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On strong approximation with consequences 
of almost everywhere type 

L. LEINDLER 

1. Let / = / ( * ) be a continuous 2^-periodic function, i.e. f£C2„, and let 

11 00 

(1.1) f(x) — £ + 2 On cos nx + bn sin nx) 
n=i 

be its Fourier series. Denote s„—s„(x)=s„(f; x) the n-th partial sum. 
Let En=En(f) denote the best approximation o f / b y trigonometric polynomials 

of order at most n in the space C2n, and let || • || denote the usual supremum norm. 
The first result, which deduces structural properties of the function being app-

roximated at a given order by certain strong means, was proved by G. FREUD [2]. 
He verified that if / » 1 and 

(L2) II^Jo'WlH^' 
then / 6 Lip 1 ¡p and / satisfies 

(1.3) ton {f(x+h)-f(x))h-v> = 0 

almost everywhere. 
Answering a question of Freud we ([3]) verified that (1.3) cannot be extended to 

every point, which shows that Freud's results are best possible. 
These results have been generalized into several directions, and a theorem like 

this one has been called converse type. 
It is obvious that assumption (1.2) is equivalent to 

(1.4) | | 1 - / l ' | | i ; 
k—Q 
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this condition seems to be more lucidly arranged than (1.2), therefore the assumptions 
of converse type theorems have been given in this form instead of (1.2). 

Here we recall only two general converse theorems : 

Theo rem A. ([5]). Let 0 < a < 1, /?>0, and r be a nonnegative integer. Then 

n=l 

implies / ( r ) £ L i p a ; furthermore 

(1.6) \f*Kx+h)-f*Kx)\ + \PKx+h)-p'Kx)\ = ox(in . 

holds almost everywhere, where / denotes the conjugate function of f . 
These statements are best possible, i.e. (1.6) cannot be extended to every point. 

The following theorem of V. TOTIK [8] is one of the most general converse 
theorems, but it does not say anything about consequences of "almost everywhere 
type". 

T h e o r e m B. Let Q be a convex or concave function with the properties 

(1.7) Î 2 ( ; c ) > 0 ( x > 0 ) , lim Q(x) = Q(0) = 0, 

furthermore let {//„} be positive nondecreasing sequences. If 

(1-8) | | j ? A n f l O n | s „ - / | ) | | < o o 
n = 0 

then 

where Q and co(f, <5) denote the inverse of £2 and the modulus of continuity of f , respec-
tively. 

Estimation (1.9) is, in general, the best possible. 

As far as we know nobody has investigated the "almost everywhere" conse-
quences of (1.8). 

Our first aim was to consider this problem. In the course of the investigations it 
turned out that, under the same restrictions which we require in the proof of the 
consequences of almost everywhere type, the same estimation can be given for the 
modulus of continuity a>(J, 1/ri) as for co(f, 1/ri) in (1.9). Our theorem presents these 
results. 

Let y(x) be a monotone function, linear between n and « + 1, furthermore 

¿ - ^ â ( - i - ) and y{0)-.= y(\). n k=i Hk v K/k ' 
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Theorem. Suppose that {A„} and {fi„} are positive nondecreasing sequences 
and Q is a convex function with the properties (1.7) and its inverse satisfies the condition 

(1-10) *-o+o (2(x) 

for a certain positive ¿<1. Moreover suppose that the sequences {!„} and {/*„} and 
the function Q(x) jointly satisfy the following additional condition given by means of 
the function y(x) as follows; for any positive s there exist numbers N0=N(e) and 
x0=x(e) such that for any N^N0 and x>x0 

(1.11) y(x)^Ney(Nx) 

holds. Then condition (1.8) implies 

(1.12) lim y-i (-¡1-) {\f(x+h)-f(x)\ + \f(x+h)-j(x)\} = 0 

almost everywhere; furthermore that 1 /n)=0(y(n)). 

