set $L \cup \underset{l([a, b])=2}{ } N_{a, b}$ by adding to the Hasse diagram of L the covering relations $a \prec u$ and $u \prec b$ for all $N_{a, b}$ and for all $u \in N_{a, b}$. Then we say that \tilde{L} can be obtained by inserting new elements into L.

Observe that for any join $x_{1} \vee \ldots \vee x_{n}$ in \tilde{L} we have either

$$
x_{1} \vee \ldots \vee x_{n}=x_{i}
$$

for some $1 \leqq i \leqq n$ or

$$
x_{1} \vee \ldots \vee x_{n}=\bar{x}_{1} \vee \ldots \vee \bar{x}_{n}
$$

where $x \rightarrow \bar{x}$ denotes the mapping of \bar{L} to L defined by

$$
\bar{x}=\left\{\begin{array}{lll}
b & \text { if } & x \in N_{a, b} \\
x & \text { if } & x \in L .
\end{array}\right.
$$

Let \mathscr{L}_{0} be the class of lattices which can be obtained by inserting new elements into some finite distributive lattice. The following result extends Theorem A:

Theorem 1. If $L \in \mathscr{L}_{0}$ then for any *-basis of L we have $|H| \geqq l(L)+1$.
Proof. Suppose that L can be obtained by inserting new elements into the distributive lattice D. Let $N=L \backslash D$. We define a mapping $\Phi: J_{0}(D) \rightarrow \mathscr{P}(H)$ by $\Phi(j)=\left\{\begin{array}{l}\{j\} \text { if } j \in H \text { (case } \alpha \text {) } \\ \left\{h \in N \cap H \mid j \text { covers } h \text { and } j=h \vee h_{1} \vee \ldots \vee h_{n} \text { for some } h_{1}, \ldots, h_{n} \in H\right\} \text { if } \\ j \oplus H \text { and this set is nonempty (case } \beta \text {) } \\ \left\{h \in H \mid h=j \vee h_{1} \vee \ldots \vee h_{n} \text { for some } h_{1}, \ldots, h_{n}<h ; h_{1}, \ldots, h_{n} \in H\right\} \\ \text { otherwise (case } \gamma) .\end{array}\right.$ Since H is a $*$-basis $\Phi(j)$ is always nonempty.

Now assume that for some j 丰 k we have $h \in \Phi(j) \cap \Phi(k)$. It is easy to check that this can happen only in two cases:

- $\Phi(j)$ was defined according to case α and $\Phi(k)$ was defined according to case γ;
- both $\Phi(j)$ and $\Phi(k)$ were defined according to case γ.

Suppose the latter. Then

$$
h=j \vee h_{1} \vee \ldots \vee h_{n}=k \vee g_{1} \vee \ldots \vee g_{m}
$$

for some $h_{1}, \ldots, h_{n}, g_{1}, \ldots, g_{m} \in H$ with $h_{1}, \ldots, h_{n}, g_{1}, \ldots, g_{m}<h$. This implies

$$
j \vee \bar{h}_{1} \vee \ldots \vee \bar{h}_{n}=k \vee \bar{g}_{1} \vee \ldots \vee \bar{g}_{n}
$$

and by distributivity

$$
j=(j \wedge k) \vee\left(j \wedge \bar{g}_{1}\right) \vee \ldots \vee\left(j \wedge \bar{g}_{m}\right) .
$$

Since j is join-irreducible in D, we have $j=j \wedge \bar{g}_{i}$ for some $1 \leqq i \leqq m$. Then

$$
\bar{g}_{i} \vee h_{\mathbf{1}} \vee \ldots \vee h_{n}=h
$$

and since H is a *-basis we have

$$
g_{i} \vee h_{1} \vee \ldots \vee h_{n}<h .
$$

As $g_{i} \vee h_{1} \vee \ldots \vee h_{n}=h_{t}$ cannot hold ($1 \leqq t \leqq n$) we have $g_{i} \vee h_{1} \vee \ldots \vee h_{n}=g_{i}$ thus $g_{i} \in N$ and $h=g_{i}$, whence $j \vee g_{i}=h$. Furthermore $k \vee g_{i}=h$, as otherwise $k \vee g_{i}=g_{i}$ which would imply $g_{1} \vee \ldots \vee g_{m}=h$, a contradiction.

We obtained that if $h \in \Phi(j) \cap \Phi(k)$ for some $j \neq k$ then $h=h^{\prime}$ and $j \vee h^{\prime}=$ $=k \vee h^{\prime}=h$ for some $h^{\prime} \in N \cap H$. The same conclusion can be derived in a similar way if $\Phi(j)=\{j\}$.

