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A maximal partial clone and a Slupecki-type criterion 

L. HADDAD, I. G. ROSENBERG and D. SCHWEIGERT 

0. Introduction 

In this paper we study certain aspects of partial algebras, composition of partial 
operations and partial clones. Partial algebras are known to be more flexible than the 
full ones but also to present conceptual difficulties (in the sense that certain notions 
which are obvious for full algebras, may be extended in several ways in partial alge-
bras) and often require more complex treatment. We approach the definition of the 
composition of partial operations via the onepoint extension (completion), an idea 
which has been around for a long time (cf. e.g. [8]) whithout being systematically 
exploited. It embeds partial algebras on A into full algebras on B\=A\J{o°) (Where 
°°(M). The images of partial operations are in the clone RB on B consisting of all 
n-ary operations/on B such that 1) . . . , a n d 2) for each l^i^n such 
that f depends on its z'-th variable we have 

/ ( * ! , . . . , oo, X i + 1 , . . . , X„) = oo 

for all xlt ..., Xi_x, x i + 1 , . . . , xn£B (n=l , 2,...). Partial clones are then defined as 
natural restrictions of subclones of RB (for more details see [16]). 

In [7], [14], [15] partial clones are understood in a more restrictive sense. They 
are not only closed under composition but also under taking suboperations (i.e. with 
each / such a clone also contains every partial operation obtained by restricting 
the domain). We call such clones strong. This definition is compatible with the rela-
tional (i.e. SP) definition and has been introduced for \A\=2 in [2], [3], for finite 
universes or operations with finite domains in [14], subalgebras of direct powers were 
considered in [7] for the finite case and the Galois connection for A infinite is in [15]. 

For finite full algebras one of the immediate questions arising naturally e.g. in 
propositional calculi of logics or in switching theory is wether they are complete (or 
primal). A general completeness criterion may be based on the knowledge of all 
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maximal clones (i.e. the dual atoms or co-atoms of the lattice of clones). For partial 
operations on A finite the question, albeit not so immediate, leads first to the study of 
maximal clones. These were determined for \A\ = 2 in [2], [3] and for \A\ = 3 in [20] 
{it seems that the three maximal clones of partial ^ isotone operation for ^ a chain 
were inadvertedly omitted); it is reported in [22] that a solution is in [25]. For \A\>2 
some maximal strong partial clones are described in [14] and very recently the two 
first authors characterized them combinatorially [21]; another approach is in [22]— 
[24] which were not available during the redaction of this paper. Not surprisingly, the 
list of maximal partial clones is much more extensive and more complex to state than 
the list of maximal full clones. However, this does not tell the whole story if non-
strong clones are considered as well. 

In this paper we address this problem. The answer is quite simple : there is a 
unique maximal partial non-strong clone. It consists of all full operations and all partial 
operations with the empty domain (the latter seem to be somewhat paradoxal but 
still useful here and elsewhere). For \A\=2 this clone is in [2], [3], for \A\ = 3 it is 
mentioned in [20] (without proof). For A finite we deduce that the partial clone of all 
partial operations is generated by two operations and obtain an analogue of SLU-
PECKI criterion [18]. The proofs are quite straightforward. Since the topic is off 
the beaten path and not quite well understood we have tried to make the paper self-
contained and present certain details in a more leasurely way. 

The work has been done during the third author's stay at CRM, Université de 
Montréal, in February and March 1986. The partial financial support provided by 
NSERC Canada operating grant A-5047 and FCAR Québec subvention d'équipe 
Eq-0539 is gratefully acknowledged. 