Remarks . It is very easy to verify that if Q is concave then (1.8) implies that 

(1.13) | | i k - / i | H ~ 
n=0 

also holds, whence, by a joint theorem of the author and E. M . NIKISIN ([7]), 

(1.14) !/(*+/,) _/(*), = 0x(h) 

follows almost everywhere. On the other hand, (1.14) is the best possible result, 
since the case / (x)=sin x shows that in (1.14) the estimation Ox(h) cannot be repla-
ced by ox(h) almost everywhere. Consequently the discussion of the case of concave £2 
looses its interest. Indeed, (1.8) includes (1.5), in the special case r=0, only if 
p> 1, i.e. if Q(x)=x" is convex. 

2. To prove Theorem we require the following lemmas: 

Lemma 1. If {A„} and {//„} are nondecreasing positive sequences then (1.8) implies 

(2.1) £ , „ ( / ) = 

for any convex Q. 

This statement was proved by V. TOTIK [8]. 

Lemma 2. If Q is convex, and {A„}, {/¿„J are nondecreasing positive sequences then 
(1.8) implies that for any positive a. and ¡5 there exists a perfect set Hacz[0, 27t] such 
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that mes {Hj>2n-a, and on the set Hx(t£Ha) 

(2.2) 2 1^(0-/(01 
« LFC=N+L HN V ' 

/ic/ifa i/ n>n0([i). 

Proof . By Egorov's theorem and (1.8) there exists a perfect set / / ^ [ 0 , 2n] 
such that mes (Hx)z~2n—ci and on the set Hx the series 

(2-3) 2 >„N{NN\SN(X)-F(X)\) 
1 1 = 0 

converges uniformly. Consequently for any given /?>0 there exists an integer 
w0=«„(/?) such that for all t£Hx 

(2-4) % ¿n(2(nn\s„(t)-f(t)\)^p. 
»=»" 0 

Hence and from the following obvious inequality 

1 2" 

" fc=n+l 

we obtain for any 

1 2n 1 2n a 

n * = n+l "/.„ )t=n+l n 

whence (2.2) clearly follows. 

Lemma 3. Assumption (1.10) implies that for any positive e there exists a number 
N(e) such that if N^N(E) then 

(2.5) y(Nx) S ey(x) 

holds for any x>x*=x*(e). 

Proof . By (1.10), using iteration, it is quite obvious that there exists a monotone 
increasing function Q(B) defined on (0, 1) such that Q(E)-~0 as e—0 and 

(2.6) Q(ex) e(e)fi(*) 

holds for any 0<x-=x0=x0(g(£)). Choosing a natural number M ( ^2 ) such that 
M_1^E(E/2) holds, where q denotes the inverse of g, then (2.6) implies 

(2.7) Q(M-1x)^Q(e(s/2)x)^(e/2)Q(x) if 0 < JC < *0. 

Hence the following elementary calculation gives (2.5). 



Strong approximation 103 

Denote by n the integral part of x, i.e. let nsx<n-1-1. First we prove that 
y(Nn)s (e/2)y(ri) holds, which obviously verifies (2.5); here we assume that 
n=»l/x„(e/2), where x„ is given by . (2.6). 

Let N(e):=4M2e~1 and e=§l. Then, if N^N(e), we get 

1 Nn 1 ( 1 \ 1 Mn M'n Nn 
(2.8) y(JV„) = - L - 2 — i2 - n - 2 + 2 }• Nn Mk ^ klk ) Nn \ t i k=Mn+1 k—M*n+i 

Now we estimate these sums using the notation ck \——£2 i - — S i n c e 
fik \kXt) 

y(ri) is decreasing we have 

(2-9) - j L - 1 c t = 2 ck = f-y(Mn) ^ JLy(Mn) ^ ±y(Mn) ^ f r ( n ) . 

(2.10) 

At the estimation of the second sum we use (2.7) as follows: 

J M'n J Mn—l M(v +1) J _ / 

Nn t=Mn+i 

M'n 1 Mn—l M(v +1) 1 ( 1 \ 2 ck = -±- 2 2 —fibrJ-
=Mn +1 NTl v = n fc=M»+l Hk fAic / 

_ J _ M y 1
 M J _ n ( 1 ) Me m ^ 

- Nn v f „ I AfvAv J - 2 M i v t j , /Iv I vAv J -

A/^6 £ 
~ 2W , v • ' _ 8 

Finally 

1 Nn 1 1 ^ Nn 1 -( 1 ) 
(2.11) 2 — O T T - ° 

Nn k=ifc„+i fik \ kXk ) Nn n„ \ M2nX„ ) 

4n„ V nk„ ) 4 n kti nk \ kXk ) 4 

Summing up, (2.8), (2.9), (2.10) and (2.11) give that 

y(Nn) ^ (e/2)y(ri) 

holds, whence (2.5) obviously follows for any x>x*(e):=(x0(e/2)) - 1+l. 
As Lemma 4 we recall an interesting theorem of L. D . GOGOLADZE [3] which 

extends certain structural properties of the function / to its conjugate function / . 