It is easy to see that $h^{\prime} \notin \Phi(l)$ for any $l \in J_{0}(D)$. Indeed, since $h^{\prime} \in N$ and $h^{\prime}=h$, the only possibility for $h^{\prime} \in \Phi(l)$ is $l=h$ but then $h^{\prime} \notin\{h\}=\Phi(l)$.

Now suppose that there is a third element $l \in J_{0}(D)$ with $h \in \Phi(l)$. Then by the above observations for some $h^{\prime \prime} \in N \cap H$ we have $h=h^{\prime \prime}$ and $j \vee h^{\prime \prime}=l \vee h^{\prime \prime}=h$. As $h^{\prime} \vee h^{\prime \prime}=h$ cannot hold we must have $h^{\prime}=h^{\prime \prime}$ and $j \vee h^{\prime}=k \vee h^{\prime}=l \vee h^{\prime}=h$. Assume that h^{\prime} was inserted into the interval $[a, h]$. It is obvious that $j \vee a, k \vee a$, $l \vee a>a$. Further, they are pairwise distinct by Lemma B. If, say $j \vee a=h$, then $j \vee a=k \vee l \vee a$. Then again by Lemma B we have $j \geqq k, l$ and either $j \leqq k$ or $j \leqq l$, i.e. $j=k$ or $j=l$. Hence the elements $a<j \vee a, k \vee a, l \vee a<h$ form a sublattice isomorphic to M_{3}, the five element non-distributive modular lattice, which is a contradiction.

Finally define

$$
H=\{h \in H| |\{j \mid h \in \Phi(j)\} \mid=i\}
$$

for $i=0,1,2$. Summarizing the above observations we can write

$$
\begin{gathered}
|H|=\left|H_{0}\right|+\left|H_{1}\right|+\left|H_{2}\right| \geqq\left|H_{1}\right|+2\left|H_{2}\right|= \\
=\sum_{j \in J_{J_{0}(D)}}|\Phi(j)| \geqq\left|J_{0}(D)\right|=l(D)+1=l(L)+1 .
\end{gathered}
$$

A finite lattice is said to be planar if its Hasse diagram can be described in the plane by using non-intersecting straight line segments.

Theorem 2. Let L be a lattice of finite length. Then any two $*$-bases of L have the same number of elements iff L is a planar distributive lattice.

Proof. Let L be a planar distributive lattice and let $H \subseteq L$ be a $*$-basis. Now for any join $x_{1} \vee \ldots \vee x_{n}$ in L there are $1 \leqq i, j \leqq n$ such that $x_{1} \vee \ldots \vee x_{n}=$ $=x \vee x_{j}$, i.e. $b(L)$ (=the breadth of L) $\leqq 2$ (see [5]). Consider the following map $\Phi: J_{0}(L) \rightarrow \mathscr{P}(H)$ which was introduced in [2]:

$$
\Phi(j)=\left\{\begin{array}{l}
\{j\} \quad \text { if } \quad j \in H \\
\left\{h \in H \mid h=j \vee h_{1} \vee \ldots \vee h_{n} \text { for some } \quad h_{1}, \ldots, h_{n}<h ; h_{1}, \ldots, h_{n} \in H\right\} \\
\text { if } j \neq H .
\end{array}\right.
$$

In view of Theorem A it is enough to show that for any $j \in J_{0}(L)$ we have $|\Phi(j)|=1$ and for any $h \in H$ there is a $j \in J_{0}(L)$ with $h \in \Phi(j)$.

Suppose that $h \neq h^{\prime}$ and $h, h^{\prime} \in \Phi(j)$, i.e. $h=j \vee h_{1} \vee \ldots \vee h_{m}$ and $h^{\prime}=j \vee h_{1}^{\prime} \vee \ldots$ $\ldots \vee h_{n}^{\prime}$ for some $h_{1}, \ldots, h_{m}<h, h_{1}, \ldots, h_{m} \in H$ and for some $h_{1}^{\prime}, \ldots, h_{n}^{\prime}<h^{\prime}, h_{1}^{\prime} ; \ldots$ $\ldots, h_{n}^{\prime} \in H$. By the starting note on joins $h=j \vee h_{s}$ and $h^{\prime}=j \vee h_{t}^{\prime}$ for some $1 \leqq s \leqq m$ and for some $1 \leqq t \leqq n$. Then $h \vee h^{\prime}=j \vee h_{s} \vee h_{t}^{\prime}$ and by $b(L) \leqq 2$ again, we have three possibilities:

$$
h \vee h^{\prime}= \begin{cases}j \vee h_{s} & \text { (a) } \\ j \vee h_{t}^{\prime} & \text { (b) } \\ h_{s} \vee h_{t}^{\prime} & \text { (c) }\end{cases}
$$

In case (a) $h \vee h^{\prime}=h$, whence $h^{\prime} \vee h_{s}=h$. Since H is a basis, we must have $h^{\prime}=h$. Case (b) is similar to case (a) and in case (c) we have $j \leqq h \vee h^{\prime}=h_{s} \vee h_{t}^{\prime}$ where h_{s}, $h_{t}^{\prime} \neq j$. By Lemma B this is a contradiction.