1. Preliminaries 

1.1. Let B be a fixed nonempty universe. For a positive integer n let O ^ denote 
oo 

the set of n-ary-operations on B (i.e. maps B"-*B) and let O b := (J O ^ (the 
n = l 

use of 0-ary operations, although possible, entails unnecessary formal complications 
and so we prefer to replace them by unary constant operations). The composition of 
operations may be formally defined in several (equivalent) ways. In the literature 
often this is glossed over but none of the more precise definitions seem to be 
short. The following formal definition [8] in terms of a monoid on Ob together with 
three unary operations neatly avoids the explicit use of arities. We start with the 
following monoid (Ob; *,idB>. Let /£0(

B
RA) and g£0(

B
N). Put p:=m+n-l and 

let h:=f*g£ be defined by setting 

h(b..., bp):=f(g(bu ..., b„), ba+1,..., bp) for all bly..., bp£B. 
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Thus f*g is the result of replacing the first variable o f / b y g while keeping all 
variables distinct. In order to be able to permute variables, we introduce the following 
unary operations £ and T on O b . Let / 6 F o r 7Z>1 we define r ( / ) , C(f)£Og ) 

by setting 

T ( / ) ( X ! , ..., x„) :=f(x2, xt, x3, ..., xn), 

ttfKxi, .... xn):=f(x2, ..., x„, Xj) 
for all xL, ...,xnfB. For n=l we put r ( / ) : = £ ( / ) : = / . Thus x ( f ) is the result of 
the exchange of the two first variables in / while £ ( / ) is obtained from / by a cyclic 
shuffle of variables. Since a transposition and a cyclic permutation generate the sym-
metric group S„, we can get all permutations of variables via repeated applications 
of C a nd r. 

The following unary operation A on O b designed for the fusion (identification) 
of variables. Let /€0§p. For 1 the operation A(J)£Oc

B
-1) is defined by setting 

x„-i):=/(*i>*i>*2. for all x1? ..., xn^£B while for n = 1 
we put A(f).—f. Finally for zzSz'Sl let e i f o , ..., x„):=x; for all x1 ; ...,x„£B. 
The universal algebra (more precisely a monoid with three unary operations and a 
constant) 

0 B : = ( O B ; * , C, t, A, ef) 

may be called the full post-iterative algebra on B. A subuniverse (i.e. the carrier of a 
subalgebra) of Ob is called a clone on B. In simpler terms, a clone on B is a composition 
closed set of operations on B containing all projections. Thus a clone is a multivariable 
analogue of a transformation monoid on B or a permutation group on B (whereby 
projections play the role of the identity). The set F of all term operations (or polyno-
mials) of a universal algebra (B; F ) is a clone (it is the least clone containing F). 
The clones on B, ordered by Q, form an algebraic lattice LB which, apart from the 
case \B\=2 ([13], cf. [11]) is largely unknown. For F c O B and a positive integer n 
put F < " > : = F n O f . 

We say that / € 0 ^ depends on its z'-th variable if there are c t , ..., c,_ l5 c i + 1 , ... 
...,c„£B such that h£O^ defined by setting h(x):=f(c1, ..., ct-lt x, c i + 1 , ..., c„) 
for all x£B is non-constant. 

1.2. Let A be a fixed universe with \A\>1. For a positive integer n a partial 
n-ary operation is a map f:Df—A where DfQAn. Let P ^ denote the set of partial 

oo 

/?-ary operations and let P^:= (J For our purposes we may treat PA via the 
n = l 

following one point extension. Let denote an element outside A and let B := A U 
For a positive integer n let R ^ denote, the set of f£Of such that 1) / ( » , ..., °°)=°o 
and 2) for every 1 ^ i ^ n such that /depends on its z'-th variable we have 

/(*!, ..., oo, xi+1, ..., xn) 
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for all x1,...,xi+1,...,xn£B. To / € R ^ we may assign the partial operation 
defined by Dj-:={x£An: f(x)£A} and f~(x):=f(x) for all x£Df-. 

In this sense /£RB
n) is obtained from f~ by setting /(; t)=°° for all x£A"\Df-

(i.e. there where f~ is not defined; note that i f f ~ is given by table usually a symbol 
like ~ or * is put in such places) and then we extend f~ to 5". One is tempted to putt 
/(jf):=oo everywhere no B"\A", however with this definition the .new operations de-
pend on all their variables while the clone on B generated by them will contain 
operations with dummy variables — for example projections on B must be added — 
and for this reason we have adopted the above more flexible definition. It is not diffi-
cult to see that RB is a clone on B [16]. Now a partial clone on A is the image C~:= 
:—{f~:/€C} of a subclone C of RB. Note that the map C—C~ (from the lattice 
of subclones of RB onto the lattice of partial clones) is not injective. The advantage 
of this definition is twofold. First, we don't need to develop the theory of partial 
clones separately but may view it as (a slight modification of) the theory of subclone« 
of RB and secondly we are led to an interesting clone RB. Note that for 1 
the clone RB sits at the bottom of a descending infinite chain of clones [15] and that 
RB (and PA) has 2*° subclones [4]. Perhaps it is worth mentioning that each post-
iterative algebra C on B containing RB has only one non-trivial congruence (with 
blocks Cfl0(