L e m m a 4. Let (p be a continuous nondecreasing function with the. properties 
<p(t)=~0 (t£(0,7r]) and Hm q>(t)=<p(0)=0, moreover 

(2.12) j A d t ^ - . 
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Define 

(2.13) = 0 
0 s 

If O)(/5 t)=0((p(t)) and on a set Ea[—n, TT] of positive measure 

/Acn 

a/jo AoWj on E almost everywhere. 
L e m m a 5. ([6], Lemma 2.6.). For any nonnegative sequence {ak} the inequality 

m 
(2.14) 2 < > k ^ K a m ( m = 1 , 2 , . . . , K > 0 ) * > 

k=l 

holds if and only if there exist a positive number c and a natural number ¡x such that 
for any k 

(2.15) ak+1Scak 

and 

(2.16) ak+„ £ 2ak 

are valid. 

L e m m a 6. ([9], (13.30) Theorem). For any f£Cin 

(2.17) <»(/, h) ^ K { } t~i(o(f, t) dt+h f t~*co(f, 0 dt} [h si 

holds. 

3. P r o o f of T h e o r e m . Let tj and e be arbitrary positive numbers. Let 
N=N(e) denote the least number satisfying (1.11) with this e, and the inequality 

By Lemma 2 with A—T] and P=Q{N~1) we get a perfect set 7/ ,c[0,2N] such 
that mes ( H ^ l n - t ] and for any t£Hn and n^n0(P)=n0(Q(N-1)) (2.2) holds, 

if t£Hn and n^n0. 

*) K , K l t . . . will denote positive constants not necessarily the same at each occurrence. 
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By a known theorem of Lebesgue there exists a subset H* of 7/, such that 
mes (H*)=mes (//„) and the points of H* are of density 1. 

Let x be an arbitrary fixed point of H*. Setting s1: = N~1(^e), by x£H* 
there exists a positive 8=8(ej) such that if then 

mes ([x-h, x]f) H*)> ( l - s J A and mes ([x, x+/i]n//,,*) > (1 — Ej) /i. 

Now let us choose y such that |x—j|<minf<5,—-—, —, — 1 , where x0 and 
v n<t(P) x0 x*) 

x* are the numbers given at inequalities (1.11) and (2.5), respectively. Let v=v(y) 
be the smallest natural number with 61«2v |x—^|<2s1 . It is clear that 2V>w0(/J). 
Since |x—y\<5 there exists a point lying between x and y such that 
I j - j i l s e j x - j l and y ^ y . 

By the obvious inequality 
(3.2) 

\f(y)-f(x)\ ^\f(y)-f(yi)\ + \f(yi)-V£(y\)\ +1V^(yi)-V^(x)\ + \V£(x)—f(x)\, 
2n 

where V*(x) :=n~x 2 siM> w e c a n prove that 
t=n + l 

(3.3) l i m y ^ ( - i r ) ( / ( x + / I ) - / ( x ) ) = 0 

holds almost everywhere. 
In (3.2) the first term on the right-hand side can be estimated easily by (1.9) 

and (2.5). 

I/O) —/Oi)l ^ KyQy-yA-1) ^ ^ ( ( s j x - j l ) - 1 ) = Ky(N/\x-y\) == Key(l/\x-y\). 

Since x and y1 belong to Hn, the second and fourth terms, using (3.1), can be 
estimated jointly: 

\f(yi)-V£{yi)\ + \V£(x)-f(x)\ s tf 

whence, using the monotonicity of /^¿2(1/Ad*), (2.6) and (1.11), we obtain 

(3.4) tsK— G(l/2V.sv) S KEly(2>) == Kl£ly(eil\x-y\) S 
Hw 

^ K^NsyWx-y]) = K2ey{ll\x-y\). 