Now le $h_{0} \in H$. If $h_{0} \in J_{0}(L)$ then ${ }^{i} h_{0} \in \Phi\left(h_{0}\right)$. Let $h_{0} \notin J_{0}(L)$. Then (again by $b(L) \leqq 2$) there are two incomparable elements $j, j^{\prime} \in J_{0}(L)$ such that $j \vee j^{\prime}=h_{0}$. If $j \in H$ then $j^{\prime} \in H$ cannot hold, thus $h_{0} \in \Phi\left(j^{\prime}\right)$. Suppose that $j \nmid \forall$. Then $h=j \vee h_{1}$ for some $h_{1}<h ; h_{1}, h \in H$. We have three possibilities:

$$
j \vee j^{\prime} \vee h_{1}= \begin{cases}j \vee j^{\prime} & \text { (a) } \\ j \vee h_{1} & \text { (b) } \\ j^{\prime} \vee h_{1} & \text { (c) } .\end{cases}
$$

Case (a). Then $h \leqq h_{0}$. If $h=h_{0}$ then $h_{0} \in \Phi(j)$. If $h<h_{0}$ then $j^{\prime} \vee h=h_{0}$ yealds $h_{0} \in \Phi\left(j^{\prime}\right)$.

Case (b). Then $h_{0} \leqq h$. If $h_{0}=h$ then $h_{0} \in \Phi(j)$. If $h_{0}<h$ then $h_{0} \vee h_{1}=h$ contradicts the fact that H is a $*$-independent subset.

Case (c). Then $j \leqq j^{\prime} \vee h_{1}$ and j 事 $j^{\prime}, j \neq h_{1}$, a contradiction.
Now suppose that L is not a planar distributive lattice. If L is not modular then as it was shown in [4], L contains a c-sublattice L_{0} isomorphic to $L_{k, l}(k \geqq 2, l \geqq 1)$, B or B^{\prime} (see the diagram).

B

B^{\prime}
(A sublattice L_{0} of a lattice L is a c-sublattice if $a \prec b$ in L whenever $a \prec b$ in L_{0}.)

It is straightforward to check that in each case there is a $*$-basis $H_{0} \subseteq L_{0}$ and there is a maximal chain $C_{0} \subseteq L_{0}$ with $\left|H_{0}\right|>\left|C_{0}\right|$. Let $a=x_{0} \prec \ldots \prec x_{m}=a_{0}$ and $b_{0}=y_{0}<\ldots \prec y_{n}=b$ be two maximal chains between a and a_{0} and between b_{0} and b, respectively, where $a=\wedge L, b=\vee L$ and $a_{0}=\wedge L_{0}, b_{0}=\vee L_{0}$. Then $H=H_{0} \cup\left\{x_{0}, \ldots\right.$ $\left.\ldots, x_{m}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\}$ is a $*$-independent subset (which can be extended to a $*$-basis of L) and $C=C_{0} \cup\left\{x_{0}, \ldots, x_{n}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\}$ is a maximal chain of L (which is itself a *-basis of L) such that $|H|>|C|$.

If L is modular but not distributive then L contains M_{3} as a c-sublattice (see [3]).

Since M_{3} has a *-basis with 4 elements, we can argue as above, in the non-modular case. If L is distributive and L is not planar then L contains a cube (see the diagram) as a c-sublattice (cf. [6]) and again, we can argue as in the non-modular case.

References

[1] G. Czédli, A. P. Huhn and E. T. Schmidt, Weakly independent subsets in lattices, Algebra Universalis, 20 (1985), 194-196.
[2] G. Czédliand Zs. Lengvärszky, Two notes on independent subsets in lattices, Acta Math. Hung., 53 (1989), 169-171.
[3] G. Grätzer, General Lattice Theory, Akademie-Verlag (Berlin, 1978).
[4] J. Jakubik, Modular lattices of locally finite length, Acta Sci. Math., 37 (1975), 79-82.
[5] D. Kelly and I. Rival, Crowns, fences and dismantlable lattices, Canad. J. Math., 26 (1974), 1257-1271.
[6] D. Kelly and I. Rival, Planar lattices, Canad. J. Math., 27 (1975), 636-665.