B \ n=1,2,...) and only automorphisms induced by permutations 
of B [8]. 

In [27] our definition of a partial clone is compared with another definition 
attributed to A . I . MAL'CEV [28, p. 12]. For /an w-ary and g an m-ary partial operation 
on A the composition h=f*Ag is an r-ary (r=m+n—\) partial operation on A 
with the domain 

A. := { K , a,): (ax, ..., am)£Dg, (g(a1, ..., am), am+1, ..., ar)£Df) 

and value f(g{a1, . . . , a j , am + 1 , ...,ar) for all (alt ..., ar)£Dh. It is shown in [27] 
that if / €R B depends on its first variable, then f ~ *A g~ =(f*g)~ but this needs not 
hold if the first variable o f / i s fictitious. Partial clones based on *A, called M-clones in 
[27], are a special case of our clones but not vice versa. According to BORNER [27] 
our results hold for M-clones as well. Some people may prefer M-clones because 
they may be handled in a categorical way [29]. We are grateful to R. POSCHEL [29] ad 
H . J . HOEHNKE [30] for pointing out the connections and for interesting comments. 
We mention one possible application. For a binary relation p on A (i.e. a subset 
of A2) consider ep£ R(

B
} defined by 

ep(x, y) = x if (x, y)£p and ep(x,y)=°° 

otherwise. The algebra (B; ep) is called the graph algebra of p and its variety has 
been studied in the context of finitely axiomatizable varieties (cf. [10, 12, 19] for 
references). 
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1.3. Let f,g£P^. We say t h a t / is a suboperation of g, in symbols f ^ g , if 
Df<=Dg and f(x)=g(x) for all x£Df. A partial clone C is strong if g£C whenever 

g^/fC. Let O*00 denote the set of with Df=A" and let 0 * = | J 
n = l 

0*(n). We have the following: 

1.4. Lemma. Let C be a partial clone on A. Then 

C ' : = { / € P A : f ^ g for some g£C} 

is a strong partial clone such that 

cr\o*A = cno*A. 

P r o o f . Let C\ be a subclone of RB such that C~ =C. Let C2 consist of all 
operations in RB obtained from an operation belonging to C\ by replacing some of 
its values by Clearly C~ =C', hence for the first statement it suffices to show that 
C2 is subclone of RB . Let ffC(

2
m) and g6C(

2
n) be obtained from f'£Cx and g'£Cx 

by converting some of their values from A to <=°. 
1) Put h':—f'*g' and h:-f*g. Let p:=m+n-1 and a=(au ..., ap)£B" 

be such that h(a)£A. We show that h'(a)£A. Put 

(1) «¡¡ :=g 'Oi , •••> «„)> 

«o •••> «»)• 
Note that 
(2) h'(a)=f'(a'0,an+1, ..., ap), 

h(a) =/(«o> an+1, ..., ap). 

Suppose a0=°°- In view of / € R B and h(a)=f(a0, a„+1, ..., ap)£A, the operation 
/ does not depend on its first variable, thus h(a)=f(a0, an+1, ..., ap)£A and a 
fortiori h'(a)£A and we are done. Thus let a0£A. Now it follows from (1) that 
a0-£A and a0=a'0, hence (2) shows h'(a)£A. 

2) We show that T ( J )£C 2 . This is evident if « < 2 and so let n^2. Suppose 
a=(a1, ..., am)£Bm is such that z(f)(a)£A. Then f(a2, ax, a3, ..., am)£A which 
implies f'(a2, alt a3, ..., am)£A and t(f')(a)£A. Thus T(/) is obtained from r ( / ' ) 
by replacing some values in A. by °°. A S T C f ' ) £ C x we have T ( / ) € C 2 . 