In order to estimate the third term in (3.2) we set 

(3.5) V2V (x) = i (V*'(x)-V*Ux)) (K/_,(x) = 0). 
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Using Bernstein's inequality for the functions 

[/n(x):=V2*(x)-y2t.t(x), 

we get 

[ |ca S 2"+1 | |£/J s 2"+\\V£-f\\ + \\f-V£.l\) ^ K l ' E ^ i f ) , 

whence by (3.5) 
\\V£\\ ^K ¿VEz^Ki 2En 

«=0 n = 0 

follows. Hence, by Lemma 1, we obtain 

r 2 r i l S K2 2 — fif-4-) = K2Vy(V), 
n=l H„ \ nA,, / 

and so 
\yi-x\\\V£'\\ ^ K2\y-x\Vy(V) < 2^8^(2"). 

Using this, as in the proof of (3.4), we get 

\V£(yi)-V£(x)\ == Ijx-Xlll^'ll == K3sy(ll\x-y\). 

Summing up these estimations, by (3.2), we have 

(3.6) \ f ( x ) - f ( j ) \ m Key(ll\x-y\). 

Since e has been arbitrary, (3.6) implies (3.3) for all x£H*. Let G ( f ) denote the 
subset of [0, 2n] where (3.3) does not hold. It is clear that G ( / ) c [ 0 , 2 n ] \ H * , thus 
the exterior measure of G(f) is less than t\. Since // was also arbitrary, so the measure 
of G{f) is zero, that is, (3.3) is proved for almost all x. 

Now, if we can show that with <p(t):=y(l/t) if t£(0, 7t] and <p(0)=0 the 
assumptions of Lemma 4 are satisfied and that il/(s)^Ky(lfs), then, by Lemma 4, 
<3.3) implies (1.12). 

Thus the rest of the proof of (1.12) is to verify that with q>(t)=y(l/t) each of the 
assumptions of Lemma 4 holds. It is clear that lim y(x)=0 and so this <p is a conti-
nuous nondecreasing function on [0, n] and positive on (0, tt]. 

It is also clear that 

<3.7) ip(s) Ky(\/s) s£(0, n) 

will imply (2.12). So we have to prove (3.7). 
Putting u=\/t we get 

<3.8) f L y ( L ) d t = f-Ly(u)du 
0 ' V ' ' lis " 
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and since by a theorem of N. K. BARI and S. B. STECKIN [1] 

(3.9) / I y ( u ) d u = o[у ( 1 ) j (s - 0) 

holds if and only if there exists a constant C > 1 such that 

(3.10) Ш < 1, 

we have to verify this. 
By Lemma 3, (1.10) obviously implies (3.10), consequently (3.9) also holds. 
Next we estimate the second term in (2.13): 

' i / n 4s ч> » 
(3.11) f±.y\J-\dt= f y(u)du^K Z y ^ ^ K , 22ky(2k), 

s 1 In n~1 1 

2 where n=\og 1/s. 
By Lemma 5, with ak—2ky(2k), the estimation 

(3.12) 2 2ky(2k) Ш K2ny(2a) 
k=1 

holds if 

(3.13) 2
fc+1y(2fc+1) ^ c2ky(2k) 

and 

(3.14) 2k+f,y(2k+l1) s 2 • 2ky(2k) 
hold for a positive с and a natural number ц. 

By the definition of у (n) (3.13) holds with c = 1 ; furthermore (3.14) follows from 
(1.11) putting e= l /2 , N=2" and x=2k. 

Collecting the estimations (3.8), (3.9), (3.11) and (3.12), by (3.13), we have proved 
(3.7); and this completes the proof of (1.12). 

Finally, by Lemma 6 and (1.9), we have 

tod A) S Ai | f t - i y ( ! ) dt + h f t~*y ( ! ) dt], 

whence, by (3.8), (3.9) and (3.11), (3.12), as above 

<o(f, h) S K2y(l/h) 
also follows, i.e. 

(o(l 1/«) = .0(y(n)) 
is proved. 

This completes the proof of Theorem. 
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