3) The proof £(f)£C2 and A (J)£C2 is quite analogous. Thus C2 is a clone and 
consequently a subclone of RB . 

For the equality C T l O ^ = C n O * the inclusion ¡2 is obvious from C " 2 C . 
If / € C n O a , then f ^ g for some g£C. Here g£0*A, hence f=g£CC\Q*A, 
proving g and completing the proof. 

1.5. It follows from Lemma 1.4 that each partial clone C such that C D O ^ c 
c O ^ (i.e. 9^0 a) extends to a strong partial clone distinct from P^. Thus for the 
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study of large partial clones we may study separately strong partial clones and partial 
clones containing O^. This paper studies the second type. The study of maximal 
strong partial clones has started in [2, 3] for \A\=2, [20] for M | = 3 and is 
continued in [6, 26], see also [5]. 

2. Finite partial clones containing all operations 

2.1. In the sequel we study partial clones containing the set O^ of all operations. 
Put 

M, := {/€R^: n < co, f(A") Q A} 

M2 := { /€ R£">: « < co, f(A") = {-}} 

We need the following: 

2.2. Lemma. If f d R ^ M ^ M J , then R i = M 1 U { / } (i.e. M1\J{f) gene-
rates RB.) 

P roof . Let/ben-ary. Put Q : = M U { 7 } and Df:={x£An: f(x)€A}. We have 
0 ^ Dfcz A" and thus there are 

a^(ai,...,an)£Df and ¿=(¿1, ..., bnXA"\Df 

Fix 0£A and put The proof is done in four steps. 

Fac t 1. Let I:B-*B be defined by setting 7(0)=/(°°):=°° and I(x)=0 other-
wise. Then Id Q. 

Proof . Let g i ' .B^B be defined by 

gi(0):= bi, g,(°°) :=°° and 

otherwise ( /=1, . . . ,«) . Clearly g^M^. Define h: B-^B by setting 

h(x):=f(gl(x),...,gn(x)) for all x£B. 

Clearly h£Q and h(0)=f(b)=~==h(<~) and h{x)=f(a)£A for all x£A*. 
Now Mx contains g: B—B defined by g(oo):=co and g(x):= 0 otherwise. Clearly 
I=goh£Q. 

F a c t 2. Let p:B-»B be defined by setting /?(0)=/?(°°):=°° and p(x):=x 
for all x£A*. Then p£Q. 

Proof . Let e£0(g} be defined by setting e(x,y)=y for all x,y£A and 
e(x, y)=°° otherwise. Clearly e€Mx and p(x)=e{l(x), x) for all x£B. Thus 
PiQ-

Let 1 be a fixed element of A*. 
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Fac t 3. There is a binary operation r£Q such that r(0,0)=o°, /-(1,0)=0 
and r(x,x)=x for all x£B\{0}. 

Proof . Let q£O^ be defined by setting q(<=°,x):=°o for all x£B and 
q(x,y):=y otherwise. Clearly q(A2)—A and so q£MxQQ. Put r(x, j ) : = 
:=q(p(x), y) for all x,y£B. We have r(0,0)=q(<*>,0)=<*>, 

r ( l ,0 ) = i ( l , 0 ) = 0 
and 

r(x,x) ~ q(p(x), x) = q(x, x) = x for all 

Now we can finish the proof. Let q£ R ^ depend on all its variables. For 
x£B put C ^ g - H ^ r M " 1 . Define c1,ci£O^0 by setting 

ciOO - c,(y) = o if y e c „ , 

c i O O = i , c2(f) = o if j e c 0 , 
CI(Y) = C2(Y) = x if x£A\0, Y£Cx 

CiO5) = c2(y) otherwise (i.e. for y£Bm\Am). 
Clearly c l5 c2£Afim). Indeed, using Fact 3 we can verify that g(y)=r(c1(y), c2(y)) 
for all y£Bm. It follows that g£Q i.e. the subclone Q of RB contains all operations 
from RB depending on all variables. However, Q being a clone, this shows the required 
<2=Rb-

For M-=CO let p„ denote the partial n-ary operation on A with empty domain 
(i.e. DPn=&). We have our main result. 

2.3. Theorem. The set 
M:=0*A\J{pn: 0<H<Q>) is 
(i) a maximal partial clone, and 

(ii) a unique clone properly between Q\ and PA. 

Proof . Put Afs^MjUAfa (see 2.1). Clearly M3 =M and thus it suffices to 
show that M3 is a unique maximal subclone of RB containing Mx. 

(i) We prove that M3 is a clone. Indeed, let and g£M(
3
m\ 1) Consider 

h:=f*g and let p:=m+n—1. If f£M2 then clearly h£Mz. Thus assume that 
f£M1. If g£Mt, then clearly h£M1. Finally let g£M2. I f / depends on its first 
variable, then due to / 6 RB, we have h£M2, hence it remains to consider the case 
o f / n o t depending on its first variable. Let a1} ...,a„£A. Then 

« 
hiflx, ..., ap) = /(», an+1, ..., ap) = /(als a„+1, ..., ap)£A 

shows h£Mx. 2) The verification of OT(M3)QM3 for OL£{C, T, A} and e\£M3 is 
direct and immediate. Thus M3 is a subclone of RB. The fact M~ —M is also ob-
vious. 
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(ii) We show that M3 is a maximal subclone of RB. Clearly M3a RB. Let 
/ t R B \ M 3 . According to Lemma 2.2 we have 

R B i M 3 U { / } i M 1 U { / } = R B, 

hence M3 is a maximal subclone of RB, 
(iii) Finally let 5" be a clone on B such that A/ 1 cSc!R B . By Lemma 2.2 we 

jiave SQM3. Let g f S f ) M 2 be n-ary. Then S contains the unary operation ht := 
Clearly h^M^. Setting h„:—hl*e^ we obtain p„=h~ for all 0<«<co. 

Thus S _ i { />„ : 0<n<a>} and S~=M. 

3. The finite case: Slupecki type criterion 

3.1. We look at the case of A finite. As usual, an w-ary partial operat ion/on A 
is essential if it is surjective (i.e. takes on all values from A) and depends on at least 
two variables. A subset F of P^ is complete (or primal) if F=VA, i.e. P^ is the least 
partial clone containing F. We have: 

3.2. Theorem. Let A be finite. A subset F of PA is complete if and only if 
(i) F contains an essential operation, 

(ii) F generates all unary operations and 
(iii) For some 0 t h e set F contains an n-ary partial operation with proper 

•domain (i.e. whose domain is a proper subset of A"). 

Proof . (=>) Since F^?Oa evidently (i) and (ii) hold. Moreover F< tM (see 
2.3) proving (iii). 

By Slupecki's criterion ([18] cf. [11]) from (i) and (ii) we obtain O*AQF. 

3.3. Coro l la ry . Let A be finite and f f P A . Then {/} is complete in PA if and 
only i f f has proper domain and {/} contains all unary operations and at least one essen-
tial operation. 

We show that the lattice of subclones of PA is dually atomic and has a finite 
number of dual atoms (coatoms): 

3.4. Coro l la ry . If A is finite, then « 
(i) each proper subclone ofPA extends to a maximal subclone ofPA, and 

(ii) the set of maximal subclones ofPA consists of finitely many strong partial 
clones and the clone M (defined in 2.3). 

A similar statement holds for the clone RB on B=A U{°°}. 
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Proof . By definition, the subclones of RB are the subuniverses of RB:= 
:=(RB; *, C, T, A, el). By Corollary 3.3 the algebra RB is finitely generated. It is 
well known that this implies that each proper subalgebra of RB extends to a maximal 
one proving (i). For (ii) cf. [9, Thm. 7.2] or [21, 26]. 

5. Remark 

The number of maximal partial clones on a finite universe A exceeds largely the 
number of maximal clones on A. Some relations determine both a maximal clone and 
a maximal partial clone but there are relations determining only one of them. The 
combinatorial description of the relations determining maximal strong partial clones 
is cryptic in the sense that for some it is an NP-complete problem to decide wether 
a given relation is such. 
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